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Abstract: In this paper we present two reconstructions in the cell average framework of multiresolutiona la Harten. The first one
combines interpolation and least squares fitting and the second one is based on least squares fitting. We study some of their properties
as well as its approximation order. We also analyze how different adaptive techniques (ENO and SR) can be used within these
reconstructions. We apply them to noise removal and comparethe results that we obtain with other existing techniques.
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1 Introduction

A common problem in approximation theory is the
reconstruction of a function from a discrete set of data
which gives information on the function itself. This
information usually comes either as point-values or
cell-averages of the function over a finite set of points or
cells, respectively. The function is then approximated by
an interpolant, that is, another function whose values or
cell-averages at the given set of points or, respectively,
cells, coincide with those of the original one.

The interpolation is a linear procedure of the values on
the given set of points, but in this case the accuracy of the
approximation in the presence of a singularity is limited
by its order, so that any stencil crossing the singularity will
result in an unsatisfactory approximation. This means that
increasing the degree of the polynomial will produce larger
regions of poor accuracy around singularities.

The choice of stencils that avoid crossing
singularities, whenever this is possible, is crucial for the
improvement of the accuracy of the approximation. This
is the key underlying the ENO (essentially
non-oscillatory) technique, introduced by Harten et al. [9]
in the context of high resolution shock capturing (HRSC)
schemes for conservation laws. With theENO interpolant
the region affected by each singularity is reduced to the
interval that contains it, assuming the singularities are
sufficiently well separated.

It is possible to improve this result using the Harten’s
subcell resolution technique (SR) ([1,2,7]). If the location
of the singularity within the cell (or a sufficient good
approximation of it) is known, then the loss of accuracy
can be avoided.

In [3] we study the application of these
reconstructions to the case where the data are
contaminated with noise. On one hand we use
interpolatory reconstructions and on the other hand we
rely on least squares. We do not get good interpolants in
all cases. This motivates us to introduce new
reconstructions using both ideas.

The first one combines interpolation with
approximation in the least squares sense (called in this
paper Interp-L S ) and the second reconstruction is
based, following [11], on approximate the data in the least
square sense (called in this paperL S ). Here we present
these reconstructions in the cell average framework which
is more appropriate in the presence of noise. In [12] we
can see these reconstructions in the point value context.
We also analyze how can be used combined with different
non linear techniques (ENOandSRsee [7] and [9] resp.).

The paper is organized as follows: We recall in
Section 2 the discrete framework for multiresolution
introduced by Harten focusing on cell average
discretizations. We introduce theInterp-LSreconstruction
for cell averages in Section3. There, we also present how
this reconstruction can be combined with non-linear
techniques. In Section4 we present the least squares
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174 F. Aràndiga, J. J. Noguera: Reconstructions that combine cell average...

reconstruction for cell averages (L S C ). Section5 is
devoted to show some numerical experiments where we
can see the results that we obtain with the techniques
presented in this paper. Finally, in Section6 we present
the conclusions.

2 Harten’s framework for multiresolution
analysis

The building blocks of a multiresolution analysis as
described by Harten (see [8] and references therein) are a
sequence of linear decimation operators{Dk

k+1}
L−1
k=0, a

nested sequence of linear vector spacesVk+1, with
Dk

k+1 : Vk+1 −→ Vk (which, from a vector ofVk+1,
computes a coarser representation of it), and a sequence
of prediction operators{Pk+1

k }L−1
k=0,P

k+1
k : Vk −→ Vk+1

which, from a vector ofVk obtains an approximation to
its (finer) representation inVk+1. In most applications,
Vk+1 is a space of sequences of real numbers. Our
description implies that the resolution increases withk.
The decimation and prediction operators have to satisfy
the compatibility condition:

Dk
k+1Pk+1

k = IVk. (1)

Given vk+1 ∈ Vk+1, the prediction error
ek+1 = Qk+1vk+1 := (IVk+1 −Pk+1

k Dk
k+1)v

k+1 obtains the
information invk+1 ∈Vk+1 that cannot be predicted from
vk = Dk

k+1vk+1 ∈Vk by the operatorPk+1
k .

It is easily seen that the error vector,
ek+1 := Qk+1vk+1, belongs to the null space ofDk

k+1,
denoted by N (Dk

k+1) ([2]). Let
Gk+1 : Vk+1 −→ N (Dk

k+1) be the operator which assigns
to each vectorek+1 ∈ Vk+1 the coefficientsdk+1 of its
representation in terms of a given basis,{µk+1

j }, of

N (Dk
k+1)⊂Vk+1, and letEk+1 be the canonical injection

N (Dk
k+1) →֒ Vk+1. Clearly Gk+1Ek+1 = I

N (Dk
k+1)

and

Ek+1Gk+1 = IVk+1. Thenon-redundantinformation in the
error vector is contained in the set of coefficients{dk+1

i },
called the scale coefficients at levelk. We note thatvk+1

and{vk,dk+1} have the same cardinality.
These ingredients allow to construct an alternative

representation of a vectorvk+1 ∈ Vk+1. Given vk+1 we
evaluate:

{
vk = Dk

k+1vk+1,

dk+1 = Gk+1(IVk+1 −Pk+1
k Dk

k+1)v
k+1,

(2)

and givenvk anddk+1, computed by (2), the vectorvk+1 is
recovered by the inverse formula
vk+1 = Pk+1

k vk+Ek+1dk+1.
This gives the equivalence betweenvk+1 and

{vk,dk+1}. By repeating step (2) for vk one obtains its
corresponding decomposition{vk−1,dk}. Iterating this

process fromk = L−1 to 0 we find that a multiresolution
setting {{Vk}L

k=0,{Dk
k+1}

L−1
k=0} and a sequence of

corresponding prediction operators{Pk+1
k }L−1

k=0 satisfying
(1) define an invertible multiresolution transform.

In Harten’s framework, the decimation and prediction
operators are built from a sequence of discretization
operators and a sequence ofcompatiblereconstruction
operators. Given a function belonging to a certain
functional space F the discretization operator
Dk+1 : F −→Vk+1 obtains a discrete representation of it
at the resolution level defined byVk+1. Conversely, the
reconstruction operatorRk+1 : Vk+1 −→ F obtains a
function in F from discrete values inVk+1. The
reconstruction operatorsRk+1 arecompatiblewith Dk+1
provided that

Dk+1Rk+1 = IVk+1 (3)

is satisfied for eachk.
The decimation and prediction operators

corresponding to these sequences are obtained as
Dk

k+1 = DkRk+1 andPk+1
k = Dk+1Rk. The compatibility

condition (1) is a consequence of (3).
In Harten’s framework, the discretization process

specifies the setting, then the choice of a reconstruction
operator defines a multiresolution transformation whose
properties are closely related to those of the
reconstruction. From the point of view of
data-compression applications, accuracy of the
reconstruction is an important feature.

2.1 Cell average multiresolution analysis

Let f ∈ F = L1([0,1]). Considering the set of nested
dyadic grids defined by

Xk = {xk
i }

Nk
i=0, Nk = 2kN0, xk

i = ihk, hk =
1
Nk

, k= 0, . . . ,L

where N0 ∈ N. The cell-average discretization operator
Dk+1 : F −→Vk+1 is defined in [8] as follows:

f̄ k+1
i := (Dk+1 f )i =

1
hk+1

∫ xk+1
i

xk+1
i−1

f (x)dx, 1≤ i ≤ Nk+1.

(4)
The decimation can then be computed by:

f̄ k
i = 1

hk

∫ xk
i

xk
i−1

f (x)dx= 1
2hk+1

∫ xk+1
2i

xk+1
2i−2

f (x)dx= 1
2( f̄ k+1

2i + f̄ k+1
2i−1).

(5)
Let pi(x) the polynomial of degreer −1= nr+nl, nr,nl ∈
N, such that

1
hk

∫ xk
i+s

xk
i+s−1

pi(x)dx= f̄ k
i+s, s=−nl, . . . ,nr, (6)

then, the reconstruction is defined as follows:

I C
r−1
nl,nr(x; f̄ k) = pi(x), x∈ [xk

i−1,x
k
i ], i = 1, . . . ,Nk.
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The prediction operator is in this case:
(

Pk+1
k f̄ k

)

2i−1
=
(

Dk+1(I C
r−1
nl,nr(x; f̄ k))

)

2i−1

=
1

hk+1

∫ xk+1
2i−1

xk+1
2i−2

I C
r−1
nl,nr(x; f̄ k)dx,

(

Pk+1
k f̄ k

)

2i
=
(

Dk+1(I C
r−1
nl,nr(x; f̄ k))

)

2i

=
1

hk+1

∫ xk+1
2i

xk+1
2i−1

I C
r−1
nl,nr(x; f̄ k)dx.

As a consequence of (6) we have

1
2

((

Pk+1
k f̄ k

)

2i−1
+
(

Pk+1
k f̄ k

)

2i

)

= f̄ k
i (7)

and, from (5), ek+1
2i−1 + ek+1

2i = 0. Then, we can define
dk+1

i = ek+1
2i−1. The algorithms for the direct (8) and inverse

(9) transforms in the cell average framework are:
f̄ L → M f̄ L = { f̄ 0,d1, . . . ,dL} (Direct)







for k = L−1, . . . ,0
f̄ k
i = 1

2( f̄ k+1
2i + f̄ k+1

2i−1), 1≤ i ≤ Nk

dk+1
i = f̄ k+1

2i−1− (Pk+1
k f̄ k)2i−1, 1≤ i ≤ Nk

end

(8)

M f̄ L → M−1M f̄ L (Inverse)






for k = 0, . . . ,L−1
f̄ k+1
2i−1 = (Pk+1

k f̄ k)2i−1+dk+1
i , 1≤ i ≤ Nk

f̄ k+1
2i = 2 f̄ k

i − f̄ k+1
2i−1 ≡ (Pk+1

k f̄ k)2i −dk+1
i , 1≤ i ≤ Nk

end
(9)

3 Interp-L S reconstruction for cell averages

3.1 Interp-L S reconstruction for point values
(I L S P)

As in [12] the Interp-L S reconstruction is defined as
follows: Given k and the intervalIk

i = [xk
i−1,x

k
i ] we

construct the polynomial of degreer such that
interpolatesxk

i−1, xk
i and approximates in the sense of least

squares at the nl + nr > r − 1 nodes xk
i+ j ,

j = −nl, . . . ,−2,1, . . . ,nr − 1. If we denote
qI L S P

r

i,nl,nr (x; f k) this polynomial, then the reconstruction
is

I L S P
r
nl,nr(x; f k) = qI L S P

r

i,nl,nr (x; f k), x∈ [xk
i−1,x

k
i ]

and the prediction is

(

Pk+1
k f k

)

2i−1
= I L S P

r
nl,nr(x

k+1
2i−1; f k).

3.2 Interp-L S reconstruction for cell
averages (I L S C )

Let pI L S C
r−1

i,nl,nr (x; f̄ k) =∑r−1
l=0(l +1)al xl the polynomial of

degreer −1< nl +nr , (∈ Πr−1) such that

1
hk

∫ xk
i

xk
i−1

pI L S C
r−1

i,nl,nr (x; f̄ k)dx= f̄ k
i (10)

and

1
hk

∫ xk
i+s

xk
i+s−1

pI L S C
r−1

i,nl,nr (x)dx≈ f̄ k
i+s, s=−nl, . . . ,nr, s 6= 0,

(11)
nr,nl ∈N, in the least square sense. That is, that minimizes

min
pi(x)∈Πr−1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

(

1
hk

∫ xk
i+s

xk
i+s−1

pi(x)dx− f̄ k
i+s

)

s=−nl,...,nr, s6=0

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
2

.

If we define
qi(x) =

∫ x
0 pI L S C

r−1

i,nl,nr (y; f̄ k)dy = ∑r−1
l=0 al xl+1 and we

assume, without loss of generality, thati = 0 and
xk

i+s−1 = s, then (10) is equivalent to

q0(1)−q0(0)
1

=
r−1

∑
l=0

al = f̄ k
0 .

Sincea0 = f̄ k
0 −∑r−1

l=1 al , then

q0(x) = ( f̄ k
0 −

r−1

∑
l=1

al )x+
r−1

∑
l=1

al x
l+1 = xf̄ k

0 +
r−1

∑
l=1

al (x
l+1−x).

Conditions (11) are equivalent to

q0(s+1)−q0(s)
1

= f̄ k
0 +

r−1

∑
l=1

al

(

(s+1)l+1− sl+1−1
)

≈ f̄ k
s

(12)
in the least square sense and

∑r−1
l=1 al

(
(s+1)l+1− sl+1−1

)
≈ f̄ k

s − f̄ k
0 , s=−nl, . . . ,nr, s 6= 0.

Then we have to obtain ˆa∈ Rr−1 such that minimizes

min
â∈Rr−1

∣
∣
∣

∣
∣
∣AI L S C

r−1

nl,nr â−
(

f̂ −1nl+nr f̄0
)
∣
∣
∣

∣
∣
∣
2
,

where:

AI L S C
r−1

nl,nr =










(−nl+1)2− (−nl)2−1 · · · (−nl+1)r − (−nl)r −1
.
.
.

...
.
.
.

−(−1)2−1 · · · −(−1)r −1
22−12 −1 · · · 2r −1r −1

.

.

.
...

.

.

.
(nr+1)2− (nr)2−1 · · · (nr+1)r − (nr)r −1










,

(13)
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â = [a1, . . . ,ar−1]
T , f̂ = [ f̄ k

−nl, . . . , f̄ k
−1, f̄ k

1 , . . . , f̄ k
nr]

T

and1n = (1, . . . ,1
︸ ︷︷ ︸

n

)T .

Then, using the normal equations,

â =

(

AI L S C
r−1

nl,nr

T
AI L S C

r−1

nl,nr

)−1

AI L S C
r−1

nl,nr

T
( f̂ −1nl+nr f̄0),

a0 = f̄0−1r−1
T â.

Once we have{al}
r−1
l=0 and pI L S C

r−1

i,nl,nr (x; f̄ k) we
define the reconstruction as

I L S C
r−1
nl,nr(x; f̄ k) = pI L S C

r−1

i,nl,nr (x; f̄ k), x∈ [xk
i−1,x

k
i ],
(14)

and the prediction

(

Pk+1
k f̄ k

)

2i−1
=

1
hk+1

∫ xk+1
2i−1

xk+1
2i−2

I L S C
r−1
nl,nr(x; f̄ k)dx

=
nr

∑
l=−nl

(γ r
nl,nr)l f̄ k

i+l ,

(

Pk+1
k f̄ k

)

2i
=

1
hk+1

∫ xk+1
2i−1

xk+1
2i

I L S C
r−1
nl,nr(x; f̄ k)dx

≡ 2 f̄ k
i −
(

Pk+1
k f̄ k

)

2i−1
.

Table 1: Filters, (γ r
nl,nr)l , of the approximations tof̄ k+1

2i−1

obtained with theI L S C
r−1
nl,nr reconstruction

(

Pk+1
k f̄ k

)

2i−1
=

∑nr
l=−nl(γ

r
nl,nr)l f̄ k

i+l .
l −4 −3 −2 −1 0 1 2 3 4

(γ2
2,0)l

2
20

1
20

17
20

(γ2
3,0)l

3
56

2
56

1
56

50
56

(γ2
4,0)l

4
120

3
120

2
120

1
120

110
120

(γ2
0,2)l

23
20 - 1

20 - 2
20

(γ2
0,3)l

62
56 - 1

56 - 2
56 - 3

56

(γ2
0,4)l

130
120 - 1

120 - 2
120 - 3

120 - 4
120

(γ3
2,2)l

2
40

1
40

40
40 - 1

40 - 2
40

(γ3
3,3)l

3
112

2
112

1
112

112
112 - 1

112 - 2
112 - 3

112

(γ3
4,4)l

4
240

3
240

2
240

1
240

240
240 - 1

240 - 2
240 - 3

240 - 4
240

In Table1, we show the filters,(γ r
nl,nr)l , for different

degrees of the polynomial,r, and different sizes of stencil.
As in [12] and [2] we can prove the following results:

Proposition 1.The matrix AI L S C
r−1

nl,nr , r > 1, nl+nr > r−
1, defined in (13), has full rank.

Proof.We will prove thatAI L S C
r−1

nl,nr has full rank, i.e

rank(AI L S C
r−1

nl,nr ) = r − 1, by induction on the degree of

the polynomialpI L S C
r−1

nl,nr .

When r = 2 we have a single vector, so the rank is

1. Let r ∈ N, r > 2, and assume thatrank(AI L S C
r−1

nl,nr ) =

r −1. We want to see whetherrank(AI L S C
r

nl+a,nr+b) = r, nl +
a+nl+b> r, a≥ 0, b≥ 0, a∈ N, b∈ N.

Sincerank(AI L S C
r−1

nl,nr ) = r −1, there is a submatrix

Mr−1 of AI L S C
r−1

nl,nr such that|Mr−1| 6= 0.
Without loss of generality, we suppose thatnl ≥ 1,a=

1,b= 0 (otherwise we could use the last row and apply the
same reasoning). Then

AI L S C
r

nl+1,nr =





(−nl)2− (−nl −1)2−1· · · (−nl)r+1− (−nl−1)r+1−1

AI L S C
r−1

nl,nr

.

.

.
(nr+1)r+1−nrr+1 −1



 .

Given thatnl ≥ 1 andr ≥ 2:

(−nl)r+1− (−nl −1)r+1−1 = (−1)r+2(
r+1

∑
k=1

(
r +1

k )nlr+1−k)−1

6= 0. (15)

Then, (−nl)r+1 − (−nl − 1)r−1 − 1 can be used as the
pivot element to nullify the elements of its column. If we
denoteNr−1 as the result of applying toMr−1 the linear
transformations that enable nullify such elements, we can
define ther × r matrix:

Ar =








a′1 · · ·a
′
r−1 (−nl)r+1− (−nl−1)r+1−1

Nr−1

0
...
0







,

where its first row elements a′1, j ∈ Ar are

a′1, j = a1, j ∈ AI L S C
r

nl+1,nr , such thatai, j ∈ Mr−1. Therefore,
by (15) and the induction hypothesis,

|Ar | = (−1)r+1((−nl)r+1− (−nl−1)r−1−1) |Nr |

= (−1)r+1((−nl)r+1− (−nl−1)r−1−1) |Mr | 6= 0,

and then,rank(AI L S C
r

nl+1,nr ) = r.
Finally, by the principle of induction we have the

result.

Proposition 2.The Interp-L S reconstruction for cell
averages has a unique solution.

Proof.Since the matrixAI L S C
r−1

nl,nr , defined in (13), has
full rank by Proposition1, following section 3.2, the
Interp-L S reconstruction for cell averages has a unique
solution.

Proposition 3.If pI L S C
r−1

i,nl,nr (x; f̄ k) is the polynomial

I L S C of degree r−1, the Interp-L S reconstruction
for cell averages recovers exactly polynomials of degree
s,0≤ s≤ r −1.
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Proof.Let p(x) = ∑s
l=0blxl be a polynomial of degrees,

with 0≤ s≤ r −1. We define{ f̄ j}
m
j=0, m> r −1, as:

∫ j+1

j
p(x) = f̄ j , j = 0, . . . ,m, (16)

and

q(x) =
∫ x

0
p(x) =

s

∑
l=0

al x
l+1, (17)

whereal =
bl

l+1, l = 0, . . . ,s.

Thanks to (16) we have thatAI L S C
s

0,m â= f̂ −1m−1 f̄0,

whereâ= [a1, . . . ,as]
T , f̂ = [ f̄ k

1 , . . . , f̄ k
m]

T andAI L S C
s

0,m is
defined in (13). Then

∥
∥
∥AI L S C

s

0,m â− ( f̂ −1m−1 f̄0)
∥
∥
∥

2
= 0. (18)

On the other hand, we know that theInterp-L S

problem for cell averages has a unique solution by
Proposition2. In particular, whether

pI L S C
r−1

i,0,m =
r−1

∑
l=0

(l +1)alx
l

is the solution of theInterp-L S problem defined by (10)
and (11), with { f̄ j}

m
j=0, m> r − 1, defined by (16), and

sinceq(x) is the solution of this problem by (18), we have
that pI L S C = q(x), and therefore theInterp-L S

reconstruction recovers exactlyq(x).

Corollary 1.The order of the Interp-L S reconstruction
for cell averages is r.

3.3 Nonlinear Reconstructions for cell averages

When using the Interp-LS reconstruction for cell
averages we have that ifr increases,r ≤ m= nr+nl+1,
the interpolation process has higher order accuracy, i.e.
the detailsdk+1

i will be smaller when f is smooth on
[xk

i−nl−1,x
k
i+nr]. On the other hand, the interval

[xk
i−nl−1,x

k
i+nr] gets larger withnr,nl so that a singularity

in (xk
i−1,x

k
i ) will affect more detail coefficients.

Non-linear essentially non-oscillatory (ENO)
interpolation techniques, which were firstly introduced in
[9], circumvent this drawback.

3.3.1ENO Interp-L S reconstruction for cell averages
(EI L S C )

The idea ofENO interpolation technique is to replace in

(14) the polynomial pI L S C
r−1

i,nl,nr (x; f̄ k) by

pI L S C
r−1

i,nli ,m−nli
(x; f̄ k) selected among them+ 1 polynomials

{pI L S C
r−1

i,s,m−s (x; f̄ k)}m
s=0, wherem= nr+ nl + 1, in order

to avoid the influence of the singularity. In [2,8,9] the
selection process is made by picking the “least
oscillatory” polynomial using numerical information on
the divided differences off at the pointsxk

l . That is, using
the stencil that minimizes f [xk

i−l , . . . ,x
k
i+m−l−1],

1≤ l ≤ m−1.
Here, inspired by [11], we use a selection which gives

us better results in the presence of noise. First, we define

E2(i,s,m) = ∑m−1
l=0

(

1
hk

∫ xk
i−s+l

xk
i−s+l−1

pI L S C r−1
i,s,m−1−s (x, f̄ k)dx− f̄ k

i−s+l

)2

(19)
and now

E2(i,nli ,m) = mins=0,...,m−1{E2(i,s,m)} . (20)

Once this selection is made, we thus define

EI L S C
r−1
nl,nr(x; f̄ k) = pI L S C

r−1

i,nli ,m−1−nli (x; f̄ k), x∈ [xk
i−1,x

k
i ]

and

(

Pk+1
k f̄ k

)

2i−1
=

1
hk+1

∫ xk+1
2i−1

xk+1
2i−2

EI L S C
r−1
nl,nr(x; f̄ k)dx,

(

Pk+1
k f̄ k

)

2i
= 2 f̄ k

i −
(

Pk+1
k f̄ k

)

2i−1
.

3.3.2SR Interp-L S reconstruction for cell averages
(SI L S C )

The ENO interpolatory technique still produces large
detailsdk+1

i when a singularity is contained in the interval
[xk

i−1,x
k
i ]. In order to reduce further the interpolation error,

subcell resolution methods (SR) were introduced in [7].
Now let’s see how we can apply theSRtechnique ([1,7])
in theInterp-L S reconstruction for cell averages:

Assume thatf (x) has a jump in[xk
i−1,x

k
i ]. Then the

primitive functionof f (x), F(x) =
∫ x

0 f (y)dy∈ C ([0,1]),
has a corner (a discontinuity in the derivative) there.

Note that the sets{ f̄ k
i }

Nk
i=1 and Fk = {Fk

i }
Nk
i=0 are

equivalents due to the relations

Fk
i = F(xk

i ) =
∫ xk

i
0 f (y)dy= hk ∑i

j=1 f̄ k
j and f̄ k

j =
Fk

j −Fk
j−1

hk
.

Then, as in [2] or [12], we can use the function (21) to
detect where the singularity is.

The steps to apply theSRtechnique in theInterp-L S

reconstruction for cell averages are:

1.- Taking stencilswith m = nl + nr + 1 nodes, we
calculate thestencil ENOas in the previous section.

2.- If nli−1 = m− 1 andnli+1 = 0 thestencilsfor the
cellsIk

i−1 andIk
i+1 are disjoint. We label the cell assuspect

of containing a discontinuity.
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3.- For each suspicious cell we define the function

GI L S C
i (x) = qI L S P

r

i+1,0,m−1(x;Fk)−qI L S P
r

i−1,m−1,0(x;Fk).
(21)

If GI L S C
i (xk

i−1) ·G
I L S C
i (xk

i ) < 0 we label the cell
Ik
i as singular.

4.- If GI L S C
i (xk

i−1) ·G
I L S C
i (xk+1

2i−1) > 0, the node
xk+1

2i−1 lies to the left of the discontinuity. Then
(
Pk+1

k f̄ k
)

2i−1 is obtained as follows

(

Pk+1
k f̄ k

)

2i−1
=

qI L S P
r

i−1,m−1,0(x
k+1
2i−1;Fk)−qI L S P

r

i−1,m−1,0(x
k+1
2i−2;Fk)

hk+1

=
−1

∑
l=−nl−nr−1

(

γ r
nl+nr+1,−1

)

l
f̄ k
i+l , (22)

(

Pk+1
k f̄ k

)

2i
= 2 f̄ k+1

i −
(

Pk+1
k f̄ k

)

2i−1
, (23)

where some of these coefficients are in Table2.

Table 2: Filters, (γ r
nl,nr)l , of the approximations tof k+1

2i−1,

obtained with the SI L S C
r−1
nl+nr+1,−1 reconstruction

(

Pk+1
k f̄ k

)

2i−1
= ∑−1

l=−nl−nr−1(γ
r
nl+nr+1,−1)l f̄ k

i+l .

l −7 −6 −5 −4 −3 −2 −1
(

γ2
3,−1

)

l
− 3

10 − 3
20

29
20

(

γ2
5,−1

)

l
− 1

10 − 3
40 − 1

20 − 1
40

5
4

(

γ3
5,−1

)

l

89
310 − 273

1240 − 271
620 − 451

1240
215
124

(

γ3
7,−1

)

l

81
512 − 65

3584 − 241
1792 − 171

896 − 671
3584 − 443

3584
383
256

(

γ4
5,−1

)

l
− 971

2208
1194
985 − 549

1472 − 2113
1123

1318
531

(

γ4
7,−1

)

l
− 384

1349
511
1275

263
821 − 357

2497 − 454
749 − 1913

2788
1663
832

In the other case (GI L S C
i (xk

i−1) ·G
I L S C
i (xk+1

2i−1) <

0), xk+1
2i−1 is located to the right of the discontinuity and

(

Pk+1
k f̄ k

)

2i
=

qI L S P
r

i+1,0,m−1(x
k+1
2i ;Fk)−qI L S P

r

i+1,0,m−1(x
k+1
2i−1;Fk)

hk+1
,

=
nl+nr+1

∑
l=1

(

β r
−1,nl+nr+1

)

l
f k+1
i+l . (24)

(

Pk+1
k f̄ k

)

2i−1
= 2 f̄ k+1

i −
(

Pk+1
k f̄ k

)

2i
, (25)

where (β r
−1,nl+nr+1)l = (γ r

nl+nr+1,−1)−l ,
l = 1, . . . ,nl+nr+1.

Remark.(23) can be calculated as:
(
Pk+1

k f̄ k
)

2i =
1

hk+1
(qI L S P

r

i+1,0,m−1(x
k+1
2i ;Fk)−qI L S P

r

i−1,m−1,0(x
k+1
2i−1;Fk)). We can

use (23) because the reconstruction is consistent due to
the interpolatory conditions:

f̄ k
2i−1+ f̄ k

2i

2
=

(
Pk+1

k f̄ k
)

2i−1+
(
Pk+1

k f̄ k
)

2i

2hk+1
=

Fk
i +Fk

i−1

hk
= f̄ k

i .

The same could be said for (25).

Thanks to the interpolatory conditions,GI L S C
i can be

expressed in terms of{ f̄ k
i } (see [12] for details). For

instance, the filters of (21) for nl+nr = 4 andr = 3 are:

GI L S C
i (xk

i−1) = hk( f̄ k
i −

63
31 f̄ k

i+1+
81
155 f̄ k

i+2+
97
155 f̄ k

i+3

+ 48
155 f̄ k

i+4−
66
155 f̄ k

i+5),

GI L S C
i (xk+1

2i−1) = hk(−
89
620 f̄ k

i−5+
273
2480 f̄ k

i−4+
271
1240 f̄ k

i−3

+ 451
2480 f̄ k

i−2−
215
248 f̄ k

i−1+ f̄ k
i −

215
248 f̄ k

i+1

+ 451
2480 f̄ k

i+2+
271
1240 f̄ k

i+3+
273
2480 f̄ k

i+4−
89
620 f̄ k

i+5),

GI L S C
i (xk

i ) = hk(−
66
155 f̄ k

i−5+
48
155 f̄ k

i−4+
97
155 f̄ k

i−3

+ 81
155 f̄ k

i−2−
63
31 f̄ k

i−1+ f̄ k
i ).

4 Least squares reconstruction for cell
averages (L S C )

Let pL S C
r−1

i,nl,nr (x; f̄ k) = ∑r−1
l=0(l + 1)alxl the polynomial of

the degreer −1 such that

1
hk

∫ xk
i+s

xk
i+s−1

pL S C
r−1

i,nl,nr (x; f̄ k)dx≈ f̄ k
i+s, s=−nl, . . . ,nr,

(26)
in the least square sense.

If we define
qi(x) =

∫ x
0 pL S C

r−1

i,nl,nr (y; f̄ k)dy = ∑r−1
l=0 al xl+1 and we

assume, without loss of generality, thati = 0 and
xk

i+s−1 = s, then (26) is equivalent to

q0(s+1)−q0(s)
1

=
r−1

∑
l=0

al

(

(s+1)l+1− sl+1
)

≈ f̄ k
s (27)

and

r−1

∑
l=0

al

(

(s+1)l+1− sl+1
)

≈ f̄ k
s , s=−nl, . . . ,nr.

Then we have to obtain ˆa∈ Rr that minimizes

min
â∈Rr

∣
∣
∣

∣
∣
∣AL S C

r−1

nl,nr â− f̂
∣
∣
∣

∣
∣
∣
2
,

where:

AL S C
r−1

nl,nr =





(−nl+1)1− (−nl)1 · · · (−nl+1)r − (−nl)r

.

.

.
. . .

.

.

.
(nr+1)1− (nr)1 · · · (nr+1)r − (nr)r



 (28)
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with â= [a0, . . . ,ar−1]
T and f̂ =

[
f̄ k
−nl , . . . , f̄ k

nr

]T
.

Then, using the normal equations,

â=

(

AL S C
r−1

nl,nr

T
AL S C

r−1

nl,nr

)−1

AL S C
r−1

nl,nr

T
f̂ .

Once we have{al}
r−1
l=0 andpL S C

r−1

i,nl,nr (x; f̄ k) we define
the reconstruction

L S C
r−1
nl,nr(x; f̄ k)=

∫ xk
i+s

xk
i+s−1

pL S C
r−1

i,nl,nr (x; f̄ k)dx, x∈ [xk
i−1,x

k
i ],

and the prediction
(

Pk+1
k f̄ k

)

2i−1
=

1
hk+1

∫ xk+1
2i−1

xk+1
2i−2

L S C
r−1
nl,nr(x; f̄ k)dx

=
nr

∑
l=−nl

(γ r
nl,nr)l f̄ k

i+l , (29)

(

Pk+1
k f̄ k

)

2i
=

1
hk+1

∫ xk+1
2i

xk+1
2i−1

L S C
r−1
nl,nr(x; f̄ k)dx

=
nr

∑
l=−nl

(β r
nl,nr)l f̄ k

i+l . (30)

In Table3 and 4 we can see some of these coefficients.

Table 3: Filters, (γ r
nl,nr)l , of the approximations tof̄ k+1

2i−1

obtained with theL S C
r−1
nl,nr reconstruction,

(

Pk+1
k f̄ k

)

2i−1
=

∑nr
l=−nl(γ

r
nl,nr)l f̄ k

i+l .

l −4 −3 −2 −1 0 1 2 3 4

(γ2
2,0)l

−1
14

1
3

17
24

(γ2
1,1)l

11
24

1
3

5
24

(γ2
0,2)l

23
24

1
3

−7
24

(γ3
4,0)l

−1
140

−13
280

2
35

17
56

97
140

(γ3
3,1)l

−23
140

13
56

29
70

107
280

19
140

(γ3
2,2)l

−1
28

103
280

17
35

89
280

−19
140

(γ3
1,3)l

53
140

101
280

19
70

31
280

−17
140

(γ3
0,4)l

151
140

59
280

−8
35

−67
280

5
28

(γ4
3,3)l

−315
2688

565
2688

925
2688

1
3

616
2688

29
384

−65
896

(γ4
4,4)l

−7
64

383
4224

553
2636

1257
4825

59
231

242
1169

784
6131

43
1408

−51
704

Is well known by the least squares problem, that the

matrixAL S C
r−1

nl,nr , defined in (28), has full rank. Therefore,
similarly to Proposition3 we can prove the results:

Proposition 4.If pL S C
r−1

i,nl,nr (x; f ) is the polynomialL S C

of degree r−1, theL S reconstruction for cell averages
recovers exactly polynomials of degree s,0≤ s≤ r −1.

Corollary 2.The order of theL S reconstruction for cell
averages is r.

Table 4: Filters, (β r
nl,nr)l , of the approximations tof̄ k+1

2i

obtained with theL S C
r−1
nl,nr reconstruction,(Pk+1

k f̄ k)2i =

∑nr
l=−nl(β

r
nl,nr)l f̄ k

i+l .

l −4 −3 −2 −1 0 1 2 3 4

(β 2
2,0)l

−7
24

1
3

23
24

(β 2
1,1)l

5
24

1
3

11
24

(β 2
0,2)l

17
24

1
3

−1
24

(β 3
4,0)l

5
28

−67
280

−8
35

59
280

151
140

(β 3
3,1)l

−17
140

31
280

19
70

101
280

53
140

(β 3
2,2)l

−19
140

89
280

17
35

103
280

−1
28

(β 3
1,3)l

19
140

107
280

29
70

13
56

−23
140

(β 3
0,4)l

97
140

17
56

2
35

−13
280

−1
140

(β 4
3,3)l

−65
896

29
384

611
2688

1
3

925
2688

565
2698

−317
2688

(β 4
4,4)l

−51
704

43
1408

784
6131

242
1169

59
231

1257
4825

553
2636

383
4224

−7
64

Observe that, since 1
hk

∫ xk
i

xk
i−1

pi(x)dx 6= f̄ k
i , this

reconstruction do not satisfy (1) and (3). Then (7) is not
true and 2̄f k

i − f̄ k+1
2i−1 6= (Pk+1

k f̄ k)2i −dk+1
i .

Then, if we define, in (9), f̄ k+1
2i = (Pk+1

k f̄ k)2i −dk+1
i ,

the inverse transform is
M f̄ L → M−1M f̄ L







for k = 0, . . . ,L−1
f̄ k+1
2i−1 = (Pk+1

k f̄ k)2i−1+dk+1
i , 1≤ i ≤ Nk

f̄ k+1
2i = (Pk+1

k f̄ k)2i −dk+1
i , 1≤ i ≤ Nk

end

(31)

and the reconstruction is not consistent. We call it
L S C −NC. To ensure the consistency we can use
f̄ k+1
2i = 2 f̄ k

i − f̄ k+1
2i−1. In this case the inverse transform is:

M f̄ L → M−1M f̄ L







for k = 0, . . . ,L−1
f̄ k+1
2i−1 = (Pk+1

k f̄ k)2i−1+dk+1
i , 1≤ i ≤ Nk

f̄ k+1
2i = 2 f̄ k

i − f̄ k+1
2i−1, 1≤ i ≤ Nk

end

(32)

and we call itL S C .

4.1 ENO and SRL S reconstruction for cell
averages (EL S C and SL S C )

While ENO can be applied as in section3.3.1(obtaining
theEL S C reconstruction), we have a problem applying
SR in this case. The fact that we do not have the
consistency implies that we do not know the point values
of the primitive function (as in Section3.3.2) and then we
can not locate where the discontinuity is.

A way to apply theSR in this context is using the
functionGI L S C

i (x) (21) to detect the singularity (as in
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section3.3.2) and then, if the jump is in[xk+1
2i−1,x

k+1
2i ], we

evaluate (29)

(

Pk+1
k f̄ k

)

2i−1
=

1
hk+1

∫ xk+1
2i−1

xk+1
2i−2

L S C
r−1
nl+nr+1,−1(x; f̄ k)dx

=
−1

∑
l=−nl−nr−1

(
γ r
nl+nr+1,−1

)

l
f̄ k
i+l , (33)

(

Pk+1
k f̄ k

)

2i
= 2 f̄ k+1

i −
(

Pk+1
k f̄ k

)

2i−1
, (34)

and in the other case (30)
(

Pk+1
k f̄ k

)

2i
=

1
hk+1

∫ xk+1
2i

xk+1
2i−1

L S C
r−1
−1,nl+nr+1,(x; f̄ k)dx(35)

=
nl+nr+1

∑
l=1

(
β r
−1,nl+nr+1

)

l
f k+1
i+l ,

(

Pk+1
k f̄ k

)

2i−1
= 2 f̄ k+1

i −
(

Pk+1
k f̄ k

)

2i
. (36)

In Table 5 we show some of the coefficientsβ and
(γ r

nl+nr+1,−1)−l = (β r
−1,nl+nr+1)l , l = 1, . . . ,nl+nr+1.

We call this reconstructionSL S C . Notice that it is
consistent because we force it by (34) and (36).

We also can set a non consistent reconstruction as in
(31), denoted bySL S C −NC and defined asSL S C

but introducing the following changes:

–Replacing (34) by:
(

Pk+1
k f̄ k

)

2i
= (pL S P

r

i,−1,nl+nr+1(x
k+1
2i ;Fk)

−pL S P
r

i,nl+nr+1,−1(x
k+1
2i−1;Fk))/(hk+1), (37)

–and replacing (36) by:
(

Pk+1
k f̄ k

)

2i−1
= (pL S P

r

i,−1,nl+nr+1(x
k+1
2i−1;Fk)

−pL S P
r

i,nl+nr+1,−1(x
k+1
2i−2;Fk))/(hk+1),(38)

wherepL S P
r

i,nl,nr (x;Fk) denotes theL S reconstruction for

point values. Its definition is the same as in theI L S P

reconstruction (section3.1) but here the polynomial
approximates in the sense of least squares at them> r +1
nodesxk

i+ j , j =−nl, . . . ,nr−1 (see [12] for details).

4.2 Combining SI L S C and SL S C

Consistent reconstructions recover properly the jumps but
with non consistent reconstructions the exact location of
them is lost. On the other hand,SL S C −NC is
expected to produce smoother results thanSL S C ,
because (34) and (36) will produce oscillations in the
solutions. In order to take advantage of both schemes we
create a combined algorithm betweenSI L S C and
SL S C −NC denoted asSI L S C −L S C . The idea
is through the algorithm ofSI L S C introduce a second
function that calculates theSL S C −NC reconstruction.

Table 5: Filters, (β r
−1,nl+nr+1)l , of the approximations to

f k+1
2i obtained with the SL S C

r−1
−1,nl+nr+1 reconstruction.

(

Pk+1
k f̄ k

)

2i
= ∑nl+nr+1

l=1 (β r
−1,nl+nr+1)l f̄ k

i+l .

l 1 2 3 4 5 6 7
(

β 2
−1,4

)
37
40

19
40

1
40 − 17

40
(

β 3
−1,5

)
43
28

23
240 − 41

70 − 131
280

61
140

(

β 4
−1,6

)
2394
1135 − 6547

8064 − 1861
2016

349
2016

529
605 − 159

377
(

β 4
−1,7

)
1663
898 − 478

1565 − 501
629 − 1

3 − 514
1397

227
384 − 1021

2688

TheSRdecision will be done by theSI L S C scheme,
avoiding losing the location of jumps but enabling a least
squares approximation both in̄f k

2i−1 and f̄ k
2i .

To sum up, initially we set{ f L
i }

NL
i=1 = {gL

i }
NL
i=1, and

introduce theSL S C reconstruction in theSI L S C

SRloop: The functionGI L S C
i (x) (21) is used to detect

the singularity (as in section3.3.2) and then, if the jump is
in [xk+1

2i−1,x
k+1
2i ], we calculate:







(
Pk+1

k f̄ k
)

2i−1 as in (22),
(
Pk+1

k f̄ k
)

2i = 2 f̄ k+1
i −

(
Pk+1

k f̄ k
)

2i−1 ,(
Pk+1

k ḡk
)

2i−1 as in (33) substitutingf̄ by ḡ,
(
Pk+1

k ḡk
)

2i as in (37) replacingf̄ by ḡ.

(39)

In the other case the jump is in[xk+1
2i−2,x

k+1
2i−1] and:







(
Pk+1

k f̄ k
)

2i as in (24),
(
Pk+1

k f̄ k
)

2i−1 = 2 f̄ k+1
i −

(
Pk+1

k f̄ k
)

2i ,(
Pk+1

k ḡk
)

2i as in (35) substitutingf̄ by ḡ,
(
Pk+1

k ḡk
)

2i−1 as in (38) replacing f̄ by ḡ.

(40)

5 Numerical experiments.

The purpose of this section is to show how the
reconstructions presented in this paper can be used to
remove noise.

We consider the function

g(x) =







− 4x−3
5 sin(3

2π(4x−3
5 )2) if 0 ≤ x< 3π

29 ,

|sin2π(4x−3
5 )+ π

1000| if 3π
29 ≤ x≤ 1.

(41)

We discretizeg(x) using (4) with NL = 25+L obtaining
ḡL = {ḡL

i }
NL
i=1. Then we obtainf̄ L = ḡL + n, wheren is

some white Gaussian noise1.
We consider theSignal-to-Noise Ratio, expressed in

dB, to measure the noise of the signal:

SNR(g, f ) := 10log10
∑NL

i=1(ḡ
L
i )

2

∑NL
i=1(ḡ

L
i − f̄ L

i )
2
.

1 Calculated with the functionawgnof MATLAB R©.
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We fix SNR=25dB and applyL levels of the the direct
transform (8), with different reconstructions, to{ f̄ L

i }
NL
i=1,

obtaining{ f̄ 0
i }

NL/2L

i=1 . Subsequently, we eliminate all the
details {dl}L

l=1 and we applyL levels of an inverse
transform ((9), (31) or (32)) obtaining{ f̂ L}NL

i=1. Then, we
evaluate theRoot Mean Squared Error,

RMSE( f̂ L, ḡL) =

√
√
√
√ 1

NL

NL

∑
i=1

( f̂ L
i − ḡL

i )
2.

In Figure1-(a) we can see the results that we obtain
with the SI L S C reconstruction (Section3.3.2), using
L = 5, m = 7 and r = 3. The noise and the Gibbs
phenomenon have been completely removed.

Now we consider theSL S C reconstruction (Section
4.1), with L = 5, m= 7 andr = 3, where the position of
the singularity is detected with the functionGI L S C

i (x),
(21). The imposition of consistency (inverse transform
(32)) causes that noise removal is reduced (Figure1-(b)).

In Figure 1-(c) we use the SL S C −NC
reconstruction (Section4.1) with L = 5,m= 7 andr = 3.
As expected, the location of the jump is lost, but the noise
reduction improves with respectSL S C .

In Figure 1-(d), we use theSI L S C −L S C

reconstruction (Section4.2) with L = 5, m= 7 andr = 3.
Now, the position of the jump is properly detected and the
noise reduction maintained.

Finally, these experimental results are also compared
with other image filtering algorithms (VISU [5] and
SURE [10]) from Wavelet Shrinkage Denoising(see p. ej.
[6], [4]), obtaining Figures1 (e) and (f).

From this experiment we conclude thatSI L S C is
the best choice considering the RMSE, but
SI L S C −L S C is also a good choice since it
provides a closely RMSE and ”visually smoother”
solutions.

In the second experiment we want to see which
parameters (size of the stencil,m, and degree of the
polynomial,r) are more adequate to remove noise.

We use SI L S C and SI L S C −L S C for
different noise levels (from 20 to 30 dB) and we evaluate
the RMSE between the original data ¯g5 and the
reconstructionf̂ 5. The results that we obtain with degree
r = 3 and different size of stencilsm= 5,7,9,11,13 are
shown in Figure 2-(a) and (c) for SI L S C and
SI L S C −L S C respectively. When we fixm = 9
and take different degrees,r = 2,3,4,5, we obtain the
Figure 2-(b) and (d) for SI L S C and
SI L S C −L S C respectively.

We deduce from Figure2 that we have better results
with low degree polynomials for both reconstructions.
Regarding the size of the stencil, forSI L S C it is not
an important feature, but forSI L S C −L S C better
results are obtained withm≥ 7 . After testing with some
signals, we propose thatr = 3, 7≤ m≤ 15 is a general
good choice.

0 0.5 1

0

0.5

1

(a) SI L S C ; RMSE=.017152

0 0.5 1

0

0.5

1

(b) SL S C ; RMSE=.019001

0 0.5 1

0

0.5

1

(c) SL S C −NC; RMSE=.072368

0 0.5 1

0

0.5

1

(d)SI L S C −L S C ; RMSE=.021364

0 0.5 1

0

0.5

1

(e) VISU; RMSE=.021185

0 0.5 1

0

0.5

1

(f) SURE; RMSE=.020157

Fig. 1: We apply 5 levels of decimation and 5 levels of
reconstruction without details. We user = 3 andm= 7 from (a)
to (d). Dash-dot line represent the original data{ḡ5}, the dots are
the data with noise{ f̄ 5} and the solid line the reconstruction.
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(a) SI L S C
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(b) SI L S C
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(c) SI L S C −L S C
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(d) SI L S C −L S C

Fig. 2: For a fixed reconstruction (indicated in each picture), and
different magnitude of noise we apply 5 levels of decimationand
5 levels of reconstruction without details. RMSE that we obtain
is shown, with degreer = 3 and different size of stencilsm=
5,7,9,11,13 for (a) and (c); andm= 9 and different degrees,
r = 2,3,4,5 for (b) and (d).

In this third experiment we compare the results using
the reconstructionsSI L S C , SI L S C −L S C

(both withm= 11 andr = 3) and SURE. We decimateL
levels and we eliminate all the details{dl}L

l=1.
Afterwards, we applyL levels of an inverse transform. In
Figure 3-(a) we show the results that we obtain when
L = 5 and in Figure3-(b) whenL = 3.

We observe that we obtain better results with the
SI L S C −L S C reconstruction, specially when
L = 3.

20 21 22 23 24 25 26 27 28 29 30
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(a)
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SILSC
SILSC−LSC
SURE

(b)

Fig. 3: Comparison between the methodsSI L S C ,
SI L S C −L S C (eliminating {dk

i }
L
k=1) and SURE. (a)

L = 5, (b)L = 3.

Finally, we show in Figure4 the limit functions of
some reconstructions. We apply 6 levels of reconstruction
to { f̄i}15

i=0 with f̄i = 0, i 6= 7, and f̄7 = 1. In (a) we use
I L S C and we obtain a broken line. Despite it means
that it would be inadequate for using in multiresolution
schemes, we have seen in the previous experiments that
the results are smooth. This is because we apply the
reconstruction to a sufficiently smoothed signal thanks to
the cell average decimation. In (b) we useL S C (32),
which is consistent. The output is extremely broken, due
to the imposition of consistency generates peaks that are
transmitted and increased to the next level. With
L S C −NC (31), Figure 4-(c), the limit function is
smooth since these peaks are not generated.
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Fig. 4: Limit functions.L = 6, m= 7 andr = 3.

6 Conclusions

In this paper we have built a reconstruction, in the cell
average framework, based on combining interpolation
and least squares approximation (Interp-L S ) verifying
that it meets the requirements for use in multiresolution
schemesa la Harten. We have seen how to include the
non-linear techniquesENO and SR in the Interp-L S

reconstruction improving the approximation in the
vicinity of discontinuities.

Then, we have presented a reconstruction based on
least squares approximations (L S ), also in the cell
average framework. In this case we do not have the
consistency which is necessary in the multiresolution
schemesa la Harten. We have presented an scheme that
circumvents this problem. WhileENO can be applied
without problems, a way to apply theSRin this context is
using the function GI L S C

i (x), (21), to detect the
singularity (as in section3.3.2).

We have shown how these reconstructions can be used
to reduce the noise. We have compared the results that we
obtain with the methods introduced in this paper with
other existing techniques. We observe that in the presence
of jumps the results we get with the methods presented in
this paper (SI L S C and SI L S C −L S C ) are
more accurate in general.
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