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Abstract: In this paper we present two reconstructions in the cellayeiframework of multiresolutioa la Harten The first one
combines interpolation and least squares fitting and thenskecne is based on least squares fitting. We study some ofttogierties
as well as its approximation order. We also analyze how riffe adaptive technique€KO and SR can be used within these
reconstructions. We apply them to noise removal and contpareesults that we obtain with other existing techniques.
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1 Introduction It is possible to improve this result using the Harten’s
subcell resolution techniqu&R ([1,2,7]). If the location
of the singularity within the cell (or a sufficient good
A common problem in approximation theory is the approximation of it) is known, then the loss of accuracy
reconstruction of a function from a discrete set of datacan be avoided.
which gives information on the function itself. This In [3] we study the application of these
information usually comes either as point-values orreconstructions to the case where the data are
cell-averages of the function over a finite set of points orcontaminated with noise. On one hand we use
cells, respectively. The function is then approximated byinterpolatory reconstructions and on the other hand we
an interpolant, that is, another function whose values ofrely on least squares. We do not get good interpolants in
cell-averages at the given set of points or, respectivelyall cases. This motivates us to introduce new
cells, coincide with those of the original one. reconstructions using both ideas.

The interpolation is a linear procedure of the valueson  The first one combines interpolation with
the given set of points, but in this case the accuracy of theapproximation in the least squares sense (called in this
approximation in the presence of a singularity is limited paper Interp-#.#) and the second reconstruction is
by its order, so that any stencil crossing the singularity wi based, following11], on approximate the data in the least
result in an unsatisfactory approximation. This means thasquare sense (called in this pagérs’). Here we present
increasing the degree of the polynomial will produce largerthese reconstructions in the cell average framework which
regions of poor accuracy around singularities. is more appropriate in the presence of noise.l] we

The choice of stencils that avoid crossing can see these reconstructions in the point value context.
singularities, whenever this is possible, is crucial for th We also analyze how can be used combined with different
improvement of the accuracy of the approximation. Thisnon linear techniqueE(NOandSRsee [] and [9] resp.).
is the key underlying the ENO (essentially The paper is organized as follows: We recall in
non-oscillatory) technique, introduced by Harten et@jl. [ Section 2 the discrete framework for multiresolution
in the context of high resolution shock capturing (HRSC) introduced by Harten focusing on cell average
schemes for conservation laws. With tBBlO interpolant  discretizations. We introduce thieterp-LS reconstruction
the region affected by each singularity is reduced to thefor cell averages in Sectio® There, we also present how
interval that contains it, assuming the singularities arethis reconstruction can be combined with non-linear
sufficiently well separated. techniques. In Sectiod we present the least squares
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reconstruction for cell averagesA¢). Section5 is

process fronk = L — 1 to O we find that a multiresolution

devoted to show some numerical experiments where weetting {{Vk}kzo,{D'QH}k;é} and a sequence of

presented in this paper. Finally, in Sectibrwe present
the conclusions.

2 Harten’s framework for multiresolution
analysis

(2) define an invertible multiresolution transform.

In Harten’s framework, the decimation and prediction
operators are built from a sequence of discretization
operators and a sequence admpatiblereconstruction
operators. Given a function belonging to a certain
functional space .# the discretization operator
Dis1 - F — V1L obtains a discrete representation of it

The building blocks of a multiresolution analysis as at the resolution level defined ?X/';”- Conversely, the
described by Harten (se8][and references therein) are a reconstruction operatof?,; : V< — 7 obtains a

sequence of linear decimation operatdﬁ)bl}k;o, a

nested sequence of linear vector spad&s?, with
D, : VKT — VK (which, from a vector ofvki,

computes a coarser representation of it), and a sequence

of prediction operatorg Pt} piL vk vkt
which, from a vector oi/¥ obtains an approximation to
its (finer) representation iV, In most applications,

function in .# from discrete values invktl, The
reconstruction operatorgy., arecompatiblewith %1
provided that

Dy 1%xs1 = Wk 3)
is satisfied for eack.
The decimation and prediction operators

corresponding to these sequences are obtained as

VKl is ‘a space of sequences of real numbers. OuBbf, ; = %%.1 andP<™ = . 1%. The compatibility

description implies that the resolution increases vkith

The decimation and prediction operators have to satisfy

the compatibility condition:

k k+1
DR = vk

1)

Given V1 ¢ VK1 the prediction error
& = Qv 1= (lykea — PEFIDE, )V obtains the
information invkt1 € V1 that cannot be predicted from
V€ =Df, ;1 € V¥ by the operatoR .

It I1s easily seen that the error vector,
&+l := Q1V<*1, belongs to the null space @, ,,
denoted by A (DK, 1) 2. Let

Gir1: VKL — (DK, ;) be the operator which assigns
to each vectot! ¢ VK1 the coefficientsd“*? of its
representation in terms of a given bas{sy}(*l}, of
A (D, 1) € VK1, and letEy, 1 be the canonical injection
k k+1 _
N (Dgyq) = V< Clearly Gy 1By 1 = lﬁ/('?tﬂ)_ and
Ex:1Gk+1 = lyki1. Thenon-redundaninformation in the
error vector is contained in the set of coefficiefds*1},

called the scale coefficients at ledelWe note that*+!
and{V¥,d“*1} have the same cardinality.

condition (1) is a consequence 08

In Harten’s framework, the discretization process

specifies the setting, then the choice of a reconstruction
operator defines a multiresolution transformation whose

properties are closely related to those of the
reconstruction. From the point of view of
data-compression applications, accuracy of the

reconstruction is an important feature.

2.1 Cell average multiresolution analysis

Let f € .# = L1([0,1]). Considering the set of nested
dyadic grids defined by

. 1
XK= N N = 24Ng, XK = ihy, hy = k=0l
k

whereNg € N. The cell-average discretization operator
D1 F — V<1 is defined in §] as follows:
e+l

1 i .
= (Geati = [, 10080 10 <N
i1 Sl

(4)

These ingredients allow to construct an alternative The decimation can then be computed by:

representation of a vectaftl e VK1, Given V<1 we
evaluate:

{2

gkl — )

Dk

Gk+1(|vk+1 - P|I(( )Vk+17
and given/X andd“*1, computed byZ), the vecton**1 is
recovered by the inverse formula
vkl — P|I((+1Vk+ Ek+1dk+1.

This gives the equivalence betweevtt! and
{vK,d“"1}. By repeating step2) for V¢ one obtains its
corresponding decompositiofv*~t, d¥}. Iterating this

fk=

K K+l
X 1%
fxi‘il f(x)dx= 21 I

f(x)dx= (%14 kL),

©)
Let pi(x) the polynomial of degree— 1= nr+nl, nr,nl €
N, such that

Zle

1 Xik+s
—/ pi(x)dx= fi—ErS, s=-—nl,...,nr, (6)
hk Xik+s—1
then, the reconstruction is defined as follows:
——r—1 .
TG (% ) = pi(x), x€ ¥ 1], i =1,... N,
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The prediction operator is in this case:

k+1 ¢k . 1 &
(Pk f )Ziil = (@k+1(f(5n|7nr(x,f )))Zi,1
1 X;I 11 —r—1 T
hk+1 /Xlélﬂ f(gnl,nr(xuf )dX7
r-1
(P|I((+lf—k)2i = (.@kJrl(f(gan(x; f—k)))ZI
1 1 4
hk+1 /Xléﬂ I Cpinr(X Fdx

As a consequence o) we have

S (), o+

and, from 6), & + €5 = 0. Then, we can define

dit = &tL . The algorithms for the direc8f and inverse
(9) transforms in the cell average framework are:

(P‘L(H f—k) Zi) =1 )

L MfL={f0,d?,... d"} (Direct)
for k = L 1...,0
ik = fT<+1+f by, 1<i<N
dett = Zk“ (Pl'(‘“fk)zl 1, 1<i < N ®
end
ML — M-IMfL (Inverse)
fork =0,...,L—-1
fXHl — (K+1fk)2l 1+ 1<i<Ng
f2i+1 _ 2 f—k+1 (Pk+1fk) dk+1 1<i<Ng
end

(9)

3 Interp-£.¥ reconstruction for cell averages

3.1 Interp-Z.¥ reconstruction for point values
(F LS P)

As in [12] the Interp-£. reconstruction is defined as
follows: Given k and the intervallX = [x¢ | X we
construct the polynomial of degree such that

interpolates¢‘ ;, X and approximates in the sense of least

3.2 Interp-Z.¥ reconstruction for cell

averages ¢ ¥ .7%)
Let 27" (x; %) = 31=4(1+ 1)ax the polynomial of

degrea — 1 < n +ny, (€ My_1) such that

Kk

1 N ool
e T e Max= 1 ao)
by X
and
1 X1k+s W 7R
hk/ i ¢ ( ydx~ fX, s=—nl,...,nr, s#0,
|+s 1 (11)

nr,nl € N, in the least square sense. That is, that minimizes

s
min 1/ ' pi (X)dx— |+S :
pi(X) €M1 hi X1+s 1 s=—nl,...nr,s#0| |5
If ., we define
G0 = o P~ (v Mdy = s{gax** and we

assume, without loss of generality, that= 0 and

X ¢ 1 =S then (L0) is equivalent to

Go( QO _rz:a f‘k

Sinceap = f& — y/~1a , then

r-1 r—1

r-1
Qo) = (= a)x+ Y ax T =xff+ 5 a(x ' —x).
I=1 I=1 I=1

Conditions (1) are equivalent to

Qo(s+1) —ao(s) 5, '< 41 d+1_ q) - 7k

Ty a ((s+1)-g*-1) ~ i
(12)

in the least square sense and

Yt ((s+1)* -8+t 1)~ fE— ¥, s=—nl,...,nr, s#0.

Then we have to obtaia<€ R'~1 such that minimizes

—a o1 ~ —
squares at thenl + nr > r — 1 nodes X |, ‘min ||a7 277 é—(f—1n|+nrfo)H ’
j = —-nl,....—-21,....nr — 1. If we denote aeR’-1 2
qlﬂnﬁf’f (x; ) this polynomial, then the reconstruction \yhere:
is
(—nl+1)2— (—n2—1 - (—nl+1) —(-nl)’ —1
. | |
TZT P61 = it 7 (6 14), x€ X1, %] : :
An)’/f/(/ ot —(-12-1 (-1 -1
and the prediction is I,nr 2-12-1 2_1-1 )
(Pk+1f ) - _W:ﬂ,nr(xz 11'f ). (nr+1)2;(nr)271 (nr+1)';(nr)’71(13)
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a= [a]_,...,a.r,]_]-r, fA: [f_E wﬁlaf_i(a'"af_rl‘fr]-r

andl, = (1,...,1)T.
N——

n
Then, using the normal equations,

77\ T TZTT
(Anl nr Anl ,nr ) Anl ,nr

a = f?)—lr—lTa

(fA— 1n|+nr f_O)7

Once we have{a}|_3 and pﬁ]ﬁfﬂ‘fr " %) we
define the reconstruction as
— -1 3
TZ TGy 1) = o 06 1), x e (K10,
(14)
and the prediction

1 k
k+1 £k - x
(Pk f )Zi 1 —/k+1 fngnl nr(xvf )dX

hk+l
z (yr(ﬂ nr) i+
I==nl
& 1 k+1 ~
k+1 _ .
<Pk f )Zi T g x5 jiﬂy%nl nr(X.f )dx

=21~ (P‘L(H{k)zi—l'

Table 1: Filters, (y, )i, of the approximations tofi*}
obtained with theZ 2.7y o reconstructior(Pl'(‘+ 1 f—k) =

2i—1
Zri,m (Krﬂl,nr)l f—ik+l :

| -4 -3 -2 -1 0 1 3 4
2 1 17
(ol % 1 20
3 2 1 50
(Vo 5 5 56 56
4.0 | 120 120 120 120 120
23 1 2
(B2 20 "2 "2
62 1 2 3
(3 56 5 86 56
(y2 ) 30 1 2 3 4
0,4)1 120 120 120 120 120
(V3 ) 2 1 40 1 2
2.2)1 70 70 70 70 70
(V3 ) 3 2 1 12 _1 2 3
331 T2 12 12 112 "Iz "Iz "1z
(V3 ) 4 3 2 1 240 _ 1 2 3 4
44)\ | 240 240 740 240 240 240 240 240 240

In Table1, we show the filters(y, )i, for different

degrees of the polynomial, and different sizes of stencil.

As in [12] and [2] we can prove the following results:

— o1
Proposition 1.The matrix A/~

1, defined in {3), has full rank.

Jr>1,nl+nr>r—

ProofWe will prove thatAnf’fi”/"g has full rank, i.e

I,nr
ran k( TLIEC

the polynomlalpr{,’ﬁ 7

LT 1) =r— 1 by induction on the degree of

Whenr = 2 we have a single vector, so the rank is

Z oo 1
1. Letr € N, r > 2, and assume thaank(AJZ7¢" ") =
r — 1. We want to see whetheank( {_ﬁﬁr‘{rb) —r,nl+

a+nl+b>r,a>0,b>0,acN,beN.

Foa7 1 . .
Sincerank( "]ﬁ%{r ) =r —1, there is a submatrix
—r—1
M;_; of 73// such thaiM,_1| # 0.

Wlthout Ioss of generality, we suppose that- 1,a=
1,b=0 (otherwise we could use the last row and apply the
same reasoning). Then

(=nh?—

(—nl—1)2—1...

r—1

|(7n|>r+17 l)r+171

(=nl—
ILISEC .
Aq

TZIE
I+1,nr 1z

(nr+1)*t—nrrtt -1

Given thainl > 1 andr > 2:

(=) —(—nl—)*1 1= (_1)r+2(ril( rtl)nlrﬂfk) 1
k=1

£0.

Then, (—nl)™*! — (—nl — 1)'~1 — 1 can be used as the
pivot element to nullify the elements of its column. If we
denoteN; _; as the result of applying tM; _; the linear
transformations that enable nullify such elements, we can
define the x r matrix:

(15)

1| n| r+1_ _n|_1)r+l_1
0
A= : ;
0
where its first row elements a’1j e A are
ahj=ayje Ar{"ﬁﬁf such thatg j € M,_1. Therefore,
by (15) and the induction hypothesis,
A = (=)= = (=nl = )" - 1) [Ny|
= (=) H((=n)*t— (=nl = 1)t - 1) M| #0,
and thenrank( ’]ﬁf:r“fr) =r.

Finally, by the principle of induction we have the
result.

Proposition 2The Interp=£. reconstruction for cell
averages has a unique solution.
ProofSince the matri "]ﬁy%r ' defined in 13), has
full rank by Propositionl, following section3.2, the
Interp-£.7 reconstruction for cell averages has a unique
solution.

Proposition 3.f p;ﬁﬁf/%rfl(x; f€) is the polynomial

I L€ of degree 1, the Interp=2.¥ reconstruction
for cell averages recovers exactly polynomials of degree
5,0<s<r—-1.
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{péfmf?r 1(x; f%)}M ,, wherem = nr+nl + 1, in order
to avoid the influence of the singularity. 112,B,9] the
selection process is made by picking the ‘“least
oscillatory” polynomial using numerical information on
the divided differences of at the points. That is, using
the stencil that minimizes f[x¢ ... X | 4],
1<l <m-1.

Here, inspired by11], we use a selection which gives
us better results in the presence of noise. First, we define

ProofLet p(x) = 3o biX be a polynomial of degres
with 0 < s<r—1. We defing{fj}|L,, m>r—1, as:

j+1 _
/j pX)=f, j=0,...m (16)

and .
X
A= [ o0 =y ax’™ an
0 &
wherea, = |3—'1 |=0,...,s
Thanks to 16) we have thaA{fy%Sé: f—1m_1f0,

wherea'= [ay,..,a]T, f = [f,..., fK|T andAf7 7" is
defined in (L3). Then '

— 2
R 475 e T )

K
Ex(i,sm) = ertol (Fll( f;ﬁiw i sm—1-s
(19)

k
i—s+l—1
and now

— s R _ Ex(i,nli,m) =mins—o__m-1{E2(i,sm)}. (20)
|AZ 7T a-(f-1nafo)|| =0 @8)
Once this selection is made, we thus define
On the other hand, we know that theterp- . 1
problem for cell averages has a unique solution bYEm[ﬁr(x; f—k):pﬁfﬁf@mi (X; f—k)’ xe[x!‘,l,x,-k]

Proposition2. In particular, whether

. and
777 'C | ki1
Piom = (I +1)ax ki1 7k 1 T R R
I; (Pk f )Ziil = b /x;tlz EZZTC (% f)dx
is the solution of thénterp-.Z.% problem defined byl(0) (Pk+1 fm) — ofk_ (Pk+1 f‘k)
and (1), with {f;}™ o, m>r —1, defined by 16), and k 2 ! K 21

sinceq(x) is the solution of this problem byl 8), we have

that p”“”% = q(x), and therefore thelnterp-£.7
reconstruction recovers exactiyx).

3.3.2SR Interp.Z.¥ reconstruction for cell averages
(S/ZL.7%6)

Corollary 1.The order of the Interp¥.~ reconstruction
for cell averagesisr. The ENO interpolatory technique still produces large
detailsd“** when a singularity is contained in the interval
[X< ,xK]. In order to reduce further the interpolation error,
3.3 Nonlinear Reconstructions for cell averagessubcell resolution method$SB were introduced in7].

When using thelnterp-£.¥ reconstruction for cell

averages we have thatrifincreases; < m=nr+nl+1,

Now let's see how we can apply tt&Rtechnique (1,7])
in thelnterp--Z.% reconstruction for cell averages:
Assume thatf (x) has a jump in)x¢ ;,x¥]. Then the

the interpolation process has higher order accuracy, i.eprimitive functionof f(x), F(x) = [ f(y)dy € €([0,1]),

the detailsd“*? will be smaller whenf is smooth on

X 1% . On the other hand, the interval
X -1, X ] gets larger witmr,nl so that a singularity ~ equivalents )
in (% ;,X) will affect more detail coefficients. Fk=F(x) = Jor f(y)dy= heshg f? and f? —

Non-linear essentially non-oscillatory EKO)

has a corner (a discontinuity in the derivative) there.
Note that the setg f¥}™, and Fk = {FK}M%, are
due to the relations
Fk—Fk
i - -1
k
Then, as in2] or [12], we can use the functior2() to

interpolation techniques, which were firstly introduced in yetect where the singularity is.

[9], circumvent this drawback.

3.3.1ENO Interp.Z.¥ reconstruction for cell averages
(EFSL.SE)

The idea ofENO interpolation technique is to replace in

TL7E

(14) the pi,nl,nr

7777 "
pl,nlhm—nli

(x5 by

(x; f¥) selected among the+ 1 polynomials

polynomial

The steps to apply theRtechnique in thénterp- .
reconstruction for cell averages are:

1.- Taking stencilswith m = nl 4+ nr + 1 nodes, we
calculate thestencil ENQas in the previous section.

2.- If nli_1 = m— 1 andnli 1 = 0 thestencilsfor the
cellsl¥ ; andlk , are disjoint. We label the cell asispect
of containing a discontinuity.
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3.- For each suspicious cell we define the function  use @3) because the reconstruction is consistent due to

the interpolatory conditions:
TLIC TLT P (. K TLTP (. k
G (x) (X F%) (X F).

= O 1.0m- —0-1im-1, T X k+1 7k k+1 5k
o e (21) Bt fs (Rt (R R rR ik
Y A7 Y7774 - - I
It G727 (X ). G777 (xk) < 0 we label the cell 2 21 hi
|k as singular. The same could be said fd2%).

- - Thanks to the interpolatory condition§;”*" can be
TZ7E TLTC (k1 ¢

k+14" !f Giygff(xr—l)'Gi]f/g(XZiJrjl) - O tlhe node expressed in terms of f<} (see L2 for details). For

X lies to the left of the discontinuity. Then instance, the filters o) for nl +nr =4 andr = 3 are:

(RET1K),_, is obtained as follows

TLIC K \_ 1o ik 637k, 8Lk , 97 ik

Gi (61) = M(f" =371+ s fiie + o5 fits
TZTP (ktl .k TZFP (ktl .k A48 ¢k 66 gk
(Pk+1fk> _ O Tm-1000 1 F ) =021 70 (%g i FY) +1ssfia— 155 fivs);
K =
2i-1 Pici1 TLIT

7 1y 80 fk , 273 fk ., 271 fK
1 Gi 0%i71) = (=520 5+ 2280 i~ a + 1Za0fi" 3

_ £k 451 £k 215k ck 2157k
= |—7nznr71 (Vrr1l+nr+1.,fl), fins (22) +aasofiio— 2zsfi1+ i — 22811

451 ¢k 271 ¢k 273 £k 89 ¢k
+2ag0fiv2 + f2an e + sasofiva — so0fits):
ktlgk) = ofktl_ (pktlfk TTTC (K 66 K 8 Fk . 97 ik
<Pk f >2i 2% (Pk f >2i717 (23) G (%) = he(— 155 F s+ o6 fi s+ 6T s
- . 81 ¢k _ 63tk fK
where some of these coefficients are in Table Trssfice—31fica+ )
Table 2: Filters, (¥, )i, of the approximations tofs*1,
. . [ . 4 Least squares reconstruction for cell
obtained with the Sﬂ_fy%;|+ln,+l_,l reconstruction 1 =
K1 K i e averages (Z.7€)
(Pk f )Zi—l = ZI:—nlfnrfl(yrr]lJrnrJrl,—l)' fi)
| 7 6 5 4 3 2 1 Let pZ7% (%) = 57-1(1 + 1)ax the pol ial of
= = - = = - et P ne (x %) =35, 25( +1)ax the polynomial o
(yaz 1) -3 -3 2 the degree — 1 such that
il
(e k
= 1 Mes oot X K
(1), £ % ® 8 B A D 6 Pydxe R, 5= —nl,...n,
(Ba), | & - %% -# - -8 B e (26)
(1), ~3s 665 —iap  —ifss  eat in the least square sense.
(&/7‘.71), s . - If we define

o 1 ck _
G(X) = fo Pt (f9dy = y{gax™ and we
afsume, without loss of generality, that= 0 and
N — < < 1 =S, then @6) is equivalent to
In the other caseG” %77 (X ) - GZZ77 (X)) < Hrs

i—1
k+1 . . R st1)— s r—1
0), x5, is located to the right of the discontinuity and Qo(s+ i Jo(s) _ %al ((s+ 1)|+1_§+1) ~ f—sk 27)
TITD . TITD . I=
(P"*l f‘k> _ qﬂf(l/nifl(xéﬁl, FX) — qﬁfo.ﬁfl(xléillv FX)
k 5 Mot ) and
nl4+-nr+1 i1 r-1
= lz (ﬁil,nl+nr+l)| fi++l . (24) %al ((S+ 1)|+1_§+1) ~ fjsza S= _nla"'anr'
=1 =
(Pk+1fk> _ okl (Pk“f—k) (25) Then we have to obtaia€ R" that minimizes
k 2i-1 ' k 2’ 1 .
: min || A" a—f||
where (Bfl,nl+nr+l)| = (Vrr1l+nr+1,71)—| ) acR 2
I=1,....,nl+nr+1. where
_ (—nl+ 1)1 — (=l - (—nl+ 1) — (=nl)"
Remark(23) can be calculated as:(Pif”fk)2i = Aasfykgr’l B " >, " . o ), e 28)
L (T DT P (1. gk _ T LT P (k+l .k hor 7 5 - :
m(qﬁféﬁfl(xzr F )_‘31i{“12,r§1/ilﬂ,o(XziJr 1 F%)). We can

_ (nr+1r—(nnt o (41" —(nr)
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with 4= [ag,...,a_1]" andf = [f_fn,,...,f_r‘](,]T
Then, using the normal equations,

[ T — 1 -1 [
s pZTE Y \TTE P
a= <Anl,nr I,nr Anl,nr

Y and pfﬁ{

r—1T .

Once we havda }{ 5 (x; f¥) we define

the reconstruction

TGy ) / pi o Fodexe KK

and the prediction

1 Xgiﬂ r—1

(PILH_lsz) 2i—-1 - V-&-l k+1 "%y(gnl,nr(X; f?)dX

= Z (yrrﬂ nr) i+l (29)
[==nl
k17K R R
(Pk f )Zi - hk+1 XL g‘ycgnhnr(xﬂc )dx
2i—

= Z (Bnl nr) i+l (30)

|=—nl

In Table3 and 4 we can see some of these coefficients.

Table 3: Filters, (yfy o )i, of the approximations tofkt1
obtained with theZ. 7% reconstruction,(P,L<+ 11‘—k) =

2i—-1
nr
l=—nl (Vrrﬂ,nr)' f|+l
| -4 -3 -2 -1 0 1 2 3 4
- 1 17
(Ko 17 3 7
11 1 5
() 2 3 2
23 1 -7
(B2 54 3 z
(V3 ) =1 —13 2 17 97
4o)l | a0 2O 3B 56 140
311 T40 56 70 280 140
43,) 1 103 17 89 -19
2,.2)1 28 280 35 280 140
(3.) 53 101 19 31 -17
13l 140 280 70 280  T40
R 51 59 -8 67 5
0.4)1 140 280 35 280 28
(V4 ) —315 565 = 925 1 16 29 —65
531 2088 2688 2688 3 2688 384 896
Ao | =7 38 ss3 157 so a2 7Ba 43 s
44\ | 64 4224 2636 4825 231 1169 6131 1408 704

Is well known by the least squares problem, that the
, defined in £8), has full rank. Therefore,

N AZTE !
matrix A i

similarly to Propositior8 we can prove the results:
(x; f) is the polynomialZ ¢

Proposition 4.f pﬁ’;l/r’f

of degree r- 1, the #.& reconstruction for cell averages

recovers exactly polynomials of degre®s; s<r — 1.

Corollary 2. The order of theZ.¥ reconstruction for cell

averagesisr.

Table 4: Filters, (B nr)|, of the approximations ’[of—k+1
obtained with theZ&”%an
ZI_—nI(ﬁnl nr) i+l

reconstruction, (R £K) 5 =

| —4 -3 -2 -1 0 1 2 3 4
2 -7 1 23
(Bsol = 3 m
2 5 1 11
(B % 3 7
2 17 1 -
(Boz)l 24 3 24
(33 ) 5 —67 -8 59 151
4,0/1 28 280 35 280 140
(ﬁ3 ) 17 31 19 101 53
3,11 140 280 70 280 140
(33 ) =19 89 17 103 -1
2,21 140 280 35 280 28
(B3,) A9 107 29 13 —23
1,3/1 140 280 70 56 140
([;3 ) 97 17 2 -13 -1
0,4/1 140 56 35 280 140
(B4y) —65 29 611 1 925 565 317
33/l 896 384 2688 3 2688 2698 2688
B2 —-51 43 784 242 59 1257 553 383 7
44)1 | 704 T408 6131 1169 231 4825 2636 4224 B4

Observe that, sinceg: jk pl( )dx # f , this
reconstruction do not sansf;l)( and @B). Then () is not

true and ZK — k1 £ (BiHL£ky, — gL,
Then, if we define, ing), f—kﬁl = (R k) —ditL,
the inverse transform is
MfL - M-IMfL
fork =0,....L-1
f—RJrl _ ( k+lfk) dk+l’ 1<i< Ny
-:l).(+1 _ (Pk+1fk) dk+1’ 1 < i < Nk (31)
end

and the reconstruction is not consistent. We call it
7% —NC. To ensure the consistency we can use
fitt = 2fk— f571. In this case the inverse transform is:

MfL = M-ImfL

fork =0,....,L-1
fk+1 = (Pk+1f")2 1+d"+1 1<i< Nk
end

and we call itZ.7%€.

4.1 ENO and SBZ.¥ reconstruction for cell
averages (EZ.Y¢ and SZ.¥%)

While ENO can be applied as in sectié3.1(obtaining
theE.Z % reconstruction), we have a problem applying
SR in this case. The fact that we do not have the
consistency implies that we do not know the point values
of the primitive function (as in Sectiod.3.2 and then we
can not locate where the discontinuity is.

A way to apply theSRin this context is using the

function G/ (x) (21) to detect the singularity (as in
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section3.3.2 and then, if the jump is i X5, we
evaluate 29)

K1
(PkJrlf—k) B 1 /qu+ 1
K 21 higp Sk

-1

= Z (yrr1l+nr+1,fl)| f—irfi-lv
|=—nl—nr—-1
k+1¢Kk) _ ofk+l_ (pk+lsk
(Pk f )Zi = 2f (Pk f )
and in the other cas&0)

k+1
(Pk+1f7<) 1 /XZi+
k 2i hk+l k+1

nl4nr41

= z (Bil7nl+nr+1)|fllill’

-1
LTt w1, 1% F)dx

(33)

2i-1’ (34)

-1
LIEC L pipnrsn, (% 1) @5)

(REr¥)  —aif (RE7)

In Table 5 we show some of the coefficien{8 and

(Vrr1l+nr+1,71)*| = (Bil,nl+nr+l)| J=1,...,nl+nr+1.
We call this reconstructio®R?.% . Notice that it is

consistent because we force it 84 and 36).

2i-1 (36)

We also can set a non consistent reconstruction as in

(31), denoted bySZ.¥%¢ —NC and defined a&%.7%¢
but introducing the following changes:

—Replacing 84) by:

(RE2),, =

T k+1.
i,—1, nl+nr+1(x v F )

F )/ (hta), (37)

TTP k+1 .
—PBini+nr+1,— 1% 1, F

—and replacing36) by:
k+1 ek _
( f )2i71 = (

FTT k+1 k
|7lnl+nr+1(X2| l'F )

pﬁfnﬁl 10675 FX)) / (i, 1(38)

wherep; nﬁ“@ (x;F¥) denotes theZ.# reconstruction for

point values. Its definition is the same as in theZ.7 7
reconstruction (sectior8.1) but here the polynomial
approximates in the sense of least squares anthe + 1
nodesqkﬂ, j=-—nl,....,nr—1 (see 12 for details).

4.2 Combining ¥ ¥ .%¢ and SZ.¥¢

Consistent reconstructions recover properly the jumps but
with non consistent reconstructions the exact location ofgt = ‘@F

them is lost. On the other hands¥?.#% —NC is
expected to produce smoother results tha .,
because 34) and @6) will produce oscillations in the

Table 5: Filters, (B"1 1)1, Of the approximations to

f&+1 obtained with the SZ7%" 1,41 reconstruction.

k+1 £k nl+nr+1/nr
(Pk f 5 Zl=1 (ﬁ—l,nl+nr+l)| f|+l
I 1 2 3 4 5 6 7
[32 37 19 1 _17
14 10 20 40 40
B3 43 23 _41 131 61
15 28 240 70 280 140
B 2394 6547 1861 349 529 _ 159
16 1135 8064 2016 2016 605 377
B 1663 _ 478  _ 501 1 _ 514 227 1021
17 898 1565 629 3 1397 384 2688

The SRdecision will be done by th&¥_.¥.% scheme,
avoiding losing the location of jumps b_ut enabling a least
squares approximation both f§ , and fX.

To sum up, initially we set{ f*}*; = {g-}1;, and
introduce theSZ.7% reconstruction in the&s./ Z.7¢€
SRloop: The functionG” " (x) (21) is used to detect
the singularity (as in sectioB.3.2 and then, if the jump is

in L, X5, we calculate:

(1)
(R
(R 1)

51 asin@2), B
= 2f—ik-sh1 - (PILH_lfk) 2i-1°_ (39)
,i_1 @sin @3) substitutingf by g,

(PK*1g¥),, as in @7) replacingf by g.

2i

k+1

In the other case the jump is k™, x5 | and:

(LK), asin @4),

(Pk+1f ) f7<+1 (p||(<+l f_k)
(PEHigr) s in @5) substitutingf by g.
(R

as in 38) replacingf by g.

2i
2i—
2i
2i—-1

pk (40)
K

g
Pl 1g7

5 Numerical experiments.

The purpose of this section is to show how the
reconstructions presented in this paper can be used to
remove noise.

We consider the function

—¥3sin(3n(2:2)?2) if 0 <x< 3T,
9(x) = (41)

|sin2rr( 2

)+1000| if 3”<x<1

We discretizeg(x) using @) with N_ = 251 obtaining
1- Then we obtainf- = g* + n, wheren is

some Whlte Gaussian nofse
We consider theSignal-to-Noise Ratioexpressed in
dB, to measure the noise of the signal:

solutions. In order to take advantage of both schemes we

create a combined algorithm betwe&v .Z.7% and
S¥.7%¢ —NCdenoted a§8 7 ¥ S¢ — £.S%. The idea

is through the algorithm db.7 .#.¢ introduce a second

function that calculates th&%¥.% — NC reconstruction.

2| 1(g| )

SNR(g, f) := 10log p—E 22—
(9, ) 912 (& -T2

1 calculated with the functioawgnof MATLAB ®.
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We fix SNR=25dB and appll levels of the the direct

transform 8), with different reconstructions, t{)fT-}iNle,

. 0 NL/2L ..
obtaining { f’},%1" . Subsequently, we eliminate all the

details {d'}}-:1 and we applyL levels of an inverse

transform (0), (31) or (32)) obtaining{ f'—}iNle. Then, we
evaluate thé&koot Mean Squared Error

. 1N
RMSE(ft,g") = N—in(f} —ghH)2.
1=

In Figure 1-(a) we can see the results that we obtain

with the S¥ .. % reconstruction (SectioB.3.2, using
L=5 m=7 andr = 3. The noise and the Gibbs
phenomenon have been completely removed.

Now we consider th&¥.7 % reconstruction (Section
4.1), with L =5, m= 7 andr = 3, where the position of
the singularity is detected with the functi@®’~~"* (x),
(21). The imposition of consistency (inverse transform
(32)) causes that noise removal is reduced (Fidu(g)).

In Figure 1-(c) we use the SZ.¥%¢ —NC
reconstruction (SectioA.1) with L =5,m= 7 andr = 3.

As expected, the location of the jump is lost, but the noise

reduction improves with respe§tZ % .
In Figure 1-(d), we use theSyY 2.6 - £.9%
reconstruction (Sectiof.2) with L =5, m= 7 andr = 3.

Now, the position of the jump is properly detected and the

noise reduction maintained.

Finally, these experimental results are also compared

with other image filtering algorithms (VISU5] and
SURE [1Q)) from Wavelet Shrinkage Denoisirfgee p. €j.
[6], [4]), obtaining Figured (e) and (f).

From this experiment we conclude tHaY ¥ .7% is
the best choice considering the RMSE,
SI/¥ 7€ —-<LS€ is also a good choice since it
provides a closely RMSE and "visually smoother”
solutions.

In the second experiment we want to see which

parameters (size of the stencih), and degree of the
polynomial,r) are more adequate to remove noise.
We use SY ¥Y¢ and SV L.SEC—LSE for

different noise levels (from 20 to 30 dB) and we evaluate

the RMSE between the original datg® and the
reconstructionf®. The results that we obtain with degree
r = 3 and different size of stencilm=5,7,9,11,13 are
shown in Figure2-(a) and (c) for S/ .¥.¢ and
SIr Y96 — ¥.S€ respectively. When we fbm= 9
and take different degrees,= 2,3,4,5, we obtain the
Figure 2-(b) and (d) for SF/¥Y%¢ and
SIYL.SE — LS € respectively.

We deduce from Figur@ that we have better results
with low degree polynomials for both reconstructions.
Regarding the size of the stencil, 187 . % it is not
an important feature, but fd.7 ¥ ¢ — £./¢ better
results are obtained withn > 7 . After testing with some
signals, we propose that=3, 7< m< 15 is a general
good choice.

but

o 0.5 1

(2) S¥.Z.7¢; RMSE=.017152

o 0.5 1

(b) SZ7%; RMSE=.019001

o 0.5 1

(c) SZ7% —NC; RMSE=.072368

o 0.5 1

(d)SF.ZF% — Z.7%, RMSE=.021364

o 0.5 1

(e) VISU; RMSE=.021185

o 0.5 1

(f) SURE; RMSE=.020157

Fig. 1: We apply 5 levels of decimation and 5 levels of
reconstruction without details. We use- 3 andm= 7 from (a)

to (d). Dash-dot line represent the original dé@a}, the dots are
the data with nois¢ f°} and the solid line the reconstruction.
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RMSE

—e—m=5

21 22

NO.
o

0.04

23 24 25 26
SNR

(2)SIZIE

27

0.03¢
.

0.02

RMSE

0.011

——r=2
—*-r=3

=4
——r=5

nNO
o

21 22

23 24 26

25
SNR

(b)SFZTE

27

RMSE

©)STZTC— 2T

RMSE

20 21 22

) SFZIC—2TC

23 24 25
SNR

In this third experiment we compare the results using
the reconstructionsSy¥ 2%, SILSC—LSC
(both withm = 11 andr = 3) and SURE. We decimate
levels and we eliminate all the detail§d'}| ;.
Afterwards, we apply levels of an inverse transform. In
Figure 3-(a) we show the results that we obtain when
L =5 and in Figures-(b) whenL = 3.

We observe that we obtain better results with the
SIrLYe — £.S€ reconstruction, specially when
L=3.

0.04

——SILSC
- *-SILSC-LSC|
+ SURE

0.03f

20 21 22 23 24 25 26 27 28 29 30
SNR

0.04

—e—SILSC
-+ -SILSC-LSC]|
+ + SURE

003t
o)
Do.02} >~

0.01f

1 . . . . 1 1 1
20 21 22 23 24 25 26 27 28 29 30

Fig. 3: Comparison between the methodSY.¥.¢,
SIZ7% —Z7% (eliminating {df}t_;) and SURE. (a)
L=5,(b)L=3.

Finally, we show in Figure4 the limit functions of
some reconstructions. We apply 6 levels of reconstruction
to {fi}1% with f =0,i# 7, andf; = 1. In (a) we use
I L€ and we obtain a broken line. Despite it means

Fig. 2: For a fixed reconstruction (indicated in each picture), andthat it would be inadequate for using in multiresolution

different magnitude of noise we apply 5 levels of decimatiod
5 levels of reconstruction without details. RMSE that weadrit
is shown, with degree = 3 and different size of stenciis =
5,7,9,11,13 for (a) and (c); anan= 9 and different degrees,

r=2,3,4,5 for (b) and (d).

schemes, we have seen in the previous experiments that
the results are smooth. This is because we apply the
reconstruction to a sufficiently smoothed signal thanks to
the cell average decimation. In (b) we uses% (32,
which is consistent. The output is extremely broken, due
to the imposition of consistency generates peaks that are
transmitted and increased to the next level. With
£L.S€ —NC (31), Figure 4-(c), the limit function is
smooth since these peaks are not generated.
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