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Abstract: This article concerned with the issue of solving a nonlinearequation with the help of iterative method where no derivative
evaluation is required per iteration. Therefore, this workcontributes to a new class of optimal eighth-order Steffensen-type methods.
Theoretical proof has been given to reveal the eighth-orderconvergence. Numerical comparisons have been carried out to show the
effectiveness of contributed scheme. Furthermore, we compare the performance of our proposed method by the basins of attraction
with some existing eighth-order Steffensen-type methods.
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1 Introduction

During the recent past, a wide collection of iterative
methods has been presented in many journals, one can
see, [5]-[10] and the references therein. In order to find
the solution of a nonlinear equation Newton has provided
the following iterative formula

xn+1 = xn −
f (xn)

f ′(xn)
. (1)

Steffensen [2] was the first who furnished the derivative-
free form of Newton’s scheme given by :

xn+1 = xn−
f (xn)

f [xn,wn]
, wn = xn+ f (xn), n= 0,1,2... (2)

both schemes possess the quadratic rate of convergence
and same efficiency index 1.414. Although both the
methods have the same order of convergence and
efficiency index, but Steffensen method is derivative free.
In order to increase the rate of convergence and efficiency
index of iterative methods the number of function
evaluations may increase. Kung and Traub [1]
conjectured that a multipoint iteration without memory
consumingn evaluation per full iteration can reach the
maximum convergence rate 2n−1. A large collection of

research papers is available on the higher-order iterative
methods agree with the Kung-Traub conjecture. In order
to compare different iterative methods of same order the
classical efficiency index of an iterative process in [3]
given by p

1
n , wherep is the rate of convergence andn is

the total number of functional evaluations per iteration.
More recently, many researchers have focused to make
existing iterative methods free from derivatives, interested
researcher can follow [12]-[18] . In many of the science
and engineering problem, the evaluation of derivative is
difficult and time consuming. Therefore, the
Steffensen-type methods have become very popular in
terms of solving nonlinear equations. This study is
summarized as follows: Firstly, we provide a brief review
of available literature to reveal the development of
different derivative-free iterative methods. In the next
section, we design a new optimal eight-order
Steffensen-type iterative method for finding simple roots
of nonlinear equations . In section 4, we employ some
numerical examples to compare the performance of the
new method with some existing eight-order
derivative-free methods. Section 5, reveals the graphical
comparison by basins of attraction. Finally, in the last
section brief conclusion will be given.
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2 A brief review of the available literature

In this section, we give the overview of some recent
derivative-free methods. Soleymani et al. [19] have
improved the efficiency index of following method in
terms of making it derivative-free

yn = xn −
f (xn)

f [xn,wn]
, wn = xn +β f (xn), β ∈ R\ {0},

zn = yn −
f (yn) f (wn)

( f (wn)− f (yn)) f [xn,yn]
,

xn+1 = zn −
f (zn)

f ′(zn)
,

where f [., .] denotes the usual divided difference. This
method has the eighth-order convergence and 1.516 as its
efficiency index. To improve its efficiency index the
authors have established two optimal three-step
multipoint derivative-free methods given by

yn = xn −
f (xn)

f [xn,wn]
,wn = xn +β f (xn),

zn = yn −
f (yn) f (wn)

( f (wn)− f (yn)) f [xn,yn]
,

xn+1 = zn −
f (zn) f (wn)

( f (wn)− f (yn)) f [xn,yn]

.{G(ϕ)×H(τ)×Q(σ)×L(ρ)},
and

yn = xn −
f (xn)

f [xn,wn]
,wn = xn −β f (xn),

zn = yn −
f (yn) f (wn)

( f (wn)− f (yn)) f [xn,yn]
,

xn+1 = zn −
f (zn) f (wn)

( f (wn)− f (yn)) f [xn,yn]

.{G(ϕ)×H(τ)×Q(σ)×L(ρ)},
where β ∈ R \ {0}, ϕ = f (zn)

f (yn)
, τ = f (zn)

f (wn)
, σ = f (zn)

f (xn)
,

ρ = f (yn)
f (wn)

. These methods have eighth-order convergence
with efficiency index 1.682 under some conditions on the
weight functions given in the same paper.
In [13], Soleymani has accelerated the efficiency index of
the following eighth-order multipoint structure

yn = xn−
f (xn)

f [xn,wn]
, zn = yn−

f (yn)

f ′(yn)
, xn+1 = zn−

f (zn)

f ′(zn)
.

He has approximated the derivatives by replacingf ′(yn)≈
f [xn,wn], f ′(zn)≈ f [xn,wn] and used the concept of weight
functions to make it optimal as well as derivative-free. He
proposed the following iterative formula

yn = xn −
f (xn)

f [xn,wn]
, wn = xn +β f (xn),

zn = yn −
f (yn)

f [xn,wn]
[G(A)×H(B)],

xn+1 = zn −
f (zn)

f [xn,wn]
[K(Γ )×L(∆ )×P(E)×Q(B)×J(A)],

wherein β ∈ R \ {0}, A = f (yn)
f (xn)

, B = f (yn)
f (wn)

, Γ = f (zn)
f (xn)

,

∆ = f (zn)
f (wn)

, E = f (zn)
f (yn)

. This method has the eighth-order
convergence and efficiency index 1.682. Inspired from all
these papers we also improve the order of convergence as
well as the efficiency index of one existing seventh-order
method in the next section.

3 Main method and convergence analysis

First we give some definitions which we will use later.

Definition 3.1 : Let f (x) be a real valued function with a
simple rootα and letxn be a sequence of real numbers
that converge towardsα. The order of convergencem is
given by

lim
n→∞

xn+1−α
(xn −α)m = ζ 6= 0, (3)

whereζ is the asymptotic error constant andm ∈ R+.
Definition 3.2 : Let n be the number of function
evaluations of the new method. The efficiency of the new
method is measured by the concept of efficiency index
[[3], [4]] and defined as

m1/n, (4)

wherem is the order of convergence of the new method.
Consider the following seventh-order method established
by soleymani et al. [5] to build a new eighth-order method:

yn = xn −
f (xn)

f ′(xn)
,

zn = yn −
f (yn)

f [xn,yn]
.G(tn),

xn+1 = zn −
f (zn)

f [yn,zn]
.H(tn), (5)

wheretn = f (yn)
f (xn)

and G(0) = G′(0) = 1, |G′′(0)| < +∞;

H(0) = 1,H ′(0) = 0,H ′′(0) = 2,
∣

∣

∣
H(3)(0)

∣

∣

∣
<+∞.

Now our aim is to develop derivative-free version of the
method(5). For this we approxf ′(xn) ≈ f [zn,xn], where
zn=xn + f (xn) in (5). Here we see that the method(5)
under this approximation of f ′(xn) has fifth-order
convergence and its error expression is given by

en+1 =
{(1+ c1)

2c4
2}e5

n

c2
1

+O(e6
n),

whereci =
f (i)(α)

i! , i = 1,2,3... .
Now to improve its order of convergence without using
any new evaluation, we approxf ′(xn) ≈ f [zn,xn], where
zn = xn + f (xn)

2, then its error expression becomes

en+1 =
c2

2

(

2c3
1c2+2c1c3+ c2

2(−6+G′′(0))
)(

A
)

e7
n

12c6
1

+O(e8
n),
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Table 1: Nonlinear functions and their roots.
Nonlinear f unction ( f (x)) Root (α)

f1(x) = 10 x e−x2 −1 α1 = 1.67963...
f2(x) = x2ex − sin(x) α2 = 0
f3(x) = sin(3x)+x cos(x) α3 = 1.19776...
f4(x) = log(x)−x3 +2sin(x) α4 = 1.29799...
f5(x) = cos(x)+ sin(2x)

√
1−x2+ sin(x2)+x14+x3+ 1

2x α5 =−0.92577...
f6(x) = e−x + sin(x)−1 α6 = 2.07683...

f7(x) = (1+x3)cos( π
2 )+

√
1−x2− 2(9

√
2+7

√
3)

27 α7 = 0.33333...

where

A = 6c3
1c2+12c1c3+ c2

2(−24+H(3)(0)).

In fact, if we approx f ′(xn) ≈ f [zn,xn], where
zn = xn + f (xn)

n , n ≥ 2, then its order of convergence is
seven. Clearly, here we use four function evaluations. So,
according to Kung-Traub conjecture its maximum
(optimal) possible order should be eight. To do this, we
consider the following iterative formula

yn = xn −
f (xn)

f [zn,xn]
,

wn = yn −G(t1).
f (yn)

f [xn,yn]
,

xn+1 = wn −H(t2).
f (wn)

f [wn,yn]
, (6)

wheret1 = f (yn)
f (xn)

, t2 = f [wn,yn]
f [wn,xn]

and zn = xn + f (xn)
3. The

following theorem shows that the conditions on weight
functions under which proposed scheme has eighth-order
convergence.

Theorem 3.1.Let us considerα ∈ D be a simple root of a

sufficiently differentiable functionf : D ⊆R→R. If x0 is
sufficiently close to the rootα. Then the method(6) has
eighth-order convergence, when the weight functions
G(t1), H(t2) satisfy the following conditions:

G(0) = 1, G
′
(0) = 1,

∣

∣

∣
G(3)(0)

∣

∣

∣
<+∞,

H(1) = 1, H
′
(1) = 0, H ′′(1) = 2 , H(3)(1) =−12,

∣

∣

∣
H(4)(1)

∣

∣

∣
<+∞. (7)

Proof. With help of Taylor series and symbolic

computation we find the error expression of method(6).
Furthermore, by Taylor expansion around the simple root
α in the nth iteration and by consideringen = xn − α,
f (α) = 0, we obtain

f (xn) = c1en + c2e2
n + c3e3

n + c4e4
n + ...+O(e10

n ), (8)

and

zn = α + en + c3
1e3

n +3c2
1c2e4

n +3c1(c
2
2+ c1c3)e

5
n

+...+O(e9
n). (9)

Subsequently, we obtain

f (zn) = c1en + c2e2
n +(c4

1+ c3)e
3
n

+(5c3
1c2+ c4)e

4
n + ...+O(e9

n). (10)

With the help of equations(8)-(10), we obtain the Taylor’s

series expansion off [zn,xn] =
f (zn)− f (xn)

zn−xn
as follows:

f [zn,xn] = c1+2c2en +3c3e2
n +(c3

1c2+4c4)e
3
n

+(3c2
1(c

2
2+ c1c3)+5c5)e

4
n

+...+O(e9
n). (11)

By putting the values of equations(8) and(11) in the first
step of equation(6), we attain

yn = α +
c2

c1
e2

n −
2(c2

2− c1c3)

c2
1

e3
n +

(c5
1c2+4c3

2−7c1c2c3

c3
1

+
3c4

c1

)

e4
n + ...+O(e9

n). (12)

On the other hand, we find

f (yn) = c2e2
n −2

(c2
2

c1
− c3

)

e3
n

+
(c2(c5

1+5c2
2−7c1c3)

c2
1

+3c4

)

e4
n + ...+O(e9

n).

(13)

Furthermore, we obtain

f [xn,yn]

= c1+ c2en +
(c2

2

c1
+ c3

)

e2
n

+
(−2c3

2+3c2c1c3

c2
1

+ c4

)

e3
n

+
(c5

1c2
2+4c4

2−8c1c2
2c3+2c2

1(c
2
3+2c2c4)

c3
1

+ c5

)

e4
n

+...+O(e9
n), (14)

and
f (yn)

f [xn,yn]
=

c2

c1
e2

n +
(−3c2

2+2c1c3

c2
1

)

e3
n

+
(c2(c5

1+7c2
2−10c1c3)

c3
1

+
3c4

c1

)

e4
n

+...+O(e9
n). (15)
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Table 2: Numerical comparison of different derivative-free
methods.

DF8,1 DF8,2 DF8,3 DF8,4 DF8,5 DF8,6 OM8

x0 = 1.72
IT 2 2 2 2 2 2 2
TNE 8 8 8 8 8 8 8
∣

∣ f1
∣

∣ 0.7e-53 0.3e-53 0.5e-58 0.8e-63 0.5e-61 0.5e-61 0.4e-80
x0 = 1.5
IT 3 3 3 3 3 3 3
TNE 12 12 12 12 12 12 12
∣

∣ f1
∣

∣ 0.4e-252 0.1e-243 0.2e-238 0.3e-269 0.3e-329 0.3e-329 0.6e-315
x0 = 1.7
IT 2 2 2 2 2 2 2
TNE 8 8 8 8 8 8 8
∣

∣ f1
∣

∣ 0.8e-79 0.5e-79 0.9e-78 0.3e-82 0.9e-82 0.9e-82 0.1e-100
x0 = 0.1
IT 3 3 3 3 3 3 2
TNE 12 12 12 12 12 12 8
∣

∣ f2
∣

∣ 0.2e-107 0.1e-114 0.1e-214 0.1e-238 0.1e-231 0.2e-231 0.1e-52
x0 =−0.1
IT 3 3 3 3 2 2 2
TNE 12 12 12 12 8 8 8
∣

∣ f2
∣

∣ 0.4e-369 0.1e-363 0.2e-362 0.2e-384 0.1e-52 0.1e-52 0.1e-74
x0 =−0.5
IT 3 3 3 3 3 3 3
TNE 12 12 12 12 12 12 12
∣

∣ f2
∣

∣ 0.1e-178 0.1e-167 0.5e-162 0.8e-189 0.2e-182 0.2e-182 0.4e-259
x0 = 1.0
IT - - - - - - 2
TNE - - - - - - 8
∣

∣ f3
∣

∣ DIV. NC NC DIV. NC DIV. 0.1e-58
x0 = 0.8
IT 4 4 - - 4 4 3
TNE 16 16 - - 16 16 12
∣

∣ f3
∣

∣ 0.2e-139 0.7e-194 NC NC 0.3e-310 0.4e-315 0.1e-64
x0 = 1.8
IT - - 3 3 3 3 3
TNE - - 12 12 12 12 12
∣

∣ f3
∣

∣ DIV. DIV. 0.5e-85 0.2e-83 0.1e-75 0.3e-75 0.1e-107
x0 = 1.4
IT 3 3 3 3 3 3 3
TNE 12 12 12 12 12 12 12
∣

∣ f4
∣

∣ 0.4e-214 0.9e-211 0.8e-237 0.1e-253 0.4e-334 0.4e-334 0.4e-333
x0 = 1.15
IT - - - - - - 3
TNE - - - - - - 12
∣

∣ f4
∣

∣ I I NC NC NC NC 0.2e-284
x0 = 1.3
IT 2 2 2 2 2 2 2
TNE 8 8 8 8 8 8 8
∣

∣ f4
∣

∣ 0.3e-153 0.3e-153 0.1e-129 0.5e-133 0.2e-136 0.2e-136 0.1e-161
x0 =−0.92
IT 3 3 2 2 2 2 2
TNE 12 12 8 8 8 8 8
∣

∣ f5
∣

∣ 0.4e-295 0.2e-301 0.4e-57 0.2e-74 0.6e-59 0.6e-59 0.8e-97
x0 =−0.93
IT 2 2 2 2 2 2 2
TNE 8 8 8 8 8 8 8
∣

∣ f5
∣

∣ 0.3e-61 0.6e-61 0.1e-65 0.5e-70 0.1e-70 0.1e-70 0.4e-98
x0 =−0.9
IT - - 3 3 3 3 3
TNE - - 12 12 12 12 12
∣

∣ f5
∣

∣ I I 0.1e-108 0.2e-123 0.8e-104 0.1e-103 0.2e-361
x0 = 1.9
IT 3 3 3 3 3 3 2
TNE 12 12 12 12 12 12 8
∣

∣ f6
∣

∣ 0.4e-231 0.6e-236 0.5e-298 0.2e-328 0.1e-301 0.4e-334 0.3e-59
x0 = 2.3
IT 3 3 3 3 2 3 2
TNE 12 12 12 12 8 12 8
∣

∣ f6
∣

∣ 0.2e-354 0.2e-351 0.3e-336 0.1e-357 0.6e-54 0.2e-301 0.4e-60
x0 = 1.8
IT 4 4 3 3 3 3 3
TNE 16 16 12 12 12 12 12
∣

∣ f6
∣

∣ 0.1e-200 0.1e-244 0.8e-172 0.6e-192 0.9e-153 0.2e-152 0.7e-352
x0 = 0.8
IT 3 3 3 3 3 3 3
TNE 12 12 12 12 12 12 12
∣

∣ f7
∣

∣ 0.2e-57 0.1e-55 0.2e-72 0.2e-82 0.3e-98 0.7e-202 0.8e-219
x0 = 0.6
IT 3 3 3 3 3 3 3
TNE 12 12 12 12 12 12 12
∣

∣ f7
∣

∣ 0.1e-161 0.2e-162 0.1e-159 0.1e-172 0.6e-202 0.2e-301 0.2e-378
x0 = 0.4
IT 2 2 2 2 2 2 2
TNE 8 8 8 8 8 8 8
∣

∣ f7
∣

∣ 0.5e-60 0.6e-60 0.1e-52 0.7e-55 0.2e-62 0.2e-62 0.1e-70
Here : x0 = Initial guess, TNE = Total number o f evaluations and IT = Number o f iterations.

By using the equations(15), (13) and (8) in the second
step of equation(6), we attain

wn = α +
(c2−G(0)c2

c1

)

e2
n +

1

c2
1

(

−2c2
2+3G(0)c2

2

+2c1c3−2G(0)c1c3− c2
2G′(0)

)

e3
n + ...+O(e9

n).

(16)

By virtue of the above equation, and consideringG(0) = 1,
G′(0) = 1, we acquire

f (wn) =
1

2c2
1

(

6c3
2−2c1c2c3− c3

2G′′(0)
)

e4
n

+
1

6c3
1

(

−6c5
1c2

2−108c4
2+120c1c2

2c3−12c2
1c2

3

−12c2
1c2c4+27c4

2G′′(0)−18c1c2
2c3G′′(0)

−c4
2G(3)(0)

)

e5
n + ...+O(e9

n). (17)

With help of equations(13), (16), (17) and(8), we have

f [wn,yn] = c1+
c2

2

c1
e2

n +
2c2(−c2

2+ c1c3)

c2
1

e3
n

+
1

2c3
1

(

c2(2c5
1c2−14c1c2c3+6c2

1c4

−c3
2(−14+G′′(0))

)

e4
n + ...+O(e9

n), (18)

and

f [wn,xn] = c1+ c2en + c3e2
n + c4e3

n

− 1

2c3
1

(

{2c1c2
2c3−2c3

1c5+ c4
2(−6

+G′′(0))}
)

e4
n + ...+O(e9

n). (19)

Now, putting the values of equations(18), (19) and(17),
in the last step of equation(6), we find

en+1 =
( (−1+H(1))c2(2c1c3+ c2

2(−6+G′′(0)))

2c3
1

)

e4
n

+
1

6c4
1

[

6(−1+H(1))c5
1c2

2+12(−1+H(1))

c2
1(c

2
3+ c2c4)+6c1c2

2c3

(

20−20H(1)−H ′(1)

+3(−1+H(1))G′′(0)
)

+ c4
2

(

18(−6+6H(1)

+H ′(1))−3(−9+9H(1)+H ′(1))G′′(0)

+(−1+H(1))G(3)(0)
)]

e5
n + ...+O(e9

n).

By putting H(1) = 1, H ′(1) = 0, H ′′(1) = 2, H(3)(1) =
−12, in the above equation the final error expression is
given by

en+1 =
1

48c7
1

(

c2(2c1c3+ c2
2(−6+G′′(0)))(−24c5

1c2
2

+24c2
1(c

2
3− c2c4)+ c4

2(−96+H(4)(1)))
)

e8
n

+O(e9
n). (20)

Particular Case:

Let G(t1) =
1−2t1
1−3t1

and H(t2) = 4− 8t2 + 7t2
2 − 2t3

2, then

c© 2016 NSP
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the method(6) becomes

yn = xn −
f (xn)

f [zn,xn]
, zn = xn + f (xn)

3

wn = yn −
(1−2t1

1−3t1

) f (yn)

f [xn,yn]

xn+1 = wn − (4−8t2+7t2
2 −2t3

2).
f (wn)

f [wn,yn]
, (21)

wheret1 =
f (yn)
f (xn)

andt2 =
f [wn,yn]
f [wn,xn]

, then its error expression
becomes

en+1 =−c2c3(c5
1c2

2+4c4
2+ c2

1(−c2
3+ c2c4))

c6
1

e8
n +O(e9

n).

(22)

Remark 1: By taking different appropriate values ofG(t1)
and H(t2) one may get a number of eight-order
derivative-free iterative methods for finding the simple
roots.
Remark 2: In order of removing derivatives from iterative
methods the number of function evaluation usually
increases. But in new scheme we increase the efficiency
index without increasing more function evaluations.

Fig. 1: Basins o f attraction f or Example 5.1. First row:
methods (DF8,1) (left) and (DF8,2) (right). Second row: methods
(DF8,3) (left) and (DF8,4) (right). Third row: methods (DF8,5)
(left) and (DF8,6) (right). Last row: method (OM8).

4 Numerical results

The prime objective of this section is to demonstrate the
performance of the new eighth-order derivative-free

Fig. 2: Basins o f attraction f or Example 5.2. First row:
methods (DF8,1) (left) and (DF8,2) (right). Second row: methods
(DF8,3) (left) and (DF8,4) (right). Third row: methods (DF8,5)
(left) and (DF8,6) (right). Last row: method (OM8).

method. In order to verify the effectiveness of the
proposed iterative method we have considered seven
nonlinear test functions. The test non-linear functions and
their roots are listed in Table-1. The entire computations
reported here have been performed on the programming
packageMAT HEMATICA [8] using 1000 digit floating
point arithmetic using “SetAccuraccy” command. It can
be observed from Table 2 that almost in most cases, our
proposed derivative-free scheme is superior than other
methods. In Table 2 DIV. stands for divergent, NC and I
stands for not convergent and indeterminate, respectively.
For comparing the number of iterations and total number
of function evaluations, we have used the following
stopping criterion| f (xn)| < 1.E − 50. We have taken
three different initial guesses for comparing the
convergence rate of each scheme. Here we compare the
performance of the proposed methods(21) (OM8) with
the methods (2.13) (DF8,3), (2.15) (DF8,4) of [19]; (4.17)
(DF8,1), (4.19) (DF8,2) of [13] and (33) (DF8,5) and (35)
(DF8,6) of [20]. The results of comparison of the test
functions are summarized in Table 2. From Table 2 we
observe that the new scheme is superior than some
existing methods.

5 Basins of attraction

In this section, we are describing the fractal behavior of
eighth-order derivative-free methods used in numerical
section. For the dynamical comparisons, we consider a
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complex rectangleD = [−3,3]× [−3,3]∈ C and then we
assign a color to each complex pointz0 ∈ D according to
the root at which the corresponding method starting from
z0 converges. Here, black color represents the points at
which the method do not converge. We have used
stopping criteria| f | < 10−4 and maximum number of
iterations 100 for each method. The following test
polynomials have been considered for comparison

Example 5.1 : z4−10z2+9. This polynomial, has roots
3, −3, −1 and 1. According to figure 1, we found that
OM8 is best. MethodsDF8,1, DF8,2, DF8,5 andDF8,6 have
a large number of diverging points. MethodsDF8,3 and
DF8,4 show chaotic behavior.

Example 5.2 : z3+4z2−10. This polynomial, has roots
−2.68262+ 0.358259I, −2.68262− 0.358259I and
1.36523. From figure 2, we observe that again the
performance ofOM8 is best and other methods do not
perform well. Based on figures 1 and 2 we conclude that
methodsDF8,1 , DF8,2 , DF8,3 , DF8,4 , DF8,5 andDF8,6
have more diverging points (black area) in comparison
with OM8. Finally, our method does not show any chaotic
behavior and has large basins of attraction. These figures
confirm the numerical results illustrated in Table 2.

6 Concluding remarks

In the present study, we have contributed an efficient
eighth-order Steffensen-type method. We have also
described the dynamical behavior of some eight-order
derivative-free methods. New scheme requires four
function evaluations per iteration, so its efficiency index
is 8

1
4 ≈ 1.682. Some numerical examples have been

carried out to confirm the underlying theory of this study.
From numerical and graphical comparisons one can
observe that our contributed scheme is superior than some
existing methods.
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