
Appl. Math. Inf. Sci.10, No. 1, 203-207 (2016) 203

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100119

Mixed Vector Equilibrium Problem Involving Multi-Valued
Mapping

Mijanur Rahaman1,∗, Adem Kılıçman2 and Rais Ahmad1
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Abstract: In this paper, we consider and study a mixed vector equilibrium problem involving multi-valued mapping in a Hausdorff
topological vector space. We prove some existence results for mixed vector equilibrium problem involving multi-valued mapping using
KKM theorem, the concept of coercing family for multi-valued mappings and core of a set. The problem of this paper is a combination
of a vector equilibrium problem and a vector variational inequality problem and is more general than many existing problems available
in the literature.
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1 Introduction

The equilibrium problem has been extensively studied,
beginning withBlum andOettli [5] where they proposed
it as a generalization of optimization and variational
inequality problem.

Let K be a convex subset of a topological vector space
X, and let f : K × K −→ R be a given function with
f (x,x) = 0 on K. The scalar-valued equilibrium problem
deals with the existence of ¯x∈ K such that

f (x̄,y)≥ 0, ∀y∈ K. (1)

Its turns out that this problem includes, as special cases
many problems such as fixed point problem,
complementarity problem, Nash equilibrium problem
etc.. For more details, we refer to [2,3,4].

LetY be an another Hausdorff topological vector space
andC⊆Y a cone. Given a vector-valued mappingf : K×
K −→Y. The problem of finding ¯x∈ K such that

f (x̄,y) /∈ −intC, ∀y∈ K. (2)

Problem (2) is called vector equilibrium problem, see e.g.
[8,9,10,2].

Let T : K −→ L(X,Y) be a mapping, whereL(X,Y)
denotes the space of all linear bounded mappings fromX

intoY. The vector variational inequality problem is to find
x̄∈ K such that

〈T(x̄),y− x̄〉 /∈ −intC, ∀y∈ K.

In this paper, we consider and study a mixed vector
equilibrium problem involving multi-valued mapping
which is a combination of a vector equilibrium problem
and a vector variational inequality problem. We prove
some existence results for our problem using different
concepts. It is easy to check that mixed vector equilibrium
problem involving multi-valued mapping includes vector
equilibrium problems, equilibrium problems, variational
inequalities, vector variational inequalities etc. as special
cases.

2 Preliminaries and Formulation

Throughout this paper, letX and Y be two Hausdorff
topological vector spaces. LetK be a nonempty convex
closed subset ofX andC ⊆ Y a pointed closed convex
cone with nonempty interior i.e.,intC 6= /0. The partial
order ”≤C ” on Y induced byC is defined byx ≤C y if
and only if y − x ∈ C. Let f : K × K −→ Y and
T : K −→ 2L(X,Y) be two mappings. We consider the
following problem:
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Find x ∈ K, v ∈ T(x) such that for ally,b ∈ K, and
λ ∈ (0,1],

f (λx+(1−λ )b,y)+ 〈v,y− x〉 /∈ −intC. (3)

We call problem (3) as mixed vector equilibrium problem
involving multi-valued mapping. We prove some existence
results for problem (3) in different settings.

The following definitions and concepts are needed to
prove the results of this paper.

Definition 1.[7] Let K be a nonempty convex subset of a
topological vector space X. A multi-valued mapping F:
K −→ 2X is said to be KKM mapping, if for every finite
subset{x1,x2, · · · ,xn} of K,

Co{x1,x2, · · · ,xn} ⊆
n
⋃

i=1

F(xi),

where Co{x1,x2, · · · ,xn} denotes the convex hull of
{x1,x2, · · · ,xn}.

Definition 2. A multi-valued mapping T: K −→ 2L(X,Y) is
called C-monotone, if for any x,y∈ K

〈s− t,y− x〉 ∈ −C, ∀s∈ T(x), t ∈ T(y);

or, equivalently

〈s,y− x〉 ≤C −〈t,x− y〉, ∀s∈ T(x), t ∈ T(y).

Definition 3. Let (Y,C) be an ordered topological vector
space. A mapping T: X −→ Y is said to be C-convex, if
for any pair of points x,y∈ X, andλ ∈ [0,1],

T(λx+(1−λ )y)≤C λT(x)+ (1−λ )T(y).

Lemma 1.[6] Let (Y,C) be an ordered topological vector
space with a pointed closed convex cone C with intC6= /0.
Then for all x,y∈Y, we have

(i)y− x∈ intC and y/∈ intC imply x/∈ intC;
(ii)y− x∈C and y/∈ intC imply x/∈ intC;
(iii )y− x∈ −intC and y/∈ −intC imply x/∈ −intC;
(iv)y− x∈ −C and y/∈ −intC imply x/∈ −intC.

Definition 4.[4] Consider a subset K of a topological
vector space X and a topological space Y. A family
{(Ci ,Zi)}i∈I of pair of sets is said to be coercing for a
mapping F: K −→ 2Y if and only if

(i)for each i∈ I, Ci is contained in a compact convex
subset of K and Zi is a compact subset of Y ;

(ii)for each i, j ∈ I, there exists k∈ I such that Ci ∪Cj ⊆
Ck;

(iii )for each i∈ I, there exists l∈ I with
⋂

x∈Cl

F(x)⊆ Zi .

Theorem 1.[4] Let X be a Hausdorff topological vector
space, Y a convex subset of X, K a nonempty subset of Y
and F : K −→ 2Y a KKM mapping with compactly closed
values in Y(i.e., for all x∈ K, F(x)∩Z is closed for every
compact set Z of Y). If F admits a coercing family, then

⋂

x∈K

F(x) 6= /0.

Definition 5.[5] Let K and D be convex subsets of X with
D ⊂ K. The core of D relative to K, denoted by coreKD,
is the set defined by a∈ coreKD if and only if a∈ D and
D∩ (a,y) 6= /0, for all y∈ K \D.

3 Existence Results

Theorem 2. Let X and Y be two Hausdorff topological
vector spaces and K a nonempty subset of X. Let C be a
closed convex pointed cone in Y with intC6= /0 and
W : K −→ 2Y defined by W= Y \ {−intC}. Let
f : K ×K −→ Y and T: K −→ 2L(X,Y) be two mappings
such that following conditions holds:

(i)T is C-monotone and hemicontinuous;
(ii) f is continuous in the first argument and C-convex in

the second argument;
(iii ) f (λz+(1−λ )b,z) = 0, for all z,b∈ K andλ ∈ (0,1];
(iv)W is closed;
(v)there exists a family{(Ci ,Zi)}i∈I satisfying conditions

(i) and(ii) of Definition4 and the following condition:
For each i∈ I, there exists l∈ I such that

{x∈ K : f (λx+(1−λ )b,y)−〈u,x− y〉 /∈ −intC,

∀ y∈Cl , u∈ T(y)} ⊆ Zi .

Then, there exists a point x∈ K such that for all y∈ K, v∈
T(x),

f (λx+(1−λ )b,y)+ 〈v,y− x〉 /∈−intC.

For the proof of Theorem2, we need the following
proposition, for which all the assumptions of Theorem2
are remain same.

Proposition 1. The following two problems are
equivalent:

(I)Find x ∈ K : f (λx + (1 − λ )b,y) − 〈u,x − y〉 /∈
−intC; ∀b,y∈ K, u∈ T(y);

(II)Find x ∈ K : f (λx + (1 − λ )b,y) + 〈v,y − x〉 /∈
−intC; ∀b,y∈ K, v∈ T(x);

whereλ ∈ (0,1].

Proof.Suppose that (II) holds. Then there existsx∈K such
that forv∈ T(x),

f (λx+(1−λ )b,y)+ 〈v,y− x〉 /∈−intC.

SinceT is C-monotone, we have

〈v,y− x〉 ≤C −〈u,x− y〉, v∈ T(x), u∈ T(y).
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Also

f (λx+(1−λ )b,y)+ 〈v,y− x〉 ≤C f (λx+(1−λ )b,y)
−〈u,x− y〉. (4)

Since f (λx+(1−λ )b,y)+ 〈v,y− x〉 /∈ −intC, using(iv)
of Lemma1 and (4), we obtain

f (λx+(1−λ )b,y)−〈u,x− y〉 /∈ −intC;

i.e., (I) holds.

Conversely, suppose that (I) holds. Then

f (λx+(1−λ )b,y)−〈u,x− y〉 /∈−intC, u∈ T(y).

Let for all y ∈ K, xα = αy+(1−α)x, 0 ≤ α ≤ 1. Then
xα ∈ K and hence we have

f (λx+(1−λ )b,xα)−〈u′,x− xα〉 /∈−intC, u′ ∈ T(xα),

and therefore

(1−α) f (λx+(1−λ )b,xα)−(1−α)〈u′,x−xα〉 /∈−intC,
(5)

for u′ ∈ T(xα).
Since〈u′,x− xα〉 = α〈u′,x− y〉, therefore (5) can be

written as

(1−α) f (λx+(1−λ )b,xα)−α(1−α)〈u′,x−y〉 /∈−intC,
(6)

for u′ ∈ T(xα).
As f is C-convex in the second argument andf (λx+

(1−λ )b,x) = 0, for all x∈ K, we have foru′ ∈ T(xα)

(1−α) f (λx+(1−λ )b,xα )−α(1−α)〈u′ ,x−y〉

≤C α(1−α) f (λx+(1−λ )b,y)+α(1−α)〈u′ ,y−x〉. (7)

Hence by (6) and(iv) of Lemma1, (7) implies that

α(1−α) f (λx+(1−λ )b,y)+α(1−α)〈u′,y−x〉 /∈−intC,
(8)

for u′ ∈ T(xα).
Dividing by α(1−α), we have

f (λx+(1−λ )b,y)+〈u′,y−x〉 /∈−intC, u′ ∈ T(xα). (9)

SinceT is hemicontinuous andW is closed, from (9) we
have

f (λx+(1−λ )b,y)+ 〈v,y− x〉∈W, v∈ T(x),

and thus

f (λx+(1−λ )b,y)+ 〈v,y− x〉 /∈ −intC, v∈ T(x),

i.e., (II) holds. �

Proof of Theorem2. For eachy∈ K, consider the set

F(y) = {x∈ K : f (λx+(1−λ )b,y)−〈u,x− y〉 /∈ −intC;

u∈ T(y)}.

We claim thatF is a KKM mapping. IfF is not a KKM
mapping, then there exists a finite subset{y1,y2, · · · ,yn}

of K andti ≥ 0, i = 1,2, · · · ,n with
n
∑

i=1
ti = 1 such that

z=
n

∑
i=1

tiyi /∈
n
⋃

i=1

F(yi).

Then

f (λz+(1−λ )b,yi)−〈u,z− yi〉 ∈ −intC. (10)

It follows that

n

∑
i=1

ti f (λz+(1−λ )b,yi)−
n

∑
i=1

ti〈u,z− yi〉 ∈ −intC. (11)

From the conditions imposed onf , we have

0= f (λz+(1−λ )b,z)≤C

n

∑
i=1

ti f (λz+(1−λ )b,yi).

(12)
Also, since

0 = 〈u,z− z〉

=

〈

u,
n

∑
i=1

tiz−
n

∑
i=1

tiyi

〉

=
n

∑
i=1

ti 〈u,z− yi〉 , (13)

therefore, combining (12) and (13), we have

n

∑
i=1

ti f (λz+(1−λ )b,yi)−
n

∑
i=1

ti〈u,z− yi〉 ∈C,

which contradicts (11). HenceF is a KKM mapping.

Next, we show thatF(y) is closed. Let{xn} be a
sequence inF(y) such thatxn → x0. As f is continuous in
the first argument, we have

f (λxn+(1−λ )b,y)−〈u,xn− y〉 −→ f (λx0+(1−λ )b,y)
−〈u,x0− y〉.

As W is closed, we have

f (λx0+(1−λ )b,y)−〈u,x0− y〉 ∈W.

It follows that

f (λx0+(1−λ )b,y)−〈u,x0− y〉 /∈−intC.

It implies thatx0 ∈ F(y), so F(y) is closed. In view of
assumption(v), F has compactly closed values.

Assumption(v) implicates that the family{(Ci ,Zi)}i∈I
satisfies the following condition which is for alli ∈ I , there
existsl ∈ I such that

⋂

y∈Cl

F(y)⊆ Zi ;
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and therefore it is a coercing family forF .

Hence by applying Theorem1, we have
⋂

y∈K

F(y) 6= /0.

Thus, there existsx∈ K such that for ally,b∈ K,

f (λx+(1−λ )b,y)−〈u,x− y〉 /∈−intC, u∈ T(y).

Lastly, we apply Proposition1 and we obtain

f (λx+(1−λ )b,y)+ 〈v,y− x〉 /∈ −intC, v∈ T(x).

Hence problem(3) admits a solution. This completes the
proof. �

Proposition 2.[1] Assume thatφ : K −→ Y is C-convex,
x0 ∈ coreKD, φ(x0) /∈ intC andφ(y) /∈−intC, for all y∈D.
Then,φ(y) /∈ −intC, for all y∈ K.

Theorem 3. Let X,Y,C,W, f and T be same as in
Theorem2 and satisfying conditions(i)− (iv) of Theorem
2. In addition, the following condition is satisfied which is
there exists a nonempty convex compact subset D of K
such that x∈ D \ coreKD and y∈ coreKD. Then there
exists x∈ D such that for all y,b∈ K andλ ∈ (0,1],

f (λx+(1−λ )b,y)+ 〈v,y− x〉 /∈ −intC, v∈ T(x).

Proof. From Proposition1, it follows that the following
problems are equivalent i.e., findx∈ D such that

(I) f (λx+(1−λ )b,y)−〈u,x− y〉 /∈ −intC; ∀b∈ K, y ∈
D, u∈ T(y);

(II ) f (λx+(1− λ )b,y)+ 〈v,y− x〉 /∈ −intC; ∀b ∈ K, y ∈
D, v∈ T(x);

whereλ ∈ (0,1].

Set φ(y) = f (λx+ (1− λ )b,y) + 〈v,y− x〉. Clearly
φ(y) is C-convex andφ(y) /∈ −intC, for all y∈ D.

If x∈ coreKD, then setx0 = x. If x∈ D\ coreKD, then
set x0 = y, wherey is same as in the hypothesis of the
theorem. In both cases,x0 ∈ coreKD and φ(x0) /∈ intC.
Hence by Proposition2, it follows that

φ(y) /∈ −intC, ∀y∈ K.

Thus there existsx∈ D such that for ally∈ K,

f (λx+(1−λ )b,y)+ 〈v,y− x〉 /∈ −intC, v∈ T(x).

This completes the proof. �
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