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Abstract: In this paper, we consider and study a mixed vector equilibrproblem involving multi-valued mapping in a Hausdorff
topological vector space. We prove some existence resultaiked vector equilibrium problem involving multi-valdenapping using
KKM theorem, the concept of coercing family for multi-vatumappings and core of a set. The problem of this paper is aicatiin

of a vector equilibrium problem and a vector variationabjuality problem and is more general than many existing jerolslavailable
in the literature.
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1 Introduction into Y. The vector variational inequality problem is to find

_ ) ~ Xxe K such that
The equilibrium problem has been extensively studied,

beginning withBlum and Oettli [5] where they proposed (T(x),y—X) ¢ —intC, Yy € K.
it as a generalization of optimization and variational
inequality problem. In this paper, we consider and study a mixed vector

eequilibrium problem involving multi-valued mapping
which is a combination of a vector equilibrium problem
and a vector variational inequality problem. We prove
some existence results for our problem using different
concepts. Itis easy to check that mixed vector equilibrium
f(x,y) >0, Vye K. (1) problem involving multi-valued mapping includes vector
equilibrium problems, equilibrium problems, variational

; . thequalities, vector variational inequalities etc. ascile
many problems such as fixed point prOblem’casqes ' g

complementarity problem, Nash equilibrium problem
etc.. For more details, we refer t8, B, 4].

LetY be an another Hausdorff topological vector space2 Preliminaries and Formulation
andC C Y a cone. Given a vector-valued mappihgK x

LetK be a convex subset of a topological vector spac
X, and letf : K x K — R be a given function with
f(x,x) = 0 onK. The scalar-valued equilibrium problem
deals with the existence afc K such that

K — Y. The problem of finding € K such that Throughout this paper, lIeX andY be two Hausdorff
_ _ topological vector spaces. L& be a nonempty convex
f(xy) ¢ —intC, vy € K. (2)  closed subset oK andC C Y a pointed closed convex

: S cone with nonempty interior i.eintC # 0. The partial
I[38r%bI1%mz]2) is called vector equilibrium problem, see e.g. order "< " on Y induced byC is defined byx <c y if

and only ify—xe C. Let f: KxK — Y and
Let T : K — L(X,Y) be a mapping, where(X,Y) T :K — 2“XY) be two mappings. We consider the
denotes the space of all linear bounded mappings #om following problem:
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Find x € K, v e T(x) such that for ally,b € K, and  Theorem 1[4] Let X be a Hausdorff topological vector
A €(0,1], space, Y a convex subset of X, K a nonempty subset of Y
and F: K — 2¥ a KKM mapping with compactly closed
f(AX+ (1= A)b,y) + (v,y—X) ¢ —intC. (3) valuesinY(i.e., forallxe K, F(x)NZ is closed for every
compact set Z of Y If F admits a coercing family, then
We call problem 8) as mixed vector equilibrium problem
involving multi-valued mapping. We prove some existence ﬂ F(x) # 0.
results for problem3) in different settings. xeK

The following definitions and concepts are needed toDefinition 5.[5] Let K and D be convex subsets of X with
prove the results of this paper. D c K. The core of D relative to K, denoted by cR,

is the set defined by @ corexD if and only if ac D and
Definition 1.[7] Let K be a nonempty convex subset of a P (&) # 0, forally € K\ D.
topological vector space X. A multi-valued mapping F
K — 2X is said to be KKM mapping, if for every finite

subset{xy, %o, -+ ,%n} Of K, 3 Existence Results
n Theorem 2. Let X and Y be two Hausdorff topological
Cofx1,X2, -+ ,Xn} C U F(x), vector spaces and K a nonempty subset of X. Let C be a
i=1 closed convex pointed cone in Y with in €0 and

W : K — 2 defined by W= Y\ {~intC}. Let
where Cdxp, X, -, X} denotes the convex hull of .k K Yy and T: K — 2-%Y) pe two mappings
{X1, %2, Xn}. such that following conditions holds:

()T is C-monotone and hemicontinuous;

(i) f is continuous in the first argument and C-convex in
the second argument;

(ii)f(Az+ (1—A)b,z) =0, forall z,b € K andA € (0,1];

(iv)W is closed:;

(v)there exists a family(Ci,Z) }ic| satisfying conditions
(i) and(ii) of Definition4 and the following condition:
For eachic |, there exists E | such that

{xeK : f(Ax+(1-A)by) — (u,x—Yy) ¢ —intC,
Definition 3. Let (Y,C) be an ordered topological vector VyeG,ueT(y)}Cz.

space. A mapping TX — Y is said to be C-convex, if
for any pair of points xy € X, andA € [0,1],

Definition 2. A multi-valued mapping TK —s 2-XY) s
called C-monotone, if for any,x € K

(s—t,y—x) € —C, Vse T(x),t € T(y);
or, equivalently

(sy—x) <c —(t,x—Y), Vse T(X),t € T(y).

Then, there exists a pointxK such that for all ye K, ve

T(x),
TAXx+(1=2A)y) ScATX)+(1-A)T(y). f(AX+ (1= A)b,y) + (v,y—X) ¢ —intC.

Lemma 1][6] Let (Y,C) be an ordered topological vector For the proof of Theoren2, we need the following
space with a pointed closed convex cone C with iat@. proposition, for which all the assumptions of Theorgm
Then for all xy € Y, we have are remain same.

(i)y—x € intC and y¢ intC imply x¢ intC; Proposition 1. The following two problems are
(ih)y—x e C and y¢ intC imply x¢ intC; equivalent:
(iii )y— x € —intC and y¢ —intC imply x¢ —intC; DFind x € K © fAx 4+ (1 — A)by) — (Ux —
(iv)y—xe€ —C and y¢ —intC imply x¢ —intC. ( )—intC; by €K, EJ c T(y(); DY) = {u v ¢

Definition 4.[4] Consider a subset K of a topological (”)'ilir:](:c.xvg yKE :Kf\(//\eXTtx()'l —Aby)+ My =X ¢
vector space X and a topological space Y. A family T ’ '
{(Ci,Z)}ier of pair of sets is said to be coercing for a WhereA € (0,1].

- . Y - .
mapping F: K — 2" if and only if Proof.Suppose that (II) holds. Then there existsK such

(i)for each ic I, C; is contained in a compact convex thatforve T(x),
subset of K andids a compact subset of Y ; .
(ih)for each i €1, there exists ke | such that GUC; C FAx+(1=A)b,y) +(wy—x) ¢ —intC.

&% ) ] . SinceT is C-monotone, we have
(ii )for each ic I, there exists E | with ) F(x) C .

Xeq (My—x) <c —(u,x—y),VET(X),u€ T(y).
(@© 2016 NSP
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Also
f(AX+ (1= 2)by) + (v,y—x) <c f(Ax+(1—A)b,y)
—(u,x—y). 4)

Sincef(Ax+ (1—A)b,y) + (v,y—x) ¢ —intC, using(iv)
of Lemmal and @), we obtain

f(AX+ (1= A)b,y) — (u,x—Y) ¢ —intC;
i.e., (1) holds.
Converselysuppose that (1) holds. Then
f(Ax+(1=A)by) — (ux—y) ¢ —intC,uec T(y).

Letforallyc K,xg = ay+(1—a)x, 0< a < 1. Then
Xq € K and hence we have

f(AX+ (L= 2A)b,Xg) — (U, X—Xq) ¢ —intC, U € T(Xq),
and therefore
(1—a)f(AX+(1—-A)b,Xy) — (1—a) (U, x—Xq) ¢ —intC,

(5)
foru € T(Xq).
Since (U, x—xq) = a(U',x—vy), therefore §) can be
written as

(1—a)f(AX+(1—A)b,Xy) —a(1l—a){Uu,x—y) ¢ —intC,
(6)
foru € T(Xq).
As f is C-convex in the second argument afich x+
(1—A)b,x) =0, for allx € K, we have fou' € T (xq)

(L—a)f(Ax+(L—=2A)b,Xg) —a(l—a)(U ,x—y)
<ca(l—a)f(Ax+(1-Aby)+a(l—a)u,y—x). @)
Hence by 6) and(iv) of Lemmal, (7) implies that
a(l—a)f(Ax+(1-A)by)+a(l—a)(u,y—x) ¢ —intC,

(8)
foru € T(Xq).

Dividing by a(1— o), we have

f(AX+(1=A)by)+ (U,y—x) ¢ —intC, U € T(Xa). (9)

SinceT is hemicontinuous an@ is closed, from §) we
have

fAX+(1=2A)by) +{v,y—x) e W,ve T(x),
and thus
fAX+(1—=2A)by)+ (vy—x) ¢ —intC, v € T(X),
i.e., (I) holds. O

Proof of Theoren?. For eacty € K, consider the set
F(y)={xeK: f(Ax+(1—A)b,y) — (u,x—y) ¢ —intC;
ueT(y)}.

We claim thatF is a KKM mapping. IfF is not a KKM
mapping, then there exists a finite sub§et,y2,- - ,yn}

n
of Kandt; >0,i=1,2,--- ,nwith ¥ tj =1 such that
i=1

= En tiyi ¢ " F(yi).
‘ i= y iEJ]_ (y)
Then

f(Az+ (1= A)b,yi) — (u,z—y;) € —intC. (10)

It follows that
n n
tf(Az+(1-A)byi) — S ti{u,z—y;) € —intC. (11)
i; i i i; i i
From the conditions imposed dn we have

0= f(Az+(1-A)b,2) <c _iti f(Az+ (1= A)b,yi).

12)
Also, since
0=(u,z—2
= <u, -itiz_-itiyi>
= iiti (U, z— Vi), (13)

therefore, combiningl?) and (L3), we have
n n
tif(Az+(1-2A)byi) — S ti(u,z—V;) €C,
i; 1 I i; 1 I

which contradicts11). HenceF is a KKM mapping.

Next, we show thatF(y) is closed. Let{x,} be a
sequence ifr (y) such thak, — xo. As f is continuous in
the first argument, we have

f(Axn+(1—=2A)by) — (U xq—Yy) — F(AXo+ (1—A)b,y)
—<U,X0—y>
AsW is closed, we have
f(AXo+(1-A)by) — (uX—Yy) EW.

It follows that
f(Axo+ (1—=A)b,y) — (u,x0—y) ¢ —intC.

It implies thatxy € F(y), soF(y) is closed. In view of
assumptior{v), F has compactly closed values.

Assumption(v) implicates that the family (Ci, Z;) }ic
satisfies the following condition which is for alE I, there
existsl € | such that

(N F() CZ;
yeG
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and therefore it is a coercing family fér.

Hence by applying Theorety we have
(N F(y)#0.

yek

Thus, there exists € K such that for ally,b € K,
f(AX+ (1= A)b,y) — (U, x—y) & —intC,uec T(y).

Lastly, we apply Propositioh and we obtain
f(AX+(1=A)by) + (vy—Xx) ¢ —intC, v € T(X).

Hence problen{3) admits a solution. This completes the
proof. O

Proposition 2[1] Assume thatp: K — Y is C-convex,
Xo € corexD, ¢(Xp) ¢ intC andg(y) ¢ —intC, forally e D.
Then,p(y) ¢ —intC, for all y € K.

Theorem 3. Let X,Y.CW,f and T be same as in
Theoren® and satisfying condition§) — (iv) of Theorem
2. In addition, the following condition is satisfied which is

[2] M. Bianchi, N. Hadjisavvas and S. Schaible, Vector
equilibrium  problems with generalized monotone
bifunctions, Journal of optimization Theory and
Applications, Vol.92, No. 3, 527-542 (1997).

[3] M. Bianchi and S. Schaible, Equilibrium problems
under generalized convexity and generalized monotonicity
Journal of Global Optimization, VoB0O, No. 2-3, 121-134
(2004).

[4] H. Ben-El-Mechaiekh, S. Chebbi and M. Florenzano, A
Generalized KKMF Principle, Journal of Mathematical
Analysis and Applications, VoB09 No. 2, 583-590 (2005).

[5] E. Blum and W. Oettli, From Optimization and Variational
Inequalities to Equilibrium Problems, The Mathematics
Students, Vol63, 123-145 (1994).

[6] G.Y. Chen, Existence of Solutions for a Vector Variatbn
Inequality:An Extension of the Hartmann-Stampacchia
Theorem, Journal of Optimization Theory and Applications,
Vol. 74, No. 3, 445-456 (1992).

[71K. Fan, A Generalization of Tychonoff's Fixed Point
Theorem, Mathematische Annalen, Vol42 305-310
(1961).

[8] G.M. Lee, D.S. Kim and B.S. Lee, On Non-cooperative
Vector Equilibrium, Indian Journal of Pure and Applied
Mathematics, Vol27, 735-739 (1996).

there exists a nonempty convex compact subset D of K[9] W. Oettli and S. Schlager, Generalized Vectorial Eii&

such that xe D\ corexD and ye corexD. Then there
exists xe D such that for all yp € K andA € (0,1],
f(AX+ (1= A)b,y) 4+ (v,y—Xx) ¢ —intC, v e T(X).
Proof. From Propositionl, it follows that the following
problems are equivalenti.e., fixde D such that

(Hf(AX+(1—=A)b,y) — (ux—y) ¢ —intC;¥be K,y €
D,ueT(y);

(INfAX+(1—=A)by) + (vy—x) ¢ —intC;Vbe K,y €
D,ve T(x);

whereA € (0,1].

Set g(y) = f(Ax+ (1—A)by) + (v,y — x). Clearly
@(y) is C-convex andp(y) ¢ —intC, for ally € D.

If x € corexD, then sety = x. If xe D\ corexD, then
setXp =y, wherey is same as in the hypothesis of the
theorem. In both casesy € corexD and ¢(xp) ¢ intC.
Hence by Propositio8, it follows that

@(y) ¢ —intC, vy € K.
Thus there existg € D such that for aly € K,
f(AX+ (1= A)b,y) 4+ (v,y—Xx) ¢ —intC, v € T(X).

This completes the proof.
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