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Abstract: In the present paper we studied the problem of nonlineamgpttontrol of the thermal processes described by Fredholm
integro-differential equations when the control paramsetge nonlinearly included into the equation as well as th® boundary
condition. The concept of weak generalized solution of therolary value problem is introduced and the algorithm ®cdnstruction

is indicated. It is established that optimal control is dedims the solution of the system of nonlinear integral eqoatwhich contain
unknown functions under and out of the integral and satlsfyeidditional condition in the form of the system of ineqtigdi. Sufficient
conditions for the existence of a unique solution of the f@wbof nonlinear optimization are given, and algorithm sfébnstruction
has been developed.
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1 Introduction 21] and the references therein). However, such problems
were not well-investigated in general.

It is well-known that basis of the optimal control theory of

processes described by ordinary differential equatiorss Waproblems is Pontryagin’s maximum (or minimum)
laid in the 50th yea(;shqf theilﬂﬁ)century "thge \{vorl?sr?f principle which is used in optimal control theory to find
L.S. Pontryagin and his colleague3] and basis of the he past possible control for taking a dynamical system

optimal control theory of processes described by partiak,m gne state to another, especially in the presence of
derivatives differential equations was laid in the 60thrgea .qstraints for the state or input controls.

of the 2Qh century in the works of A.G. Butkovskiylp],

A.l. Egorov [6]. Note that the maximum principle was formulated for
Moreover, several processes described by ordinarngystems with lumped parameters, and it is applicable not

and partial differential equations have been studiedalways in the case for systems with distributed parameters

extensively by many researchers (sek,17,18,19,20, [6].

One of the main research method of optimal control
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The problem of control processes described byplt,d(t)] € H(0,T) are functions of external sources

integro-differential equations with partial derivatives

often encountered in applications and it has been studied(t) € H(0,T),

in papers §,7,8,9,10]. For example, in 15] investigated

which nonlinearly depend from the control functions
9(t) € H(0,T) and satisfy the
conditions

the problem with taking into account the only external
control parameters. When we study of thermal processes, fy[t,u(t)] # 0, (5)
in practice it is necessary to consider the thermal flow
passing as well as across the border. A is a parametery > 0 is a constanfl is a fixed moment

In this article, we investigated the questions of uniqueof time. The Hilbert space of functions defined on the set
solvability of the optimization problem for the thermal Y is denoted byH (Y).
processes described by Fredholm integral-differential In real-world applications, generalized solutions of
equations when the controlling external forces as well agoundary value problems are used. For the boundary
boundary control are operated to object , i.e. object isvalue problem 1)-(3) we will use the following concept
controlled by two control forces. Such problems have notof weakgeneralized solution.
yet been studied in control theory. The quality control is
estimated by the quadratic functional. Based on theDefinition 1.Under a weak generalized solution of the
maximum principle the conditions of control optimality boundary value problem1j-(3) we mean the function
for systems with distributed paramete@} pre obtained  V(t,x) € H(Q) which satisfies the integral identity
in the form of a nonlinear integral equation and
differential inequality. The solvability of the nonlinear
integral equation is studied according to the method of
book [4]. For optimization problems we obtained the
sufficient conditions of the unique solvability and we
indicated an algorithm for constructing solutions of
nonlinear optimization problems with arbitrary precision
in the form of the triple
((W0(t), 8°(t)), vo(t,x), I[u°(t), 9°(1)]), where
(u0(t),3°(t)) is vector optimal controly(t,x) is optimal
process, and[u0(t),9°(t)] is the minimum value of the
functional.

Ps[t,3(t)] #0, Vte (0,T);

1 1 1
[wotax=[" [va-o0+atx  ©
T
x (/\/0 K(t,r)v(r,x)dr+g(t,x)f[t,u(t)])]dxdt

+ tltz[qo(t,l)(—av(t,l)—i—p[taﬁ(t)])

—@(t,1)v(t, 1)+ @(t,0)v(t,0)|dt

foranybandb, 0 <ty <t <ty <T, and for any function
@(t,x) € C1?(Q), as well as the initial and boundary
conditions in a weak sense, i.e., for any functions
@(x) € H(0,1) and @(t) € H(O,T) the following

2 Boundary value problem of the controlled ~ felations hold

process * 1

Jm [ vtmoodx= [ weomidx
Suppose that the state of a thermal process is described, T T
by the scalar functiow(t,x), which satisfies the integro- 7', 0 (Wx(t,X) —av(t,x)@(t)dt = 0 Pt 9 (1))@ (t)dt,

differential equation1,2,3] T
lim | w(t,X)@ (t)dt =0, @)
T x—+0.J0
Vi = V. +/\/Kt,rvr,xdr+ t,x) ft,u(t 1 ) ) ) ,
o 0 GOV 9t XTILu®] (1) where G2(Q) is space of functions which has the first
derivative with respect to t and the second order

in the regionQ={0<x<1, 0<t<T},andon the derivative with respect to x.

boundary ofQ it satisfies the initial condition

To construct the solution of boundary value problem
(2)-(3) we use the eigenfunctions and eigenvalues of
boundary problemd]

V(0,X) = Y(x),0< x< 1 @

and boundary conditions

V(t,0) =0, w(t,1) + av(t,1) = p[t, I (t)](0<t <T),
®3)

whereK(t, 7) is a given function defined in the regi@n=

Z'(X)+A8z(x) =0, Z(0)=0, Z(1)+az1)=0. (8)

Eigenfunctions have the form

{0<t< T, 0<71<T}andsatisfies the condition
T o7 2(A2+a?)
0 JO
i.e.,K(t,7) e H(D); ¢(x) € H(0,1), g(t,x) e H(Q)are andformacomplete orthonormalbasis in the Hilbert space
given functions; flt,u(t)] € H(O,T), H(0,1). Corresponding eigenvaludg are determined as
(@© 2016 NSP
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a solution of the transcendental equatitigh = a and
satisfies

)\ng)\nJrla Vne {1727"'}7 rllilpoo)\n:ooa
and

(n—1m< A< 2(2n 1). (10)

We are looking for the solution of boundary problem
(1-(3) in the form

v(t,x) = (11)
where

n(t) = (V0. 200) = [ vtomod  (12)

are the Fourier coefficients of the functiarit,x). The
symbol < -,- > is used for the scalar product in the
Hilbert spaceH (0,1). We also use the expansions

gt,x) = S on(t)z(x) (13)
n=1
1
9n(t) = (916 2000) = | gt 0z (xdx
WO = S thzn(x).
n=1
U = ( / W(x

According to the method7], the formal solution of the
boundary problem1)-(3) is found by using the integral
identity (6). By the arbitrariness of functioq(t,x) in the
integral identity 6) we assume thap(t,x) = z,(x). After
some calculations, the integral identiy) (akes the form

IRt

5t < V(6),z(3) > +A2 < V(t,X),zn(X) >
T
—)\/o K(t,T) < V(T,X),za(X) > dT

— < g(t,x),za(x) > f[t,u(t)] —zn(l)p[t,ﬁ(t)]}dtz 0.

In this identity by supposint =t and differentiating
with respect tot, we obtain the integro-differential
equation

% < V(t,X),z0(X) > +AZ < V(t,X),Zn(X) >
- )\/0 K(t,T) < V(T,X),za(X) > dT
+ <9tx),z(x) > flt,ut)] +z(plt, 8 (1),  (14)
which we solve with the initial condition
V(t,X),zn(X) > |t=t; =< V(t1,X),Za(X) > (15)

for each fixedh € {1,2,...}. Considering the right side of

the equation as absolute term, we solve the Cauchy

problem (4)-(15) by the formula

< v(t x) Zn(X )> e M) < y(ty, ), z0(X) >

+ ft-1) /Krs <Vv(5,X),z1(x) > ds

t1

+ < 9(1,X),z0(x) > f[T,u(T)] +zn(1)p[r,z9(r)])dr.

Tendingt; to zero and taking account of)( (13) we
obtain the relation
Vn(t) - ei)\HZt (,Un

+/ ft-1) / K(T,s)vn(s
(D) [1.u(D)] +20(1 >p[r,3<r>])dr

which is the linear integral equation.
It is easy to see that there is an initial condition

(16)

Vn(0) = . 17)
We will rewrite equation16) as
A1) = A /OT Kn(t,S)Vn(S)ds+an(t),  (18)
where .
Kn(t, ) = /0 e M-DK (1,5)dr, (19)
anit) = e Myp+ [T
X(On(T) F[T,u(T)] +Za(1)p[r, B (T)])dT.  (20)

We solve integral equatiornl®) using the following
formula[8,9]

:
0= [ Rit.sMan(edstan(t),  (21)

where
Rn(t,s,)\)ziAi—lKn,i(t,s), ne{1,2..} (22
i=

is the resolvent of the kernefn(t,s) = Kn1(t,s), the
iterated kernel&,(t,s) are defined by the formul&]9]

T
Koisa(t:9) = [ Kalt,m)Kni(n,S)dn.i € {1.2...,
(23)
foreachne {1,2,...}.

Further, as in 15, we have set the radius of
convergence concerning resolvent for ang {1,2,...},
as well as proved that the solution of the problet)(3)
which defined by 11), (21) is an element of the Hilbert
space, i.ev(t,x) € H(Q) for any external contral(t) and
boundary controb (t).
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3 Formulation of optimal control problem According to the maximum principle for systems with
and conditions of optimality distributed parameters$,[10,11], the optimal control is
determined by the relations

Consider the optimization problem in which it is required

to minimize the quadratic integral functional fZBu / g(t,X)w(t,x)d
. ult ut 28
)90 = [ (T - §(x)%x L‘"” - w(t,1) ()
. ps [t,9 (1) o
+B [ WP + 9%t (24)

for B > O,where&(x) € H(0,1) is given function on the u(t)

set of solutions of problent}-(3), i.e. we need to find the fult, u(t)] (f U] )u >0,

controls W2(t) € H(0,T) and 9°(t) € H(O,T) which, o

together with the corresponding solution’(t,x) of Ps [t’g(t)](ﬂ) 0 (29)
boundary value problem1)-(3), gives the smallest Pst, 8 (V)] /0

possible value of functional@). In this caseu(t) and

90(t) are called the optimal controls, and(t,x) is the ~ which are called the optimality conditions. The relations

optimal process. (28) were obtained from the following condition
Since, according to 5) each vector -control
(W(t),3°(t)) uniquely defines the controlled process gradri(-,u,89) =

vO(t,x), then the solution of boundary value problem

(1)-(3) of the formv(t,x) + Av(t,x) correspond to the The relations (29) were obtained from the system of the
controls u(t) + Au(t) and &(t) + Ad(t), where is the conditions by elimination ofu(t,x) andw(t,1)

increment that corresponds to the incremefs(t) and

Au(t). According to the procedure of application of the gradi(-,u,d) =0

maximum principle ,10,11], the increment of ) )

functional @4) can be written as Muu(-,u,8) <0, ,,77;:((’ llJ_,I’ 1199)) II:II;Z((" llJJ’ 1,99)) =0

AJu, 9] = Ju+Au,d +AF] - J[u, ]
T
_/0 ANV, @,u, Bdt 4 Nonlinear integral equation of optimal
1
+ [ avA(Txdx (25) control
0
where In order to find the optimal control, we use optimality

conditions 28) and @9). We substitutew(t,x) in (28)
AN, v,w,u,9) = M(t,v,w,u+Au(t),d +A49) with the solution of the conjugate boundary value

—M(t,v,w,ud), problem defined byZ7). First, we calculate the integral
M(t,v,w,u,9) = wt,1)plt,d (t)] + B(U7(t) + 92(t)) w
g(t,x)w txdx—/ On(t)zn(X (1) z((X)dx
+ [Tt a0t ubios @0 s 3 0500 3 U
w(t,x) is a solution of the conjugate boundary value = z On(t)an(t)

problem

T and rewrite equalityZ8) in the form
wt+a&x+/o K(T,H)w(1,x)dT=0,0<x<1,0<t<T, )
W(T,X)+2[V(T,X) — E(X)] =0, 0< x < 1, Bu®) fy Ht,ut)] = — 5 gn(t)[vn(T) — &
w(t,0) =0, ax(t,1)+aw(t,1)=0,0<t<T L
x (e*’\f%”*t) +A / Pn(s,t,)\)e*A%)(T*S)ds),
and has the formif| 0

6(t,X) = —2[vn(T) — m( HY BI (V)P t, (V)] = — 3 Z(1)[va(T) — &

n=1

8

T 2T T a2
+/\/ Pn(s,t,A)eAn2<TS>ds)zn(x). 27) x (e ‘>+A/O Pa(st,A)e i (T9ds).
0
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According to (L2) we further reduce this equality to the According to @9), the optimal controlsi(t) andJ (t)

form are uniquely determined by equalit@4, i.e. there are
u(t) functions¢, and¢, such that
fult,u(t o (on(t
ol M [+ 5 (FH)Emn @ wopans, 0-ntens. @9
Py [t, I (t)]
T Using 34) and @5), we rewrite system of equation3Q)
></ Ln(T,7,A)(9n(1),20(1)) <;[[TT”;((TT))]]) dr in the form
On(t 6u(t)) | < (9n(t) T
- z ( >En (T,t,1)hn, (ei(r)) +y (zn(l)) E(Tt.A) | La(T.T.A)
where fT,91(7,61(7),B)]
En(T,t,A) = e (T (31) (@) ) ( [Tv¢2(fa92(f)a5)]> a
+)‘/0 R,’ﬁ(s,t,/\)e’)‘r%(T’S)ds, = Z (gn ) En T,t,)\)h (36)
Ln(T,T,A) = AR(T=1) (32) Introducing the notations
+A “(T,5,A)e ME-Tdg 04 (t On(t
2 ou-(3). swea-(28)

hn=En—wn[e—AnzTH/OTRn(T,s,me—Anzqu. 33)  F(r,u(1),8(1)) = (f[ng((r)])

Thus, the optimal control is defined as the solution of
nonlinear integral equatior8(), and the conditionZ9), we rewrite equation30) in the form
here, must be satisfied. Conditio®d restricts the class
of functions of external action$|[t,u(t)] and p[t, 9 (t)].
Therefore, we assume that the functiofis,u(t)] and

00

:
o(t)+ Y Gn(t,l)En(T,t,)\)/O Ln(T,T,7)

p[t,d(t)] satisfy the R9) for each of the controls L
ub € H](O,T) andd (t) € H(0,T). xGnp(T,1)F (7, ¢1[7, 61(1), B], 2[T, 62(T), B])dT
Nonlinear integral control30) is solved according to
the method4,5]. Suppose that - Z Gn(t, DEn(T,t,A ) (37)
u(t) 2 (t) :
=0.(t), ——=—— =6,(1). 34 or in the operator form
o]~ 2Y prem — %Y GY P
Lemma 1.The vector functiord(t) = (61(t), 6(t)) is an B(t) = E[6a(t), 62(t)] +R(t), (38)
element of space HO, T) =H(0,T) x H(0, T).
h
Proof According to 6), we have the estimate where
—1 ©
sug fy ot u(t)]] < My, E[6w(1), B2(t)] = — D Gn(t,1En(T,t,A)
sugpytlt, 9 (t)]] <Mz Vte[0,T]. =1
T

Since u(t) € H(O,T) and &8(t) € H(0,T), then the ></ Ln(T,T,A)Gj(T,1)
assertion of the lemma comes from the following 0
inequality xF (T, ¢1[1,61(1),B], ¢2[1, 62(T), B])dT

T T <
/ ef(t)dtgﬁz/ 12t u(t)] 2lu(t) |t At) = 3 Gnlt, LEA(T.t.2)hn (39)
0 0 e

2
<P Ml/o u(t)dt <o, Now, we investigate the question of unique solvability

T T of the operator equatior38).
| e3tdt < B2 [ Iptt 9 0] P19 (1)t

0 0

T . .
< BZM%/ 92(t)dt < oo. hezr(%m_l%z.'l'he functionh(t) is an element of space

(@© 2016 NSP
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T 00
ProofBy the straightforward calculations, we obtain the g/ ( z IGn(t, 1)||g2|En(T,t,A)]
inequality 0 \ni=1

/H Hzm—é( 2(t) + h3(1) dit

:/O {(n;gn(t)En(T,t,A)hn)z

+ (élzn(l)En(T,t,)\ )hn> 2}olt

)
< [ (T T MG D
2
< ||F(z. 4a[1.64(7). Bl. 927, B2(T) Hszr> dt
</T g 1Gn(t, 1)|2|En(T.t, ) 2dt
o & Mo IR

o T
<3 | 1T e A)RIGH(r, 1) Fedt
n=1

A2KoT
<2|gt, %) ( 1+ 0
( (\/2)‘12—|)\|\/K0T)2> X/()THF(T7¢1[T791(T)7ﬁ] 9217, 6,(7). B) || 0T

< : 1) 2{1£001f+ 21w R < (|\g<t,x>|\a+2)2

)\1
A2KoT 1 1 2
} () ()
( 22— |} KOT) 2
|
1

(2T 1)
(/2221 |\/—KOT)2 22
(11901000 B + ol ot 020). B )
1

< w, (41)

+§)z E09113

A%KoT 1
ae (V222- |A|¢K0—T)2) <A2

A2KoT
+2|wX)lIE (1+ ° 5 W) } from which the assertion of lemma is implied.
(/22 - 1A IvKoT)
A2KoT Lemma 4 Suppose that the conditions
< (2||g(t,x>||a +1> (1+ =)
(V222 - IveaT) [RACHTICS) 8 o) [P
1 1 < follu(t) — Tt  fy>0, 42
. <ﬁ+6>2{|£<x>||a+2||w<x>|a < follu®) = 00luor): o “2)
2
. (1+ AT i)}
< pol|d(t) = I(t)| po >0, (43)

< w, (40) HOT)

from which the assertion of lemma is implied.
19i[t,8.(1), 8] — 6ilt, Bi(0). By 0m)
Lemma 3The operator= E[6;(t), 62(t)] maps the space _ a , P
H2(0,T) into itself, i.e. is an element of the space — < 9o[[6®) -8, o7y Pai(F)>0. 1=12 (49)

H2(0,T).
are satisfied. When the condition

ProofBy the straightforward calculations, we obtain the
[ lit 1 1
inequality v=(lat.l% +2) <ﬁ g)
2
-
| E?tes(0). ep(tt

o T
>3 Gn(t,l)En(T,t,)\)/O Ln(T,7,A)GA(T, 1)

Lz

F (Ta ¢1[T7 el(T)vﬁ]a ¢2[T7 62(-[)7 B])dT

x(l—i— a%KO 2)
(V22— nivkeT)

xB(fo, po, $10(B), 10(B)) (45)

2
dt . . ,
is met, the operator [B] is contractive.
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ProofBy the straightforward calculations, we obtain the and from the inequality we find that

inequality
T [ee]
HE[G]_E[G]Hﬁﬁ:/O <nZlGn(t71)En(Tat7)‘)

<) e aeiey (8 A Al o

-3 Gn(t,l)En(T,t,)\)/o Ln(T,7,A)GA(T, 1)

08 or)

y ( [1,91[1,0
T, ¢2[1,82(7), 8]

T/ o T
g/o ( Gn(t,l)En(T,t,)\)/O Ln(T,7,A)GA(T, 1)
)
)

< ||g<t,x>||a+2)2<A—121+§>
><<1+ 2ko )2
(V22— vKoT)”

S (AL ON: B A ON [

Ry

+[|p[t. d2lt, 2(1), B]] —

21 1
2 = 4=

plt, do[t, B2 (t)

agKo

X <1+ (\/2/\712_|)\|\/K0_T)

y (f§¢%o<ﬁ>uel<t> ~Bu(t)|

+P3030(B)]|82(t) — B(t) |7,

2
H
21 1 2
< (ot +2) <A—21+5>
><<1+ aOKO )
(222~ IAlvKoT)”
xBZ(fo,po,¢1o<ﬁ>,¢zo<ﬁ>)ue<t>—@<t>||ﬁ)
< oo, (46)
where

B?(fo, Po. $10(B). $10(B)) =

max 5, 05, 930(B), ¢120(B))a

|E[6] —E[6] ||, < (Hg(LX)Hﬁ +2)

Gl )

AR O |A|¢K0—T)2

XB(fo,po,(Plo(B)a(on )||9 ()],
=y|[6®) - 8(v)]|,, <

Theorem 1Suppose that conditiond)(- (5), (29), (42) -
(45) are satisfied. Then the operator equati@8) has a
unigue solution in the spacei, T).

ProofAccording toLemmasl and 3, operator equation
(38 could be investigated in the spadd?(0,T).
According to Lemma4, operatorE[0] is contractive.
Since the Hilbert spac&l?(0,T) is a complete metric
space, according to contraction mapping theordrd, [
the operatoiE[6] has a unique fixed point, i.e. operator
equation 88) has a unique solution.

The solution of operator equatio8) can be found
by the method of successive approximations, k.
approximation of the solution is found by the formula

6(t) = E[6k-1(1)],

where6y(t) is an arbitrary element of the spakié0, T),
and we obtain the estimate

16

ne{1,23,..},

(t)HHZ(O,T)

< —VHE[Go(t)] +A(t) - 6o(t)

||H2(07T)’

which, by the arbitrariness of th(t) when6y(t) = h(t),
has the form

16(t) = 8(V) [ 112107 < 1-y Dlllzqo)-

The exact solutior(t) could be found as the limit of the
approximate solutioné(t), i.e.,

8(t) = lim 6i(t).

k—so0

Substitutingfy (t) and 6,(t) in (35) with this solution,
we find the required optimal controls
W(t) = a(t,61(t), B),
8°(t) = a(t,62(t) ). (47)
The optimal process®(t,x), which is the solution of

boundary value probleml)-(3) that corresponds to the
optimal controls w(t) and 9°(t), according to ),
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(1D)-(12) is found by the formula [71 V. Plotnikov, Izvestiya Akademii Nauk SSSR, A series of
mathematicaR4, N4 743-755 (1968). (in Russian)

00 T .
0 B [8B]M. Krasnov, A. Kiselev, G. Makeronko, Integral
viLX) = Z ()‘ ,/0 R”(t’s’/\)a”(s)ds+a“(t)>2“(x) Denklemler, Ankara, Turkey, 1976.
wnzl T [9]F. Riesz, B.-Sz. Nagy, Leons d'analyse fonctionnelle,
_ —A\2t —A\2s Budapest, 1953.
- nZl (llfn {e n )\/o Ra(t;sA)e™ ds} [10] V. Komkov, Optimal Control Theory For The Damping

T Of Vibrations Of Simple Elastic Systems, Springer-Verlag,
/ An(t,T,A) (gn(T) f[t, uo(r)] Berlin-Heidelberg-New York, 1972.
0 [11] J.L. Lions, Controle Optimal de Systemes Gouvernes Par
0 Des Equations Aux Derives Partielles, Dunod Gauthier-
+20(1)p[r,9°(1)])dT | Z0(x), (48) Villars, Paris, 1068.
[12] L. Lusternik, V. Sobolev, Elements of functional argiby
where Moscow, Russia, 1965. (in Russian)
[13]L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze,
E.F. Mishchenko, The Mathematical Theory of Optimal

—A2(t—1) T —A2(s—1) Processes, Moscow, Russia, 1983. (in Russian)
e /n A t,s,A)e"n d
0< r<t+ Je Ralt;s A) S [14] A.G. Butkovskiy, The Theory of Optimal Control of
An(t,T,A) = T A1) Systems with Distributed Parameters, Moscow, Russia,
AJr Ra(t,s,A)en ds 1965. (in Russian)
t<t<T [15] A. Kerimbekov, Current Trends in Analysis and Its
o ) ) Applications, A series of trends in mathematX¥l 803
The minimum value of the functiona?4) is calculated (2015).
by the formula [16] Sh. A. Alimov, Doklady Mathematics 78(1) 568
L DOI:10.1134/S106456240804025X(2008).
0 0] — 0 o 2 [17] S.Albeverio, S Alimov, Applied Mathematics and
(W), 70 /0 V(T %) = £ (x)]7dx Optimization 57(1) 58 DOI: 10.1007/s00245-007-9008-7
T (2008).
+[3/ ([uo(t)]2+ [190(t)]2)dt. (49)  [18] H.O. Fattorini, Dynamic Systems and Applications 21(2
0 3)169-185 S| (2012).
The obtaine tiple 00N 01063 478762 (01
((uo(t),ﬁo(t)),vo(t,x),J[uo(t),ﬁo(t)]) is the solution of T ' - : .
the nonlinear optimization problem. [20] A. Ashyralyev, Y.A. Sharifov, Electronic Journal of

Differential Equations, Article Number 80, 11 pages (2013)
[21] W. Abdelkareem, F. Abdelwahid, Contemporary Analysis

and Applied Mathematicg(1) 98 (2014).
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