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Abstract: In the present paper, an extended algebraic method is used for constructing exact traveling wave solutions for generalized
coupled nonlinear KdV equations. By implementing the extended direct algebraic method, new exact solutions of the generalized
coupled KdV equations are obtained. The present results aredescribing the generation and evolution of such waves, their interactions,
and their stability. Moreover, the method can be applied to awide class of coupled nonlinear evolution equations. The present traveling
wave solutions have applications in physics.
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1 Introduction

The solitary and traveling wave solutions of coupled
nonlinear partial differential equations which occur in
many branches of physics have been subject of intense
study as well in recent years. The coupled integrable
systems, which come up in many mathematical and
physical fields, have been studied extensively, and a lot of
interesting results have been given from both the
classification view and application fields [1-3]. Many
coupled systems have been proposed since the soliton
theory came into being in last century. Because of the rich
structures of the soliton systems, both mathematicians
and physicists have been paying more attention to them
[4-6].

Since the first coupled KdV system was proposed by
Hirota and Satsuma [7-8], it has been studied amply
[9-10]. Some important coupled KdV models have been
advanced, for example, the Fuchssteiner equation [10],
the Itos system [11], the Drinfeld and Sokolov model
[12], the Benjamin-Feir model [13], the Zharkov system
[14], the Foursov model [15]. So far, some kinds of
general coupled KdV equations have been applied in
some fields such as in shallow stratified liquid [16], in
fluid dynamical system [17-19], and in two-component
Bose-Einstein condensates [20]. More recently, exact
solutions of a coupled KdV system have been found with

a formal variable separation approach [21]; some types of
coupled KdV equations have been derived from a
two-layer fluid system [22-28]; a new type of coupled
KdV equation was found to be Painlevé-integrable;
nonsingular solutions for a special coupled KdV system
were discovered by means of the iterative Darboux
transformations [29].

This paper is organized as follows: In Section one, An
introduction is given. In section 2, the formulation of
stability analysis solutions is presented. In section 3, we
implemented the extended direct algebraic method
method for finding the travelling wave solutions of the
generalized KdV equations.

2 Stability of solutions

Hamiltonian system for which the momentum is given by

M =
1
2

∫ ∞

−∞

∫ ∞

−∞
U2

i j(t,x)dtdx, i= 1,2 j =1,2,3, (1)

where U1 = u(x, t) and U2 = v(x, t). The sufficient
condition for discuss the stability of solution is

∂M
∂ω

> 0,

whereω is the frequency.
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Fig. 1: (a-b). The solitary wave solutions for the quantityu1(x, t)
and v1(x, t) by equations (9-10) for the generalized coupled
system KdV equations (2).

3 Coupled system of KdV equations

Gear and Grimshaw derived a system of coupled KdV
equations to model interactions of long waves, for
example in a stratified fluid. Specifically, their model is
[3, 16, 25]

ut +
(

uxx + u2+
ε
2

v2+ εuv
)

x
= 0 ,

vt +
(

vxx + v2+
ε
2

u2+ εuv
)

x
= 0 , (2)

whereε is constant. Consider the traveling wave solutions

u(x, t) =
m

∑
i=0

aiϕ i(ξ ), v(x, t) =
n

∑
j=0

b jϕ j(ξ ), (3)

and
(

dϕ
dξ

)2

= α2ϕ2+β 2ϕ3+λ 2ϕ4
, (4)

whereai, b j, α ,β , λ , k andω are arbitrary constants.
Then equation (2) becomes

ωu′+2kuu′+ kεvv′+ kεuv′+ kεvu′+ k3u(3) = 0 ,

ωv′+2kvv′+ kεuu′+ kεuv′+ kεvu′+ k3v(3) = 0 . (5)

Balancing the highest nonlinear terms and the highest
order derivative terms in equation (5), we find
m1 = 2, m2 = 2. Suppose the solution of equations (5) are
in the form

u(ξ ) = a0+a1ϕ +a2ϕ2
, v(ξ ) = b0+b1ϕ +b2ϕ2

, (6)

Substituting (6) into equation (5) yields a set of algebraic
equations fora0, a1, a2, ε, β , λ , α, b0, b1, b2, k, ω .
The solution of these system of equations can be found as:

The first set:

ε =−1 , a0 =
(−3+

√
21)(k3β 4+4λ 2ω)

72kλ 2 ,

a1 =
(−3+

√
21)(k2β 2)

3
, a2 =

2(−3+
√

21)(k2λ 2)

3
,

b0 =
(−3−

√
21)(k3β 4+4λ 2ω)

72kλ 2 , b1 =
(−3−

√
21)(k2β 2)
3 ,

b2 =
2(−3−

√
21)(k2λ 2)

3
, α =−

β 2

2λ
(7)

The second set:

ε =−2, a0 =
(−1+

√
3)(k3α2+ω)

8k
,

a1 =−
3
2
(−1+

√
3)αλ k2

, a2 =−
3
2
(−1+

√
3)k2λ 2

,

b0 =−
(1+

√
3)(k3α2+ω)

8k
, b1 =

3
2
(1+

√
3)αλ k2

,

b2 =−
3
2
(1+

√
3)k2λ 2

, β =
√

−2αλ , (8)

whereαλ < 0. Substituting equations (7-8) into (6), the
following solutions of equation (2) can be obtained as:
Family I

u1(x, t) =
(−3+

√
21)

72kβ 4λ 2 ((k3β 8+48k3α4λ 4)

(

1+ δ tanh(
α
2
(kx+ωt))

)2
+ .

4β 4λ 2(−6k3α2+ω −6k3α2δ tanh(
α
2
(kx+ωt)))

)

,

(9)

v1(x, t) =
(3+

√
21)

72kβ 4λ 2 ((−k3β 8−48k3α4λ 4)

(

1+ δ tanh(
α
2
(kx+ωt))

)2
− .
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4β 4λ 2(6k3α2+ω +6k3α2δ tanh(
α
2
(kx+ωt)))

)

,

(10)

u2(x, t) =
(−3+

√
21)

72kλ 2

(

δ sinh(α(kx+ωt)))
µ + cosh(α(kx+ωt))

−

12k3αβ 2λ (µ + cosh(α(kx+ωt))
µ + cosh(α(kx+ωt))

+ k3β 4+4λ 2ω+

12k3α2λ 2 (µ +cosh(α(kx+ωt))+δ sinh(α(kx+ωt)))2

(µ +cosh(α(kx+ωt)))2

)

,

(11)

v2(x, t) =
(3+

√
21)

72kλ 2

(

δ sinh(α(kx+ωt)))
µ + cosh(α(kx+ωt))

−

12k3αβ 2λ (µ + cosh(α(kx+ωt))
µ + cosh(α(kx+ωt))

− k3β 4−4λ 2ω

−
12k3α2λ 2 (µ +cosh(α(kx+ωt))+δ sinh(α(kx+ωt)))2

(µ +cosh(α(kx+ωt)))2

)

,

(12)

u3(x, t) =
−3+

√
21

72k

(

k3β 4

λ 2 +4ω

+
24k3α2(p+ δ µ

√

p2+1+ δ cosh(α(kx+ωt))
p+ sinh(α(kx+ωt))

+
sinh(α(kx+ωt)))

p+ sinh(α(kx+ωt))

+
48k3α4λ 2

(

p+ δ µ
√

p2+1+ δ cosh(α(kx+ωt))

β 4 (p+ sinh(α(kx+ωt)))2

+
sinh(α(kx+ωt)))2

β 4(p+ sinh(α(kx+ωt)))2

)

(13)

v3(x, t) =
3+

√
21

72k

(

−
k3β 4

λ 2 −4ω

−
24k3α2(p+ δ µ

√

p2+1+ δ cosh(α(kx+ωt))
p+ sinh(α(kx+ωt))

+
sinh(α(kx+ωt)))

p+ sinh(α(kx+ωt))

−
48k3α4λ 2

(

p+ δ µ
√

p2+1+ δ cosh(α(kx+ωt))

β 4(p+ sinh(α(kx+ωt)))2





−
sinh(α(kx+ωt)))2

β 4(p+ sinh(α(kx+ωt)))2

)

(14)

Fig. 2: (a-b). The solitary wave solutions for the quantityu2(x, t)
and v2(x, t) by equations (11-12) for the generalized coupled
system KdV equations (2).

Family II

u1(x, t) =
(−1+

√
3)

8k

(

k3α2+ω−

12k3α3λ
β 2

(

1+ δ coth(
α
2
(kx+ωt))

)

.

+
12k3α4

β 4

(

λ +λ δ coth(
α
2
(kx+ωt))

)2
)

, (15)

v1(x, t) =
(1+

√
3)

8k

(

−k3α2−ω+

12k3α3λ
β 2

(

1+ δ coth(
α
2
(kx+ωt))

)

.

−
12k3α4

β 4

(

λ +λ δ coth(
α
2
(kx+ωt))

)2
)

, (16)

u2(x, t) =
(−1+

√
3)

8k(µ + cosh(α(kx+ωt)))2 .

(

3k3α2δ 2sinh(α(kx+ωt)2)

+(−2k3α2+ω)(µ + cosh(α(kx+ωt)))2)
, (17)
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Fig. 3: (a-b). The solitary wave solutions for the quantityu3(x, t)
and v3(x, t) by equations (13-14) for the generalized coupled
system KdV equations (2).

v2(x, t) =
(1+

√
3)

8k(µ + cosh(α(kx+ωt)))2 .

(

−3k3α2δ 2 sinh(α(kx+ωt)2)

+(2k3α2−ω)(µ + cosh(α(kx+ωt)))2)
, (18)

u3(x, t) =
−1+

√
3

8kβ 4

(

k3β 4λ 2+ωβ 4−

12k3β 2λ 3λ

(

1+ δ
p+ sinh(α(kx+ωt))

µ
√

p2+1+ cosh(α(kx+ωt))

)

.

+12k3λ 2λ 4

(

1+ δ
p+ sinh(α(kx+ωt))

µ
√

p2+1+ cosh(α(kx+ωt))

)2




(19)

v3(x, t) =
1+

√
3

8kβ 4

(

−k3β 4λ 2−ωβ 4+

12k3β 2λ 3λ

(

1+ δ
p+ sinh(α(kx+ωt))

µ
√

p2+1+ cosh(α(kx+ωt))

)

.

−12k3λ 2λ 4

(

1+ δ
p+ sinh(α(kx+ωt))

µ
√

p2+1+ cosh(α(kx+ωt))

)2




(20)

Fig. 4: (a-b). The solitary wave solutions for the quantityu1(x, t)
and v1(x, t) by equations (15-16) for the generalized coupled
system KdV equations (2).

4 Results and discussion

Figures (1a-1b), represent the evolution of the bright and
dark solitary wave solutions (9-10) of the generalized
coupled system KdV equations (2), with
k = 2 , ω = 0.8 , α = 1.4 , β = 1.5 , λ = 0.6 , δ = 1.5
and k = 1.2 , ω = −1.8 , α = 1.3 , β = 1.5 , λ =
0.6 , δ =−1.5. The bright solitary wave solution is stable
with respect to equation (1) in the interval[0,10] and
[−4,4], the dark solitary wave solution is stable in the
interval[−10,10] and[0,5].
The evolution of the Dark-in-the-Bright solitary wave
solutions (11-12) are represented in figures (2a-2b) of the
generalized coupled system KdV equations (2), with
k = 2 , ω = 0.8 , α = 1.4 , β = 1.5 , λ = 0.6 , δ =
1.5 , µ = 0.5 andk = 1.2 , ω = −0.8 , α = −1.4 , β =
1.5 , λ = 0.8 , δ = 1.5 , µ = 1.3. The Dark-in-the-Bright
solitary wave solution is stable with respect to equation
(1) in the interval [−5,5] and [0,2], the
Dark-in-the-Bright solitary wave solution is stable in the
interval[−5,5] and[0,3].
Figures (3a-3b). Evolution of the Dark-in-the-Bright
solitary wave solutions (13-14) of the generalized coupled
system KdV equations (2), with
k = 1.2 , ω =−0.8 , α =−0.9 , β = 1.5 , λ = 0.8 , δ =
1.5 , µ = 1.5 , p = 0.7 andk = −0.5 , ω = 0.6 , α =
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Fig. 5: (a-b). The solitary wave solutions for the quantityu2(x, t)
and v2(x, t) by equations (17-18) for the generalized coupled
system KdV equations (2).

1.2 , β = −0.5 , λ = 0.5 , δ = 1.5 , µ = 0.4 , p = 0.8
are stable in the interval[−5,5] and [0,3] ; [−5,5] and
[0,5].

Figures (4a-4b), represent the evolution of the Dark-in-the-
Bright solitary wave solutions (15-16) of the generalized
coupled system KdV equations (2), withk = 0.5 , ω =
−0.6 , α = −0.8 , β = 0.5 , λ = 0.5 , δ = 1.5 andk =
0.5 , ω =−0.6 , α = 0.8 , β =−0.5 , λ = 0.5 , δ = 1.5.
The Dark-in-the-Bright solitary wave solution are stable
with the condition (1) in the interval[−5,5] and[0,1].

The evolution of the Dark-in-the-Bright solitary wave
solutions (17-18) are represented in figures (5a-5b) of the
generalized coupled system KdV equations (2), with
k =−1.5 , ω = 1.6 , α =−0.7 , β = 1.4 , λ = 0.8 , δ =
1.2 , µ = 0.9. The Dark-in-the-Bright solitary wave
solutions are stable in the interval[−10,10] and[0,5].

Figures (6a-6b). Evolution of the Dark-in-the-Bright
solitary wave solutions (19-20) of the generalized coupled
system KdV equations (2), withk = 1.3 , ω = 1.2 , α =
0.9 , β =−1.4 , λ = 0.8 , δ = 1.2 , µ = 0.9 , p = 1. are
stable in the interval[−5,5] and[0,5] ; [−5,5] and[0,2].

Fig. 6: (a-b). The solitary wave solutions for the quantityu3(x, t)
and v3(x, t) by equations (19-20) for the generalized coupled
system KdV equations (2).

5 Conclusion

An analytic study was conducted on coupled partial
differential equations. We formally derived one soliton
solutions for generalized coupled system of KdV
equations. However, using another distinct approach, we
derived one traveling wave solutions for each generalized
coupled system of KdV equations. The structures of the
obtained solutions are distinct and stable.
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