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Abstract: This paper improves and demonstrates two approaches of Ranked Set Sampling (RSS) method for penalized spline models
which are Median and Extreme RSS. These improved methods increase the efficiency of the estimated parameters in the targeted model
with comparing to usual RSS and Simple Random Sampling (SRS). Moreover, in practical studies, our improved methods can reduce
sampling expenses dramatically. The paper approaches are illustrated using a simulation study as well as a practical example.
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1 Introduction

Linear regression models concern, with much attention, in
procedures that can accommodate data in smooth fashion
appropriately. In many practical situations, trends of the
underlying model has curvilinear shapes which need
improved fitting procedures. A well developed smoothing
procedure is penalized spline models. This model type is
an advance version of spline models where it has a new
term, called penalty term, that can penalize trends with
much rough to appear smooth.

Within last few decades, penalized spline approach
developed in the literature significantly. It was originally
introduced by [1]. [2] discussed characteristics for
penalized least squares estimators. Improvements added
to this method by [3] made it popular. Ruppert et.al. [4]
summarized this approach magnificently and presented it
in an easy way. The model approach was improved in the
context of mixed models for random effect curves where
the spline basis functions reduced number of knots to
moderate level. This made computation of the penalized
spline approach advantageous. Theoretical background
with asymptotic properties for low rank approximation
shown that estimators of penalized spline models are
efficient as smoothing splines, [5] and [6]. Number of
knots as well as smoothing parameter are two important
elements that can shape the degree of smoothness.
Ruppert [7] provided a new technique to select number of

knots whilst, recently, Takuma Yoshida [8] provided a
direct method to choose the smoothing parameter.

The common method to choose sampling units when
fitting penalized spline models is the Simple Random
Sampling (SRS) method. However, because it is more
efficient, as well as its other procedures, RSS starts an
increasingly influence in literature beside SRS for model
fitting. This paper introduces Median Ranked Set
Sampling (MRSS) as well as Extreme Ranked Set
Sampling (ERSS) to fit these models as two important
RSS procedures. Ranked sampling procedure was
originally investigated by [9] to estimate mean population
zone yields. He choosem simple random subsamples
each of sizem from the population. Then, and after
ranked each subsamples separately, he selected theith

smallest unit from theith subsample. Generally, this
method can be repeatedr times, where each repetition
called a cycle, to generate the wanted RSS of sizen= rm,
wheren is the SRS sample size. Quantification for the
selected units is now available. This RSS procedure called
balanced RSS.

Mathematical infrastructure of the RSS procedure was
investigated by [10] and [11]. Significant articles have
been published, later on, on the improvements of this
sampling method. Importantly, Wolfe [12] reviewed the
literature where he summarized RSS and its other
procedures.

Most popular RSS procedures are MRSS and ERSS.
The first procedure was proposed by [13] where the
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median of each subsample is chosen rather than usual
RSS units. While the ERSS was proposed by [14]. These
two approaches verified their effectiveness in practical
applications, see for example [15], [16] and [17].

The procedure of RSS for simple linear regression is
summarized as in the following steps. Taking into account
that ordering sample units is achieved according to the
dependent variable.

1.From the targeted population, selectm SRS
subsamples each with sizem. Assume these
subsamples as{(x1, y1)1, (x2, y2)1, . . .(xm, ym)1},
{(x1, y1)2, (x2, y2)2, . . . , (xm, ym)2}, . . . , {(x1, y1)m,
(x2, y2)m, . . . ,(xm, ym)m}.

2.Order, without any unit quantification, each
subsample separately with respect to the dependent
variable. The produced ranked-subsamples can be
notated as{(x[1], y(1))1, (x[2], y(2))1, . . . ,(x[m], y(m))1},
{(x[1], y(1))2, (x[2], y(2))2, . . . , (x[m], y(m))2},
. . . ,{(x[1], y(1))m, (x[2], y(2))m, . . . , (x[m], y(m))m}.
Ordering can be achieved visually by the analyst or by
a skilled person or by any other relatively cheap
method. In general, the pair(x[i], y(i)) j means, theith

independent value correspond to theith minimum
dependent value in thejth subsample.

3.From the first ordered subsample select the first
minimum pair with respect to the dependent variable,
from the second ordered subsample select the second
minimum pair with respect to the dependent variable.
Continue by this way until choosing the maximum
pair from the last subsample. The produced RSS set
of sizem is {(x[1],y(1))1,(x[2],y(2))2,
. . . (x[m],y(m))m}. The hall process can be repeatedr
cycles to achieve equality with the SRS size n,
i.e n= rm.

Actual quantification can now be done for these
selected units and used to estimate parameters in the
regression model. Consequently, the same RSS procedure
can be applied after ranking the independent variable
instead the dependent variable as alternative method.

Though this paper considers MRSS and ERSS,
derivation of sampling units is similarly as in the above
procedure. Exclusively, the third step need to be modified
as follows. Firstly, to produce MRSS units with the case
of odd sample sizei.e.m is odd, the unityth

(m+1
2 )

is selected

from each ordered subsample associated with the
correspond independent variable. While, for the case of
even sample size,i.e.m is even, two units need to be
selected from successive ordered subsample which are
yth
(m

2 )
and yth

(m
2 +1) associated with the correspond

independent variables. This means, we select(X[m
2 ]
,y(m

2 )
)

from the first subsample then we select(X[m
2 +1],y(m

2 )+1)

from the second subsample and so on until reach the last
subsample. Secondly, to produce ERSS units, the two
extreme ordered unitsy(1) andy(m) are selected, with their

correspondence independent variable values, from each
ordered subsample.

A spline model, that usen SRS data points
(x1,y1),(x2,y2), ...,(xn,yn), can be expressed as follows

yi = β0+β1xi +
q

∑
j=1

β2 j(xi −K j)++ei ; i = 1, . . . ,n. (1)

where y is the response variable,x is the predictor,
β0,β1,β2 j are the model coefficients,e is the error term
andK j are the model knots andq is number of knots. The
mathematical expression(a)+ means the non-negative
part of a; i.e. max(0,a). Here we call the term(x−K)+
by a linear spline basis function.

Settling the spline model in (1) in matrix form gives

y = Xβ + ε. (2)

where the design matrices of this model are

y =




y1
y2

.

.

.
yn


 ; X =




1 x1 (x1−K1)+ · · · (x1−Kq)+
1 x2 (x2−K1)+ · · · (x2−Kq)+
.
.
.

.

.

.
.
.
.

. . .
.
.
.

1 xn (xn−K1)+ · · · (xn−Kq)+




;β =




β0
β1
β21

.

.

.
β2q




;

ε =




e1
e2
...

en


 .

Model assumptions during this research propose
E(ε) = 0, uncorrelated error terms with constant
variance, sayσ2.

Using the least squares method produces a piecewise
fitting that join at different value of knots however, in a
more developed model fitting, these piecewise line
segments that have much variability can be penalized to
produce smooth fitting. These penalties introduce to
quadratic form of the least squares method by adding a
new term that can applied penalty to the rough estimates.
So, the quadratic form with the penalty term can be
written as

||y−Xβ ||2+λ 2β TDβ (3)

whereλ is a non-negative smoothing parameter, the matrix
D is diagonal such thatD = diag {02×2,1q×q} and ||A||
equals

√
ATA. Commonly, the last term in (3) is called the

penalty term.
Minimizing (3) via penalized least squares method

generate the exact solution

β̂ = (XTX +σ2λ 2D)−1XTy (4)

and therefore, the fitted penalized spline model can be
written as ŷ = Sλ y where the ”smoothing matrix” Sλ
equalsX(XTX +σ2λ 2D)−1XT .

The covariance matrix of fitted coefficientβ̂ can be
expressed as

Cov(β̂ )=σ2
[
(XTX +σ2λ 2D)−1XTX(XTX +σ2λ 2D)−1

]
.

(5)
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In the penalized spline context, the constant variance
σ2 and the smoothing parameterλ need to be estimated.
A common estimator for the varianceσ2, that proposed by
[18], uses the Residual Sum of Squares (SSE) to produce
an unbiased estimator such that

σ̂2 =
||y− ŷ||2

n− tr(Sλ )
. (6)

wheretr(.) is the trace of a matrix.
Accordingly, the smoothing parameter is often chosen

by minimizing the generalized cross-validation (GCV),
[19], such that

GCV(λ ) =
||y− ŷ||2

[1−n−1tr(Sλ )]2
=

n

∑
i=1

[ {(I −Sλ )y}i

1−n−1tr(Sλ )

]2

(7)

where I is the identity matrix. A single variance
component in the Cov(β̂) matrix in (5) can be estimated
by

V̂ar(β̂ ∗
i )= σ̂∗2 [the ith diagonal entry of(XT

[RSS]X[RSS])
−1].

(8)
This paper considers MRSS and ERSS to fit penalized

spline models under simple linear model settings. Firstly,
we propose ranking the dependent variable to achieve
sampling unit selection then, we propose ranking the
independent variable to achieve the same target. These
selected units are used to estimate the penalized spline
model after achieve measurements. These scenarios are
explained in the next section.

2 Penalized spline fitting using MRSS and
ERSS

Because the two method, MRSS and ERSS, are more
efficient than usual RSS and SRS [17] and [20],
illustrations of these two method to select sampling units
and fit the penalized spline models are discussed in this
section. The next subsection contains improvements of
the penalized spline models when achieve ranking on the
dependent variable using MRSS and ERSS while the
subsection (2.2) improves these RSS illustrations when
ranking the independent variable.

2.1 Penalized spline fitting when order the
dependent variable

In this section, the penalized spline model uses the MRSS
and ERSS after we rank the dependent variable. We
consider model with general set up to cover both MRSS
and ERSS parallel. Assume the produced MRSS
sampling units that described in section (??), whenm is
odd, are give as:{(x[m

2 ]
,y(m

2 )
)1, . . . ,(x[m

2 ]
,y(m

2 )
)m}. We can

regenerate this setr cycles to satisfyn = rm wheren is

the SRS size. Accordingly, assume the produced ERSS
sampling units that described in section (??) as:
{(x[1],y(1))1,(x[m],y(m))1, . . . ,
(x[1],y(1))m,(x[m],y(m))m}. We can reproduce this setr
cycles to satisfyn= 2rm.

Introducing the above generated units, under MRSS
and ERSS, to the penalized spline model in (2) gives

y(RSS) = X[RSS]β
∗+ ε(RSS) (9)

where the design matrices under MRSS setting, with odd
m, are

y(RSS) =




y(m
2 )11
...

y(m
2 )m1
...

y(m
2 )1r

...
y(m

2 )mr




;

X[RSS] =




1 x[m
2 ]11

(x[m
2 ]11

−K1)+ · · · (x[m
2 ]11

−Kq)+
...

...
...

. . .
...

1 x[m
2 ]m1

(x[m
2 ]m1

−K1)+ · · · (x[m
2 ]m1

−Kq)+
...

...
...

. . .
...

1 x[m
2 ]1r (x[m

2 ]1r −K1)+ · · · (x[m
2 ]1r −Kq)+

...
...

...
. . .

...
1 x[m

2 ]mr (x[m
2 ]mr −K1)+ · · · (x[m

2 ]mr −Kq)+




β ∗ =
[
β ∗

0 β ∗
1 β ∗

21· · ·β ∗
2q

]T
; ε(RSS) =

[
e∗[m

2 ]11
· · ·e∗[m

2 ]mr

]T

wherey[m
2 ]i j

is the median dependent variable in theith

subsample from thejth cycle,x[m
2 ]i j

is the correspondence
independent variable value,β ∗

0 ; β ∗
1 ; β ∗

21; · · · ;β ∗
2q are the

model coefficients ande[m
2 ]i j

is the correspondence error
term in the model.
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By assuming the ERSS procedure, the design matrices
in (9) become where

y(RSS) =




y(1)11
y(m)11

...
y(1)m1
y(m)m1

...
y(1)1r

y(m)1r
...

y(1)mr

y(m)mr




;

X[RSS] =




1 x[1]11
(x[1]11

−K1)+ · · · (x[1]11
−Kq)+

1 x[m]11
(x[m]11

−K1)+ · · · (x[m]11
−Kq)+

...
...

...
. . .

...
1 x[1]m1

(x[1]m1
−K1)+ · · · (x[1]m1

−Kq)+
1 x[m]m1

(x[m]m1
−K1)+ · · · (x[m]m1

−Kq)+
...

...
...

. . .
...

1 x[1]1r (x[1]1r −K1)+ · · · (x[1]1r −Kq)+
1 x[m]1r (x[m]1r −K1)+ · · · (x[m]1r −Kq)+
...

...
...

. . .
...

1 x[1]mr (x[1]mr −K1)+ · · · (x[1]mr −Kq)+
1 x[m]mr (x[m]mr −K1)+ · · · (x[m]mr −Kq)+




β ∗ =
[
β ∗

0 β ∗
1 β ∗

21· · ·β ∗
2q

]T
; ε(RSS) =

[
e∗(1)11

· · ·e∗(m)mr

]T
.

The least squares criterion can fit the model in (9) by
minimizing the penalized sum of square errors

(y(RSS)−X[RSS]β
∗)T(y(RSS)−X[RSS]β

∗)+λ ∗2β ∗TDβ ∗

with respect toβ ∗ and for some smoothing parameter
λ ∗ where the matrixD = diag{02×2,1q×q}. The penalized
least squares method gives the following linear smoother
ŷ(RSS) = Hλ ∗y(RSS) where the smoothing matrix is
Hλ ∗ = X[RSS](X

T
[RSS]X[RSS]+σ∗2λ ∗2D)−1XT

[RSS], hereσ∗2

is the constant variance for error term under model
assumption.

Consequently, the estimated model coefficient matrix
can be written in the form

β̂
∗
= (XT

[RSS]X[RSS]+σ∗2λ ∗2D)−1XT
[RSS]y(RSS) (10)

where the covariance matrix of the estimator can be written
as

Cov(β̂
∗
) = σ∗2

[
(XT

[RSS]X[RSS]+σ∗2λ ∗2D)−1XT
[RSS]X[RSS]

× (XT
[RSS]X +σ∗2λ ∗2D)−1

]
,

(11)

To accomplish estimating model coefficient and its
covariance above, both smoothing parameterλ ∗ and
variance σ∗2 need to be estimated. The smoothing
parameterλ ∗ can be estimated using GCV concepts as
follows

GCV(λ ) =
n

∑
i=1

[
{(I −Hλ ∗)y(RSS)}i

1−n−1tr(Hλ ∗)

]2

(12)

while the varianceσ∗2 can be estimated using the
following formula

σ̂∗2 =
||y(RSS)− ŷ(RSS)||2

n− tr(Hλ ∗)
(13)

which is unbiased estimator for the variance of the error
term in the penalized spline model in (9).

Depending on (11), the variance component for a
single fitted model parameterβ̂ ∗

i can be estimated as

V̂ar(β̂ ∗
i )= σ̂∗2 [the ith diagonal entry of(XT

[RSS]X[RSS])
−1].

(14)
The main inference result of model fitting that isβ̂

∗
is

unbiased estimator and Cov(β̂
∗
) ≥ Cov(β̂).

Unbiasedness property can be proved straightforwardly
while Covariance property is proved numerically as seen
in Table (1). More details come at the simulation study in
section (3).

2.2 Penalized spline fitting when order the
independent variable

Parallel to the previous subsection, both MRSS and ERSS
sampling units are generated after ranking the independent
variable and then used to fit the penalized spline model.
Consider the produced MRSS sampling units, whenm is
odd, are give as:{(x(m

2 )
,y[m

2 ]
)1, . . . ,(x(m

2 )
,y[m

2 ]
)m}. We can

regenerate this setr cycles to satisfyn= rm wheren is the
SRS size. Similarly, assume the produced ERSS sampling
units are:{(x(1),y[1])1,(x(m),y[m])1, . . . ,(x(1),y[1])m,

(x(m),y[m])m}. We can reproduce this setr cycles to satisfy
n= 2rm. Settled these produced sampling units in design
matrices gives the following penalized spline model

y[RSS] = X(RSS)β
∗+ ε [RSS] (15)

other model matrices can be defined similarly.
Building model inference is parallel to the previous

subsection. Minimizing the penalized least squares

(y[RSS]−X(RSS)β
∗)T(y[RSS]−X(RSS)β

∗)+λ ∗2β ∗TDβ ∗

with respect toβ ∗ and for some smoothing parameter
λ ∗ gives the estimated model coefficient which can be
written in the form

β̂
∗
= (XT

(RSS)X(RSS)+σ∗2λ ∗2D)−1XT
(RSS)y[RSS] (16)
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where the covariance matrix of this estimator can be
written as

Cov(β̂
∗
) = σ∗2

[
(XT

(RSS)X(RSS)+σ∗2λ ∗2D)−1XT
(RSS)X(RSS)

× (XT
(RSS)X +σ∗2λ ∗2D)−1

]
,

(17)
The smoothing parameterλ ∗ can be estimated using GCV
concepts as follows

GCV(λ ) =
n

∑
i=1

[
{(I −Hλ ∗)y[RSS]}i

1−n−1tr(Hλ ∗)

]2

(18)

while the varianceσ∗2 can be estimated using the
following formula

σ̂∗2 =
||y[RSS]− ŷ[RSS]||2

n− tr(Hλ ∗)
(19)

which is unbiased estimator for the variance of the error
term in the penalized spline model in (15).

Depending on (17), the variance component for a
single fitted model parameterβ̂ ∗

i can be estimated as

V̂ar(β̂ ∗
i )= σ̂∗2 [the ith diagonal entry of(XT

(RSS)X(RSS))
−1].

(20)
The main inference result of model fitting that isβ̂

∗
is

unbiased estimator and Cov(β̂
∗
) ≥ Cov(β̂).

Unbiasedness property can be proved straightforwardly
while Covariance property is proved numerically as seen
in Table (2).

3 Simulation study

A simulation study was illustrated to clarify the practical
improvements of estimating the penalized spline models
when using MRSS and ERSS procedures. Data were
generated from the following smooth function:
yi = f (xi) + ei , such that f (x) = 1 + 1

2Φ( x−36
5 ) and

x ∼ Uni f orm(0,1). The error termsei were assumed
uncorrelated with 0 mean and constant variance that
equals to 0.122. Here,Φ is the standard normal density
function. We proposed MRSS and ERSS samples with
sizesm= 3 and 5 units with specific number of cyclesr
to perform the relationn = rm (the case when using
MRSS) orn= 2rm (the case when using ERSS), wheren
is the SRS size. Without any loss of generality in our
method, all models were proposed in this section used
three knots, i.e.q = 3. This is due to handle presentation
of the simulation results in comfortable tables.

After selecting MRSS and ERSS sampling units from
the generated samples above, the penalized spline model,
established in (9) and (15), were fitted. Ranking units were
attained either by ranking the dependent variable or the
independent variable.

For the sake of comparison, the smooth function that
considered earlier in this section was used to generate

SRS samples of sizen = 9,12,20 and 25. The produced
SRS samples were used to estimate penalized spline
models with 3 knots. This small number of knots is to
allow comparison with the simulated RSS procedures that
have the same number of knots. Last point to mention that
all settings in this simulation study were achieved with
10000 replicates.

In what follows, ordering sample units were done
according to dependent and independent variables.
Firstly, simulation and model fitting were done when
ordering the dependent variable. The penalized spline
model coefficients in (9) were estimated using (10) once
by implementing MRSS and later on by implementing
ERSS. Variance of these estimated coefficients was
computed using (14). Simulation results are summarized
in Table (1).

Comparison of variances of the estimated model
coefficients were attained by using ”Relative Efficiency”
concept. This concept, which mainly depends on
comparing variance of the estimated model parameter
under RSS procedures with variance under SRS, can be
defined as

e f f(β̂ ∗
i , β̂i) =

Var(β̂i)

Var(β̂ ∗
i )

(21)

where Var(β̂ ∗
i ) and Var(β̂i) are defined in (14) and (8)

respectively. Table(1) shows that both MRSS and ERSS
are more efficient than RSS and SRS in estimating
penalized spline models when order the dependent
variable.

Secondly, we conducted simulation study and model
fitting when we ordered the independent variable of the
penalized spline model (15). Model coefficients were
estimated using (16) while both MRSS and ERSS
procedures were used to handle the model design
matrices. Variance components were estimated using
(20). We summarized results in Table(2) by computing
relative efficiencies. This table shows that MRSS and
ERSS are more efficient than both RSS and SRS when
fitting penalized spline models after rank the independent
variable.

4 Real data example

In this example, we investigated performance of our new
sampling procedures, that are MRSS and ERSS, when
estimating penalized spline regression models.

The real life application called ”Air Pollution”. The
data set presents daily measurements of air quality
components in New York city from May 1, 1973 to
September 30, 1973. The data set have 154 observations
with 6 variables. More details about this data set can be
found in [21]. We investigated in this study the efficiency
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Table 1: Relative efficiencies of the estimated penalized spline model coefficients using MRSS and ERSS w.r.t. SRS in the simulated
data study. We assumed ranking of the dependent variable.

MRSS ERSS RSS
m=3 r=3 m=5 r=5 m=3 r=2 m=5 r=2 m=3 r=3 m=5 r=5

n = 9 n = 25 n = 12 n = 20 n = 9 n = 25
β̂ ∗

0 1.728 1.909 1.614 1.813 1.231 1.401
β̂ ∗

1 1.735 1.917 1.635 1.837 1.242 1.398
β̂ ∗

21 1.713 1.915 1.607 1.794 1.250 1.414
β̂ ∗

22 1.714 1.913 1.628 1.805 1.219 1.411
β̂ ∗

23 1.720 1.908 1.623 1.815 1.238 1.437

Table 2: Relative efficiencies of the estimated penalized spline model coefficients using MRSS and ERSS w.r.t. SRS in the simulated
data study. We assumed ranking of the independent variable.

MRSS ERSS RSS
m=3 r=3 m=5 r=5 m=3 r=2 m=5 r=2 m=3 r=3 m=5 r=5

n = 9 n = 25 n = 12 n = 20 n = 9 n = 25
β̂ ∗

0 1.765 1.903 1.637 1.863 1.135 1.492
β̂ ∗

1 1.739 1.899 1.658 1.857 1.131 1.484
β̂ ∗

21 1.727 1.911 1.631 1.871 1.129 1.485
β̂ ∗

22 1.740 1.912 1.622 1.839 1.133 1.490
β̂ ∗

23 1.752 1.910 1.670 1.841 1.128 1.486

of using MRSS and ERSS when estimating penalized
spline models. We selected two variables of this study
which are Ozone (which represent the mean ozone parts
per billion from 1300 to 1500 hours) as the dependent
variable and Solar Radiation (which represent solar
radiation in Langleys in the frequency band 4000-7700
Angstroms from 0800 to 1200 hours) as the independent
variable. The transformation Ozone(1/3) was proposed in
this paper.

In both MRSS and ERSS samples were chosen from
the Air Pollution data set with sizem= 3 where number
of cycles were proposedr = 8 and r = 4, respectively.
Firstly, we achieved ranking units with respect to the
dependent variable. After this achievement, we ranked
sampling units with respect to the independent variable.
The produced ranked units were used to estimate the
underlying model via penalized spline fitting that are in
(9) and (15). All produced models above were compared
to the estimated penalized spline models when using RSS
and SRS sample units in (2). The sample size in the RSS
method was consideredm= 3 with r = 8 cycles while the
SRS size was consideredn = 24. In all models, we
proposed number of knotsq = 3 and we selected the
optimal smoothing parameter using GCV method.

Results of these estimated models are summarized in
Table(3) and Table(4). As seen in both tables, MRSS and
ERSS are more efficient than RSS and SRS. Moreover,
MRSS seems to be the most efficient at all.

The two illustrations of the RSS method, that are
MRSS and ERSS, were developed in this research for
penalized spline models. As seen in table (1) and (2) of
the simulation study as well as seen in table (3) and (4) of
the practical study, both MRSS and ERSS are more
efficient in estimating the linear penalized models than
RSS and SRS. Also, it seems that MRSS is better than
ERSS.

This research used balanced RSS where theith ranked
sampling unit selected fromith subsample. We can
improve our method for other methods of unit selection
that called allocation methods. Also, in this research, we
considered perfect (actual) ranking method which can be
developed to other ranking procedures to add more
challenge to the method.
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Table 3: Relative efficiencies of the estimated penalized spline model coefficients using MRSS and ERSS in the Air Pollution data set.
We assume ranking of the dependent variable.

efficiency w.r.t RSS, m = 3 r = 8 efficiency w.r.t SRS, n = 24
MRSS ERSS MRSS ERSS RSS

m = 3 r = 8 m =3 r = 4 m = 3 r = 8 m = 3 r = 4 m = 3 r = 8

β̂ ∗
0

1.541 1.508 1.984 1.941 1.287

β̂ ∗
1 1.522 1.501 1.963 1.935 1.289

β̂ ∗
21 1.517 1.517 1.951 1.921 1.286

β̂ ∗
22 1.565 1.546 1.970 1.947 1.259

β̂ ∗
23 1.491 1.503 1.899 1.915 1.274

Table 4: Relative efficiencies of the penalized spline model coefficients using MRSS and ERSS in the Air Pollution data set. We assume
ranking of the independent variable.

efficiency w.r.t RSS, m = 3 r =8 efficiency w.r.t SRS, n =24
MRSS ERSS MRSS ERSS RSS

m = 3 r = 8 m = 3 r = 4 m = 3 r = 8 m = 3 r = 4 m = 3 r = 8

β̂ ∗
0

1.644 1.569 1.989 1.899 1.210

β̂ ∗
1 1.557 1.495 1.901 1.825 1.221

β̂ ∗
21 1.642 1.565 1.893 1.890 1.208

β̂ ∗
22 1.599 1.539 1.947 1.874 1.217

β̂ ∗
23 1.582 1.509 1.992 1.901 1.259
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