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Abstract: In this paper, the solution of inverse kinematics problem ofrobot manipulators using genetic algorithms (GA) is presented.
Two versions of genetic algorithms are used which include the conventional GA and the continuous GA. The inverse kinematics problem
is formulated as an optimization problem based on the concept of minimizing the accumulative path deviation in the absence of any
obstacles in the workspace. Simulation results show that the continuous GA outperforms the conventional GA from all aspects. The
superiority of the continuous GA is seen in that it will always provide smooth and faster solutions as compared with the conventional
GA.
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1 Introduction

GAs are basically generate-and-test artificial intelligent
optimization methods that are based on the Darwinian
principles of biological evolution. Even with the existence
of other artificial intelligent methods [1,2,3], GAs have
also received much of the researchers attentions [4,5,6].
The construction of a genetic algorithm for the solution of
any optimization problem depends on different tasks [7]:
an initial population of solutions, genetic operators, anda
fitness evaluation function. These factors resulted in the
availability of numerous variants of GAs reported in
literature. However, sometimes specific solutions are
desired, such as smoothness of the solution curve in robot
manipulators. As will be seen later, this problem is solved
using the proposed CGA which will not be achieved
using the conventional CA.

As it is well known that the inverse kinematics
problem is used to control the posture of an articulated
body, it has become a fundamental problem in robotics
where several methods have been proposed [8]. Most of
these methods include the approaches of geometric,
iterative, and algebraic, which as has been reported, they

are inadequate for redundant robots [9]. Recently, much
attention has been focused on a neural-network-based
inverse kinematics problem solution in robotics [9,10,
11]. However, Due to the fact that there exist some
difficulties to solve the inverse kinematics problem when
the kinematics equations are complex, highly nonlinear,
coupled and multiple solutions in terms of these robot
manipulators [12], the GA approach has been motivated
to investigate the possibility of solving this kind of
problem for robot motion planning. The motion planning
of robot manipulators can be classified into two main
categories; continuous/Cartesian motion planning, and
point-to-point motion planning. The continuous/Cartesian
motion planning process involves the use of inverse
kinematics equations of the manipulator to obtain the set
of joint angles or velocities corresponding to the desired
motion in Cartesian space [9,10,11,13,14].

Much of the conducted research has been focused on
either the point-to-point trajectory generation of
redundant and non-redundant manipulators, or continuous
motion planning of redundant manipulators. The infinite
number of solutions in joint space for the two previously
mentioned categories requires an optimization method to
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fully exploit this fact in order to improve robot motion
performance through the use of some minimization or
maximization criteria such as minimizing the time of
motion [3,15,16], minimizing the jerk [17,18],
minimizing the torque [19], or minimizing the consumed
energy [20]. The non-redundant manipulators continuous
path planning has received a little attention among the
researchers community. This includes the solution of the
inverse kinematics of the non-redundant manipulator
which has unique or multiple feasible solutions for the
problem depending on the manipulator’s configuration
and the joints limits. The solution strategies of the
manipulators inverse kinematics problem are divided into
two main classes; closed-form solutions and numerical
solutions [21]. The closed-form solution for the inverse
kinematics problem is generally difficult to derive for
general serial manipulators. In 1991, Davidor [22]
proposed a special GA for path generation problem of
redundant manipulators. However, his proposed GA has
drawbacks and could not fully exploit the abilities of
GAs. The recent applications of genetic algorithms
mainly focused on the motion planning of redundant
manipulators [5,23]. In this paper, we will focus on the
continuous path generation of manipulators rather than
the point-to-point planning. As mentioned, the previous
applications of the genetic algorithms were limited to
redundant manipulators, while this algorithm maybe
applied to both redundant and non-redundant
manipulators.

2 Problem Formulation with CGA Approach

Consider a robot manipulator withM degrees of freedom
and N task space coordinates. Assume that a desired
Cartesian path,Pdc, is given, the problem is to find the set
of joint paths,Pθ , such that the accumulative deviation
between the generated Cartesian path,Pgc, and the desired
Cartesian path,Pdc, is minimum. In other words, we are
interested in the determination of a set of feasible joint
angles, which corresponds to a set of desired spatial
coordinates of the end effector in the task space. In the
proposed approach, the desired geometric Cartesian path
is uniformly sampled. The number of sampling points
(path points or knots) is specified by the programmer and
depends on the desired accuracy of the generated path.
The accuracy of the generated path increases as the
number of path points increases. After the sampling
process (withNk samples),Pdc and Pgc are matrices of
dimensionN by Nk while Pθ is a matrix of M by Nk
dimension. After sampling the geometric path, at the path
update rate for best accuracy, the generated values of the
joint angles using the genetic algorithm,Pθ , are used by
the direct (forward) kinematics model of the robot to
obtain the generated Cartesian path given by

Pgc = Fk(Pθ ) (1)

whereFk represents the forward kinematics model of
the manipulator.

The deviation between the desired Cartesian path,Pdc,
and the generated Cartesian path,Pgc, at some general path
point, i, is given by

E(i) =
N

∑
k=1

∣

∣Pdc(k, i)−Pgc(k, i)
∣

∣ (2)

The accumulative deviation between the two paths
(desired and generated) depends on whether the initial
and final joint angles corresponding to the initial and final
configurations of the end effector are given in advance
using the inverse kinematics model of the manipulator or
through other numerical technique (fixed end points) or
the case in which the initial and final joint angles are not
given (free end points). For the fixed end points case, the
accumulative deviation between the two paths is given by

E =
Nk−1

∑
i=2

N

∑
k=1

∣

∣Pdc(k, i)−Pgc(k, i)
∣

∣ =
Nk−1

∑
i=2

E(i) (3)

while for the free end points case, the accumulative
deviation between the two paths is given by

E =
Nk

∑
i=1

N

∑
k=1

∣

∣Pdc(k, i)−Pgc(k, i)
∣

∣ =
Nk

∑
i=1

E(i) (4)

The fitness function, a nonnegative measure of the
quality of individuals, is defined as follows

F =
1

1+E
(5)

The optimal solution of the problem is obtained when
the deviation function, E, approaches zero and
correspondingly the fitness function,F , approaches unity.
As a result, the path generation problem is formulated as
a minimization problem of the deviation functions or as a
maximization problem of the fitness function.

In order to obtain the solution of this problem, the
CGAs, which were developed by Abo-Hammour [13], are
used. The CGAs were developed for the solution of
optimization problems in which the parameters to be
optimized are correlated with each other or the
smoothness of the solution curve must be achieved. It has
been successfully applied in the motion planning of robot
manipulators [25,26,27], numerical solution of two-point
boundary value problems [28,29], solution of
differential-algebraic equations [30], solution of fuzzy
differential equations [31], solution of Laplace equation
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[32], and the solution of nonlinear partial differential
equations [32].

The novel development of CGAs has opened the
doors for wide applications of the algorithm in the field of
engineering and mathematics. Recently, the algorithm has
been applied for the Solution of Troeschs and Bratus
Problems [34], nonlinear system of second-order
boundary value problems [35], Systems of Singular
Boundary Value Problems [36]; chemical reactor problem
[37], singular two-point boundary value problems [38],
and optimal control problems [39].

In the CGAs evolution process, an individual is a
candidate solution of the joints angles; that is, each
individual consists ofM joints paths each consisting ofNk
path points, this results in a two-dimensional array of the
size MxNk. The population undergoes the selection
process, which results in a mating pool among which
pairs of individuals are crossed with probabilityPci.
Within that pair of parents, individual joints are crossed
over with probability Pc j. This process results in an
offsprings generation where every individual child
undergoes mutation with probabilityPmi. Within that
child, individual joints are mutated with probabilityPm j.
After that, the next generation is produced according to
the replacement strategy applied. This process is repeated
till the convergence criterion is met where theMxNk
parameters of the best individual are the required joints
angles. The final goal of discovering the required joints
paths is translated into finding the fittest individual in
genetic terms.

The conventional genetic algorithm used in our work,
on the other hand, consists of the steps given previously.
The evaluation step, selection step, replacement step and
the termination step are identical in both algorithms.
However, the differences between both algorithms lie in
the initialization phase, the crossover operator, the
mutation operator and the extinction and immigration
operator. These operators have the same goal in both
algorithms; the difference lies in the way in which each
operator is applied in the corresponding algorithm. These
operators are applied at the joints path level in case of the
CGA while they are applied at the path point level in case
of conventional genetic algorithm. That is, the operators
of the CGA are of global nature while those of
conventional genetic algorithm are of local nature. In
addition to that, it is to be noted that the conventional
genetic algorithm uses the genotype and phenotype data
presentations while the CGA uses only the phenotype
data presentation. This fact requires a coding process in
conventional genetic algorithm, which is not the case in
CGA.

In the conventional genetic algorithm, each joint angle
of every joints path has to be encoded into a finite-length
substring over some finite alphabet, which is normally 2
(binary coding). If we assume that each substring consists
of Ns characters or genes, then the chromosomes or the
individuals are formed by cascading the genes ofM joints
each ofNk path points forming a longer string of length

L = M ∗ Nk ∗Ns genes. In this way, the population may
be viewed as a vector ofNp elements where each element
consists ofL genes.

3 Conventional and Continuous GA

The CGA and the conventional GA were used to solve the
Cartesian path generation problem of 3R planar
manipulator. The input data to both algorithms is divided
into two parts; the genetic-algorithm related parameters
and the manipulator related parameters. The
genetic-algorithm related parameters for the CGA include
the population size, Np, the individual crossover
probability, Pci, the joint crossover probability,Pc j, the
individual mutation probability,Pmi, the joint mutation
probability, Pm j, the immigration threshold value, the
corresponding number of generations, and finally the
termination criterion.

The GA related parameters for the conventional
genetic algorithm include the population size,Np, the
crossover probability,Pc, the mutation probability,Pm, the
required accuracy of the phenotype values, the
immigration threshold value, the corresponding number
of generations, and finally the termination criterion.
While on the other hand, the robot related parameters
include the link parameters, the number of joints in the
manipulator,M, the robots degrees of freedom,N, the
number of path points, Nk, the joints limits
(θlower(h)andθupper(h) f orh = 1, ,M), and the desired
Cartesian path (Pdc(k, i) f ork = 1, ,Nandi = 1, ,Nk).
Regarding the initial and final joints angles
(θinitial (h)andθ f inal(h) f orh= 1, ,M), there are two cases,
the fixed end points case and free end points case. In the
fixed end points case, these values are fed to the algorithm
as input parameters using closed-form inverse kinematics
formulas or any numerical technique, while in the free
end points case, the end points are not considered as input
parameters to the algorithm since they are not given.

The initial settings of the CGA parameters are as
follows: the population size is set to 500 individuals. The
rank-based selection strategy is used where the
rank-based ratio is set to 0.1. The individual crossover
probability is kept at 0.9; the joint crossover probabilityis
also set to 0.9. The individual mutation probability and
the joint mutation probability are kept at 0.9. Generational
replacement scheme is applied where the number

of elite parents that are passed to the next generation
is one-tenth of the population. Extinction and
immigration operator is applied when the improvement in
the fitness value of the best individual over 400
generations is less than 0.01. The genetic algorithm is
stopped when one of the following conditions is met.
First, the fitness of the best individual of the population
reaches a value of 0.99; that is the accumulative deviation
of the end effector, E, of the best individual is less than or
equal to 0.01. Second, the maximum deviation at any path
point of the best individual is less than or equal to 0.001.
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Third, a maximum number of 10000 generations is
reached. Fourth, the improvement in the fitness value of
the best individual in the population over 1000
generations is less than 0.01. It is to be noted that the first
two conditions indicate to a successful termination
process (optimal solution is found), while the last two
conditions point to a partially successful end depending
on the fitness of the best individual in the population
(near-optimal solution is reached).

The initial settings of the conventional genetic
algorithm parameters are similar to those of the CGA
except those related to crossover, mutation and coding
process which are as following: the crossover probability
is kept at 0.7, the mutation probability is kept at 0.01. The
uniform crossover method is used as the algorithms
default crossover method. The required accuracy of the
phenotype values is set to 0.001 and binary coding
scheme is used. Due to the stochastic nature of GAs,
twelve different runs were made for every result obtained
in this work using a different random number generator
seed; results are the average values whenever possible.
The selected Cartesian path generation problem, shown in
Figure 1, is of a straight line shape and is given by:

xinitial = 0.0,xf inal = 0.25

Pdc(1, i) = Xdc(i) = xinitial +
xf inal − xinitial

Nk−1
∗ (i −1) (6)

Pdc(2, i) =Ydc(i) = 0.25

Fig. 1: Cartesian geometric path for the 3R planar manipulator.

The link parameters of the 3R redundant manipulator
are given asL1 = L2 = L3 = 0.5 meter. For this case,
N = 2,M = 3,θlower(h) = −180andθupper(h) =
180f orh = 1,2,3. The forward kinematics model of the
manipulator is given by

Xgc(i) =
M

∑
j=1

(

L j ∗cos

[

j

∑
k=1

θk,i

])

=
M

∑
j=1

(

L j ∗cos

[

j

∑
k=1

¶θ (k, i)

])

(7)

Xgc(i) =
M

∑
j=1

(

L j ∗sin

[

j

∑
k=1

θk,i

])

=
M

∑
j=1

(

L j ∗sin

[

j

∑
k=1

¶θ (k, i)

])

(8)

where 1≤ i ≤ Nk. The number of path points along
the Cartesian path,Nk, is set to 20 points. The initial and
final joints angles corresponding to the initial and final
configurations of the end effector along the Cartesian path
are not given (i.e., free end points case). The evolutionary
progress plot of the best-fitness individual and the path
point deviations for the 3R planar redundant manipulator
are shown in Figure 2, which shows that the algorithm
reaches a fitness value of 0.99 within 72 generations and
the average path point deviation is almost 0.0005 meter.
The desired and generated Cartesian paths are given in
Figure 3. It is clear that the desired and the generated
Cartesian paths are almost the same.

The joints paths for the first, second, and third joints
of the 3R manipulator are shown in Figure 4. It is obvious
that the resulting joints paths are highly oscillatory within
the range of the joints limits, which results in large net
displacements of the joints. The oscillatory behaviour of
the joints paths, as shown in Figure 4, is the key reason
behind the introduction of the analogous crossover
operator by Davidor [22] in an attempt to avoid the
discontinuities in the joints paths resulting from
conventional crossover approaches. These observations,
in general, are due to the fact that the initialization,
crossover, mutation and extinction and immigration
operators of the conventional genetic algorithm are of
local nature and applied at the path point level. This fact
results in discontinuities in the joints paths or oscillatory
values among consecutive path points. The operators of
the CGA, on the other hand, are of global nature and
applied at the joints path level. As a result, the
step-function-like jump in the joint values along the joints
path is totally avoided due to the smooth transitions in the
joint values.

After that, the effect of both versions (conventional
and continuous) of the initialization phase, crossover
operator and mutation operator on the nature of the joints
paths obtained and the convergence speed of the hybrid
algorithm is studied. Table 1 gives the relevant data for
3R manipulator. As seen in this table, it is clear that the
initialization phase has the greatest effect on the
smoothness/nonsmoothness of the solution curves; that is,
in case of conventional initialization, the joints paths are
of oscillatory nature with large or medium magnitude
oscillations while in case of continuous initialization, the
joints paths are either smooth or of oscillatory nature with
small magnitude oscillations. The minimum execution
time and the best convergence speed are achieved using
the CGA (i.e., continuous types of initialization,
crossover and mutation).
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Table 1: Step-by-step switching to CGA for the 3R manipulator.
Initialization Type Crossover Type Mutation Type Average Execution Time Average Number of Generations Nature of Joints Paths

Conventional Conventional Conventional 487.72 124 Oscillations with Large Magnitude
Conventional Conventional Continuous 390.06 105 Oscillations with Medium Magnitude
Conventional Continuous Conventional 295.14 83 Oscillations with Large Magnitude
Conventional Continuous Continuous 486.1 144 Oscillations with Medium Magnitude
Continuous Conventional Conventional 188.89 53 Oscillations with small Magnitude
Continuous Conventional Continuous 191.2 56 Oscillations with small Magnitude
Continuous Continuous Conventional 181.57 55 Oscillations with small Magnitude
Continuous Continuous Continuous 148.58 49 Smooth Solution Curves

Table 2: Effect of the degree of redundancy on the convergence speed of the conventional genetic algorithm.
Number of Manipulator’s Links Average Execution Time(Seconds)Average Number of Generation Average Time per Generation(Seconds)

4 242.46 46 5.25
6 459.43 57 8.05
8 677.43 63 10.74
10 981.23 75 13.08

(a)

(b)

Fig. 2: (a) Evolutionary progress plot for the best-of-generation
individual for the 3R planar manipulator, (b) corresponding path
point deviation.

(a)

(b)

Fig. 3: Desired and generated Cartesian path for the 3R planar
manipulator in (a) X-plane, (b) Y-plane.
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(a)

(b)

(b)

Fig. 4: Joints paths of the 3R manipulator using conventional
GA: (a) 1st Joint, (b) 2nd Joint, (c) 3rd Joint.

(a)

(b)

(b)

Fig. 5: Joints paths of the 3R manipulator using CGA for (a) 1st
Joint, (b) 2nd Joint, (c) 3rd Joint.
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Table 3: Effect of the degree of redundancy on the convergence speed of the CGA.
Number of Manipulator’s Links Average Execution Time(Seconds)Average Number of Generation Average Time per Generation(Seconds)

4 101.39 48 2.10
6 122.6 46 2.65
8 164.27 48 3.41
10 201.06 47 4.27

Table 4: Number of knots effect on the convergence speed of the conventional GA for the 3R manipulator.
Number of Knot Average Execution Time(Seconds)Average Number of Generation Average Time per Generation(Seconds)

20 326 76 4.28
40 1856 217 8.55
60 3981 317 12.55
80 6567 434 15.13
100 15563 840 18.52

Table 5: Number of knots effect on the convergence speed of the CGA forthe 3R manipulator.
Number of Knot Average Execution Time(Seconds)Average Number of Generation Average Time per Generation(Seconds)

20 69 50 1.38
40 170 69 2.46
60 275 75 3.66
80 349 74 4.71
100 469 78 6.01

For the 3R manipulators, the conventional
initialization, continuous crossover and continuous
mutation case results in the largest number of generations
required for convergence. For the case in which the
conventional initialization, continuous crossover and
conventional mutation are used, it is observed that this
hybrid scheme still results in oscillations with large
magnitude as shown in Table 1. This is an expected result
since the smoothness achieved by the continuous
crossover process is disturbed by the conventional
mutation process.

The joints paths for the first, second and third joints of
the 3R manipulator using CGA are shown in Figure 5. It
is obvious that the resulting solution curves in joint space
are smooth and do not have any switching between the
two possible solutions, which results in minimizing the
net displacement of the joints. The effect of the degree of
redundancy (number of links) of the planar redundant
manipulator on the convergence speed of the conventional
and the CGAs is studied next. The number of links of the
planar manipulator,M, is increased from 4 to 10 in steps
of 2 for both algorithms where the link length is set as
Li = 1/Mmeter f ori = 1,2, ,M. Table 2 shows the
relevant data using the conventional genetic algorithm
while Table 3 shows the relevant data using the CGA for
the previous path generation problem. From these tables,
it is clear that as the number of links increases, the
average number of generations required for convergence
increases in case of conventional genetic algorithm while
the CGA is insensitive to this parameter (i.e., the number
of generations is almost fixed). In addition to that, the
average time per generation in the conventional genetic
algorithm is two to three times that in the CGA. This
shows that CGA not only results in smooth joints paths,

but also results in smaller number of generations for
convergence and the average time per generation is about
half of that of the conventional GA. Finally, the effect of
the number of knots along the given path generation
problem on the convergence speed of the conventional
and the CGAs for both manipulators is studied. The
number of knots is increased from 20 to 100 in steps of 20
for both algorithms. For the 3R manipulator, Tables 4 and
5 show the relevant data using the conventional genetic
algorithm and the CGA respectively. It is observed that
the average number of generations required for
convergence using conventional genetic algorithm
increases sharply as the number of knots along the
Cartesian path is increased while the average number of
generations required for convergence using CGA is
almost constant regardless the number of knots along the
Cartesian path. That is, when the number of knots is
increased from 20 to 100, the number of generations
increases from 76 to 840 for the conventional genetic
algorithm while the number of generations increases from
50 to 78 for the CGA.

4 Conclusion

In this paper, the inverse kinematics problem solution of
robot manipulators was achieved using the CGA. As a
CGA and a conventional GA comparison, it was observed
that the resulting joints paths using the conventional GA
have multiple switching points in some of the
non-redundant manipulators solutions while they were of
highly oscillatory nature for the redundant manipulators
resulting in very large net displacements for both systems.
Taking in consideration the shortcomings of the
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conventional GA, the CGA operators (initialization phase,
crossover, mutation) were designed such that they result
in smooth joints paths while they maintain an excellent
accuracy along the Cartesian path. It was found that the
initialization phase has the greatest effect on the
smoothness of the joints paths. The convergence speed of
the CGA in terms of both the number of generations for
convergence and the average execution time is much
superior to that of the conventional GA.
Conflicts of InterestsThe authors declare that there is no
conflict of interests regarding the publication of this
paper.
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