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Abstract: In this paper, the solution of inverse kinematics problemobbt manipulators using genetic algorithms (GA) is préseén
Two versions of genetic algorithms are used which includetinventional GA and the continuous GA. The inverse kingmatoblem
is formulated as an optimization problem based on the cdrafepinimizing the accumulative path deviation in the algenf any
obstacles in the workspace. Simulation results show tleatdmtinuous GA outperforms the conventional GA from allezsp. The
superiority of the continuous GA is seen in that it will alvegyrovide smooth and faster solutions as compared with tieecdional
GA.
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1 Introduction are inadequate for redundant robo®. [Recently, much

attention has been focused on a neural-network-based
GAs are basically generate-and-test artificial intelligen inverse kinematics problem solution in robotic$, 10,
optimization methods that are based on the Darwinianll. However, Due to the fact that there exist some
principles of biological evolution. Even with the existenc difficulties to solve the inverse kinematics problem when
of other artificial intelligent methodsl[2,3], GAs have the kinematics equations are complex, highly nonlinear,
also received much of the researchers attentidyts §). coupled and multiple solutions in terms of these robot
The construction of a genetic algorithm for the solution of manipulators 12], the GA approach has been motivated
any optimization problem depends on different tas{s [ 1O investigate the possibility of solving this kind of
an initial population of solutions, genetic operators, and Problem for robot motion planning. The motion planning
fitness evaluation function. These factors resulted in thedf robot manipulators can be classified into two main
availability of numerous variants of GAs reported in categories; continuous/Cartesian motion planning, and
literature. However, sometimes specific solutions arepoint-to-point motion planning. The continuous/Cartasia
desired, such as smoothness of the solution curve in robghotion planning process involves the use of inverse
manipulators. As will be seen later, this problem is solvedkinematics equations of the manipulator to obtain the set
using the proposed CGA which will not be achieved Of joint angles or velocities corresponding to the desired
using the conventional CA. motion in Cartesian spac8,f10,11,13,14].

As it is well known that the inverse kinematics Much of the conducted research has been focused on
problem is used to control the posture of an articulatedeither the point-to-point trajectory generation of
body, it has become a fundamental problem in roboticsredundant and non-redundant manipulators, or continuous
where several methods have been propoSgdMost of motion planning of redundant manipulators. The infinite
these methods include the approaches of geometriqumber of solutions in joint space for the two previously
iterative, and algebraic, which as has been reported, theynentioned categories requires an optimization method to
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fully exploit this fact in order to improve robot motion whereF, represents the forward kinematics model of
performance through the use of some minimization orthe manipulator.

maximization criteria such as minimizing the time of The deviation between the desired Cartesian [Fth,
motion [3,15,16], minimizing the jerk [17,18], and the generated Cartesian p&a, at some general path
minimizing the torque 19|, or minimizing the consumed point,i, is given by

energy RQ. The non-redundant manipulators continuous

path planning has received a little attention among the

researchers community. This includes the solution of the N

inverse kinematics of the non-redundant manipulator Ej) = z |Pac(k,i) — Pyc(k, )] 2)
which has unique or multiple feasible solutions for the &1

problem depending on the manipulator’s configuration

and the joints limits. The solution strategies of the  The accumulative deviation between the two paths
manipulators inverse kinematics problem are divided into(desired and generated) depends on whether the initial
two main classes; closed-form solutions and numericagnd final joint angles corresponding to the initial and final
solutions R1]. The closed-form solution for the inverse configurations of the end effector are given in advance
kinematics problem is generally difficult to derive for using the inverse kinematics model of the manipulator or
general serial manipulators. In 1991, Davido2?[ through other numerical technique (fixed end points) or
proposed a special GA for path generation problem ofthe case in which the initial and final joint angles are not
redundant manipulators. However, his proposed GA hagiven (free end points). For the fixed end points case, the
drawbacks and could not fully exploit the abilities of accumulative deviation between the two paths is given by
GAs. The recent applications of genetic algorithms

mainly focused on the motion planning of redundant

manipulators ,23]. In this paper, we will focus on the Ne—1 N Ne—1

continuous path generation of manipulators rather than E= ; Z |Pdc(k,i)—ch(k,i)\ = Z E() (3)

the point-to-point planning. As mentioned, the previous i=2 k=1 i=

applications of the genetic algorithms were limited to

redundant manipu|ators, while this a|gori'[hm maybe while for the free end points case, the accumulative
applied to both redundant and non-redundantdeviation between the two paths is given by
manipulators.

N¢ N Ny
2 Problem Formulation with CGA Approach E= i;kzl|Pdc(kv') —Pye(k.D)| = i;E(') (4)
Consider a robot manipulator witii degrees of freedom The fitness function, a nonnegative measure of the

and N task space coordinates. Assume that a desireduality of individuals, is defined as follows
Cartesian pathRy, is given, the problem is to find the set

of joint pathsPy, such that the accumulative deviation

between the generated Cartesian pBgk,and the desired 1

Cartesian pathPyc, is minimum. In other words, we are F= 1 E
interested in the determination of a set of feasible joint +
angles, which corresponds to a set of desired spatial The optimal solution of the problem is obtained when
coordinates of the end effector in the task space. In thqhe deviation function, E, approaches zero and
proposed approach, the desired geometric Cartesian pa#tbrrespondingly the fitness functia®, approaches unity.

is uniformly sampled. The number of sampling points As a result, the path generation problem is formulated as
(path points or knots) is specified by the programmer andh minimization problem of the deviation functions or as a
depends on the desired accuracy of the generated patfaximization problem of the fitness function.

The accuracy of the generated path increases as the |n order to obtain the solution of this problem, the
number of path points increases. After the samplingcGAs, which were developed by Abo-Hammou8], are
process (withNx samples),Pyc and Py are matrices of  ysed. The CGAs were developed for the solution of
dimensionN by N while Pg is a matrix of M by N« optimization problems in which the parameters to be
dimension. After sampling the geometric path, at the pathoptimized are correlated with each other or the
update rate for best accuracy, the generated values of themoothness of the solution curve must be achieved. It has
joint angles using the genetic algorith®, are used by  peen successfully applied in the motion planning of robot
the direct (forward) kinematics model of the robot to manipu|at0rs¥5'26'27_|, numerical solution of two-point

(®)

obtain the generated Cartesian path given by boundary value problems 2829, solution of
differential-algebraic equations3(], solution of fuzzy
Pyc = F(Ps) () differential equationsdl], solution of Laplace equation
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[32], and the solution of nonlinear partial differential L = M x N * Ns genes. In this way, the population may
equations32]. be viewed as a vector &f, elements where each element
The novel development of CGAs has opened theconsists ol genes.
doors for wide applications of the algorithm in the field of
engineering and mathematics. Recently, the algorithm has
been applied for the Solution of Troeschs and Bratus3 Conventional and Continuous GA
Problems B84], nonlinear system of second-order
boundary value problems3%], Systems of Singular The CGA and the conventional GA were used to solve the
Boundary Value Problem$§]; chemical reactor problem Cartesian path generation problem of 3R planar
[37], singular two-point boundary value problen3g], manipulator. The input data to both algorithms is divided
and optimal control problems§]. into two parts; the genetic-algorithm related parameters
In the CGAs evolution process, an individual is a and the manipulator related parameters. The
candidate solution of the joints angles; that is, eachgenetic-algorithm related parameters for the CGA include
individual consists oM joints paths each consisting i the population size,Np, the individual crossover
path points, this results in a two-dimensional array of theprobability, P, the joint crossover probability;j, the
size MxN¢. The population undergoes the selection individual mutation probabilityPyi, the joint mutation
process, which results in a mating pool among whichprobability, Pnj, the immigration threshold value, the
pairs of individuals are crossed with probabili;. corresponding number of generations, and finally the
Within that pair of parents, individual joints are crossed termination criterion.
over with probability P;j. This process results in an The GA related parameters for the conventional
offsprings generation where every individual child genetic algorithm include the population sizd,, the
undergoes mutation with probabilitiy. Within that  crossover probability®;, the mutation probabilityP, the
child, individual joints are mutated with probabiliB. required accuracy of the phenotype values, the
After that, the next generation is produced according toimmigration threshold value, the corresponding number
the replacement strategy applied. This process is repeatenf generations, and finally the termination criterion.
till the convergence criterion is met where théxN, While on the other hand, the robot related parameters
parameters of the best individual are the required jointsnclude the link parameters, the number of joints in the
angles. The final goal of discovering the required jointsmanipulator,M, the robots degrees of freedomd, the
paths is translated into finding the fittest individual in number of path points, N, the joints limits
genetic terms. (Bower(h)andByppedh) forh = 1,,M), and the desired
The conventional genetic algorithm used in our work, Cartesian path Ryc(k,i)fork = 1,,Nandi = 1,,N).
on the other hand, consists of the steps given previouslyRegarding the initial and final joints angles
The evaluation step, selection step, replacement step an@itia (h)andbsing (h) forh = 1, M), there are two cases,
the termination step are identical in both algorithms.the fixed end points case and free end points case. In the
However, the differences between both algorithms lie infixed end points case, these values are fed to the algorithm
the initialization phase, the crossover operator, theas input parameters using closed-form inverse kinematics
mutation operator and the extinction and immigrationformulas or any numerical technique, while in the free
operator. These operators have the same goal in bothnd points case, the end points are not considered as input
algorithms; the difference lies in the way in which each parameters to the algorithm since they are not given.
operator is applied in the corresponding algorithm. These The initial settings of the CGA parameters are as
operators are applied at the joints path level in case of thdollows: the population size is set to 500 individuals. The
CGA while they are applied at the path point level in caserank-based selection strategy is used where the
of conventional genetic algorithm. That is, the operatorsrank-based ratio is set to 0.1. The individual crossover
of the CGA are of global nature while those of probability is kept at 0.9; the joint crossover probabilgy
conventional genetic algorithm are of local nature. Inalso set to 0.9. The individual mutation probability and
addition to that, it is to be noted that the conventionalthe joint mutation probability are kept at 0.9. Generatlona
genetic algorithm uses the genotype and phenotype dataeplacement scheme is applied where the number
presentations while the CGA uses only the phenotype of elite parents that are passed to the next generation
data presentation. This fact requires a coding process iis one-tenth of the population. Extinction and
conventional genetic algorithm, which is not the case inimmigration operator is applied when the improvementin
CGA. the fitness value of the best individual over 400
In the conventional genetic algorithm, each joint anglegenerations is less than 0.01. The genetic algorithm is
of every joints path has to be encoded into a finite-lengthstopped when one of the following conditions is met.
substring over some finite alphabet, which is normally 2First, the fitness of the best individual of the population
(binary coding). If we assume that each substring consistseaches a value of 0.99; that is the accumulative deviation
of Ns characters or genes, then the chromosomes or thef the end effector, E, of the best individual is less than or
individuals are formed by cascading the genebigbints  equal to 0.01. Second, the maximum deviation at any path
each ofN¢ path points forming a longer string of length point of the best individual is less than or equal to 0.001.
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Third, a maximum number of 10000 generations is

reached. Fourth, the improvement in the fitness value of " J "

the best individual in the population over 1000 Z(L,*co { ek.D Z(LJ*COS{Z‘HQ (ki) D o

generations is less than 0.01. It is to be noted that the first =

two conditions indicate to a successful termination

process (optimal solution is found), while the last two M M j

conditions point to a partially successful end depending =2 (LI*S' { ﬁiD :J;<Li*5‘”{k;“9<k=i)b ®)

on the fitness of the best individual in the population

(near-optimal solution is reached). where 1< i < N¢. The number of path points along
The initial settings of the conventional genetic the Cartesian path, is set to 20 points. The initial and

algorithm parameters are similar to those of the CGAfinal joints angles corresponding to the initial and final

except those related to crossover, mutation and codingonfigurations of the end effector along the Cartesian path

process which are as following: the crossover probabilityare not given (i.e., free end points case). The evolutionary

is kept at 0.7, the mutation probability is kept at 0.01. Theprogress plot of the best-fitness individual and the path

uniform crossover method is used as the algorithmspoint deviations for the 3R planar redundant manipulator

default crossover method. The required accuracy of theare shown in Figure 2, which shows that the algorithm

phenotype values is set to 0.001 and binary codingreaches a fithess value of 0.99 within 72 generations and

scheme is used. Due to the stochastic nature of GAsthe average path point deviation is almost 0.0005 meter.

twelve different runs were made for every result obtainedThe desired and generated Cartesian paths are given in

in this work using a different random number generatorFigure 3. It is clear that the desired and the generated

seed; results are the average values whenever possibl€artesian paths are almost the same.

The selected Cartesian path generation problem, shown in  The joints paths for the first, second, and third joints

Figure 1, is of a straight line shape and is given by: of the 3R manipulator are shown in Figure 4. It is obvious
that the resulting joints paths are highly oscillatory wvith
Xinitial = 0.0, Xfinal = 0.25 the range of the joints limits, which results in large net

displacements of the joints. The oscillatory behaviour of
the joints paths, as shown in Figure 4, is the key reason
Xfinal — Xinitial f(i—1) (6) behind the intro_duction _of the analogous crossover
N — 1 operator by Davidor 32] in an attempt to avoid the
discontinuities in the joints paths resulting from
Pyc(2,1) = Ygeli) = 0.25 conventional crossover approaches. These observations,
in general, are due to the fact that the initialization,
crossover, mutation and extinction and immigration
operators of the conventional genetic algorithm are of
local nature and applied at the path point level. This fact
0.4 : : ' ; results in discontinuities in the joints paths or oscilfgto
values among consecutive path points. The operators of
the CGA, on the other hand, are of global nature and
0.3 l applied at the joints path level. As a result, the
step-function-like jump in the joint values along the jaint
path is totally avoided due to the smooth transitions in the
joint values.

After that, the effect of both versions (conventional
and continuous) of the initialization phase, crossover
operator and mutation operator on the nature of the joints
paths obtained and the convergence speed of the hybrid
algorithm is studied. Table 1 gives the relevant data for
0 005 01 015 02 095 3R manipulator. As seen in this table, it is clear that the

W Avie initialization phase has the greatest effect on the
smoothness/nonsmoothness of the solution curves; that is,
Fig. 1: Cartesian geometric path for the 3R planar manipulator. in case of conventional initialization, the joints paths ar
of oscillatory nature with large or medium magnitude
oscillations while in case of continuous initializatiohget

The link parameters of the 3R redundant manipulatorjoints paths are either smooth or of oscillatory nature with

are given ad.1 = L2 = L3 = 0.5 meter. For this case, small magnitude oscillations. The minimum execution

Pac(1,i) = Xac(i) = Xinitial +

0.z .

Y OAKIS

0.1 .

N = 2M = 3 80wer(h) = —18CandBuppelh) = time and the best convergence speed are achieved using
180forh = 1,2,3. The forward kinematics model of the the CGA (i.e., continuous types of initialization,
manipulator is given by crossover and mutation).
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Table 1: Step-by-step switching to CGA for the 3R manipulator.

Initialization Type | Crossover Type| Mutation Type | Average Execution Timg Average Number of Generations Nature of Joints Paths
Conventional Conventional | Conventional 487.72 124 Oscillations with Large Magnitude
Conventional Conventional Continuous 390.06 105 Oscillations with Medium Magnitudg
Conventional Continuous Conventional 295.14 83 Oscillations with Large Magnitude
Conventional Continuous Continuous 486.1 144 Oscillations with Medium Magnitudg

Continuous Conventional | Conventional 188.89 53 Oscillations with small Magnitude
Continuous Conventional Continuous 191.2 56 Oscillations with small Magnitude
Continuous Continuous Conventional 181.57 55 Oscillations with small Magnitude
Continuous Continuous Continuous 148.58 49 Smooth Solution Curves

Table 2: Effect of the degree of redundancy on the convergence sgabd oonventional genetic algorithm.

Number of Manipulator’s Links| Average Execution Time(Second$)Average Number of Generation Average Time per Generation(Seconds)
4 242.46 46 5.25
6 459.43 57 8.05
8 677.43 63 10.74
10 981.23 75 13.08
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Fig. 2: (a) Evolutionary progress plot for the best-of-generation Fig. 3: Desired and generated Cartesian path for the 3R planar
individual for the 3R planar manipulator, (b) correspomdpath manipulator in (a) X-plane, (b) Y-plane.
point deviation.
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Fig. 4: Joints paths of the 3R manipulator using conventional Fig. 5: Joints paths of the 3R manipulator using CGA for (a) 1st

GA: (a) 1st Joint, (b) 2nd Joint, (c) 3rd Joint.
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Table 3: Effect of the degree of redundancy on the convergence sgebd GGA.

Number of Manipulator’s Links| Average Execution Time(Secondg)Average Number of Generation Average Time per Generation(Seconds)
4 101.39 48 2.10
6 122.6 46 2.65
8 164.27 48 3.41
10 201.06 47 4.27

Table 4: Number of knots effect on the convergence speed of the ctiomah GA for the 3R manipulator.
Number of Knot | Average Execution Time(Seconds)Average Number of Generation Average Time per Generation(Seconds)

20 326 76 4.28
40 1856 217 8.55
60 3981 317 12.55
80 6567 434 15.13
100 15563 840 18.52

Table 5: Number of knots effect on the convergence speed of the CGkhé&B8R manipulator.
Number of Knot | Average Execution Time(Seconds)Average Number of Generation Average Time per Generation(Seconds)

20 69 50 1.38
40 170 69 2.46
60 275 75 3.66
80 349 74 4.71
100 469 78 6.01

For the 3R manipulators, the conventional but also results in smaller number of generations for
initialization, continuous crossover and continuousconvergence and the average time per generation is about
mutation case results in the largest number of generationBalf of that of the conventional GA. Finally, the effect of
required for convergence. For the case in which thethe number of knots along the given path generation
conventional initialization, continuous crossover andproblem on the convergence speed of the conventional
conventional mutation are used, it is observed that thisand the CGAs for both manipulators is studied. The
hybrid scheme still results in oscillations with large number of knots is increased from 20 to 100 in steps of 20
magnitude as shown in Table 1. This is an expected resulfor both algorithms. For the 3R manipulator, Tables 4 and
since the smoothness achieved by the continuou$ show the relevant data using the conventional genetic
crossover process is disturbed by the conventionahlgorithm and the CGA respectively. It is observed that
mutation process. the average number of generations required for

The joints paths for the first, second and third joints of convergence using conventional genetic algorithm
the 3R manipulator using CGA are shown in Figure 5. Itincreases sharply as the number of knots along the
is obvious that the resulting solution curves in joint spaceCartesian path is increased while the average number of
are smooth and do not have any switching between thgenerations required for convergence using CGA is
two possible solutions, which results in minimizing the almost constant regardless the number of knots along the
net displacement of the joints. The effect of the degree ofCartesian path. That is, when the number of knots is
redundancy (number of links) of the planar redundantincreased from 20 to 100, the number of generations
manipulator on the convergence speed of the conventiondhcreases from 76 to 840 for the conventional genetic
and the CGAs is studied next. The number of links of thealgorithm while the number of generations increases from
planar manipulatoiy, is increased from 4 to 10 in steps 50 to 78 for the CGA.
of 2 for both algorithms where the link length is set as
Li = 1/Mmeterfori= 1,2,,M. Table 2 shows the
relevant data using the conventional genetic algorithm4 Conclusion
while Table 3 shows the relevant data using the CGA for
the previous path generation problem. From these tabledn this paper, the inverse kinematics problem solution of
it is clear that as the number of links increases, therobot manipulators was achieved using the CGA. As a
average number of generations required for convergenc€GA and a conventional GA comparison, it was observed
increases in case of conventional genetic algorithm whilethat the resulting joints paths using the conventional GA
the CGA is insensitive to this parameter (i.e., the numberave multiple switching points in some of the
of generations is almost fixed). In addition to that, the non-redundant manipulators solutions while they were of
average time per generation in the conventional genetihighly oscillatory nature for the redundant manipulators
algorithm is two to three times that in the CGA. This resulting in very large net displacements for both systems.
shows that CGA not only results in smooth joints paths,Taking in consideration the shortcomings of the
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conventional GA, the CGA operators (initialization phase, [13] Z.S. Abo-Hammour, Advanced continuous genetic

. p . . . - . . . .
crossover, mutation) were designed such that they result  algorithms and their applications in the motion planning
in smooth joints paths while they maintain an excellent  of robotic manipulators and the numerical solution of
accuracy along the Cartesian path. It was found that the ~ boundary value problemsPh.D. Thesis, Quiad-Azam
initialization phase has the greatest effect on the _University, 2002. _ _
smoothness of the joints paths. The convergence speed b4 Hasan AT, Hamouda AMS, Ismail N, Al-Assadi HMAA, An
the CGA in terms of both the number of generations for adaptive-learning algorlthm to solve the inverse kineosati
convergence and the average execution time is much problem of a 6 D.O.F. serial robot manipulator. Adv Eng
superior to that of the conventional GA. (15] goﬁt_‘?’ ?(73433:53' 30862hao and P. YaMinimum time
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