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Abstract: In this paper, we provide global error bounds generalized complementarity problem, denoted by GCP(f ,g) based on the
generalized Fisher-Burmeister function and its generalizations under certain conditions. These error bounds can be viewed not only as
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1 Introduction

It is well known that error bounds can be used to measure
how much the approximate solution fails to be in the
solution set and to analyze the convergence rates of
various methods. The study of the error bounds has
received increasing attention in the last decades, see the
survey paper by Pang [23] and references therein. The
error bounds have played important roles in stopping
rules and the convergence analysis for many iterative
algorithms, and in the treatment of various issues in the
areas of complementarity problems and variational
inequalities. Further, it can be used in the sensitivity
analysis of the problems when their data is subject to
perturbation [6], [9], [23].

The global error bound, that is, an upper bound
estimation of the distance from a given point inRn to the
solution set of the problem in terms of some residual
functions, is an important one [23]. The error bound
estimation for the classical linear complementarity
problems (LCP) [17], [18], [20], [30], nonlinear
complementarity problems [19] and the generalized linear
complementarity problems over a polyhedral cone [26]
were analyzed. In the special cases of linear/nonlinear
complementarity problems, the natural residual has
played an important role in establishing global error

bounds, see, e.g., [17], [19], [20]. It plays a similar role in
our analysis for generalized nonlinear complementarity
problems [16]. In this paper, we study the global error for
generalized nonlinear complementarity problems based
on the generalized Fisher-Burmeister function and its
generalizations under certain conditions.

1.1 The Problem

Consider the generalized complementarity problem
corresponding tof andg, denoted by GCP(f ,g), which is
to find a vectorx∗ ∈ ℜn such that

f (x∗)≥ 0, g(x∗)≥ 0 and 〈 f (x∗),g(x∗)〉= 0 (1)

where f : ℜn → ℜn and g : ℜn → ℜn are givenC1

functions.
For the numerical methods formulation, and

applications of GCP(f ,g), we refer the interested readers
to [14], [15], [22] and the references cited therein. Also
GCP( f ,g) is a generalization of the nonlinear
complementarity problem NCP( f ) wheng(x) = x, linear
complementarity problem LCP(M,q) when
f (x) = Mx+q andg(x) = x with M ∈ Rn×n and a vector
q ∈ Rn, and quasi/implicit complementarity problem
wheng(x) = x−W(x) with someW : Rn → Rn, see, e.g.,
[15], [21], [24].
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The importance of these problems in operations
research, optimization, engineering sciences, economics
and other areas has been well documented in the
literature, see e.g., [4], [5], [7], [8], [13], [25], and the
references therein.

One of the popular methods for solving GCP(f ,g) is
to reformulate it as a minimization problem, see, e.g.,
[11], [16], [28]. A function which can constitute an
equivalent minimization problem for the GCP(f ,g) is
called a merit function. More specifically, a merit
function is a function whose global minima on a set
X ∈ Rn are coincident with the solutions of the original
GCP(f ,g). In order to construct thi merit function, we
need to define GCP functions. A functionφ : R2 → R is
called a GCP function if

φ(a,b) = 0⇔ ab= 0,a≥ 0, b≥ 0.

We call

Φ(x) =















φ( f1(x),g1(x))
...

φ( fi(x),gi(x))
...

φ( fn(x),gn(x))















(2)

a GCP function for GCP( f ,g).
We consider a GCP functionΦ : Rn → Rn associated

with GCP(f ,g) and its merit function

Ψ∗(x̄) :=
1
2
‖Φ∗(x̄)‖2 =

n

∑
i=1

ψ∗( fi(x̄),gi(x̄)), (3)

whereΦ∗(x̄) is defined in (2) and

ψ∗(a,b) :=
1
2

φ∗(a,b)2
, (4)

with ∗ ∈ {{1, p},1,2,3,4,{θ , p}}.
And for ψα ,θ ,p, we denote the corresponding merit

function as

Ψα ,θ ,p(x̄) :=
n

∑
i=1

φα ,θ ,p( fi(x̄),gi(x̄)). (5)

So that

Ψ∗(x̄) = 0⇔ Φ∗(x̄) = 0⇔ x̄ solves GCP( f ,g).

If we assume GCP(f ,g) has at least one solution, then
a vector ¯x ∈ Rn solves GCP(f ,g) if and only if it is a
global/local minimizer (a stationary point) of the
unconstrained minimization problem

min
x∈Rn

Ψ(x).

1.2 Example of GCP functions

We give some examples for GCP functions based on the
generalized Fisher-Burmeister function and it
generalization [2,1,12]. Suppose thatf andg areC1.
Example 1Consider the following GCP function which is
the basis of

φp(a,b) := a+b−‖(a,b)‖p (6)

wherep is any fixed real number in the interval(1,+∞)
and‖(a,b)‖p denotes thep-norm of(a,b), i.e.,‖(a,b)‖p=
p
√

|a|p+ |b|p. The functionφp was noted by Tseng [29].
For further study on this family of NCP functions, see [2].

The ith component of GCP functionΦ(x) in (2) is
defined as

Φi(x) = φp( fi(x),gi(x)) := fi(x)+gi(x)−‖( fi(x),gi(x))‖p

Example 2Consider the following GCP function which is
based on proposed family of NCP functions [2] relying on
φp in (6) and some introduced NCP functions in [1]:

φ1(a,b) := φp(a,b)+αa+b+, α > 0. (7)

The ith component of GCP functionΦ(x) in (2) is
defined as

Φi(x) = φ1( fi(x),gi(x))
:= φp( fi(x),gi(x))+α fi(x)+gi(x)+, α > 0.

Example 3The following GCP function is based on NCP
function in [2]

φ2(a,b) := φp(a,b)+α(ab)+, α > 0. (8)

We define theith component of GCP functionΦ(x) in (2)
as

Φi(x) = φ2( fi(x),gi(x))
:= φp( fi(x),gi(x))+α( fi(x)gi(x))+, α > 0.

Example 4The following GCP function is based on NCP
function in [2]

φ3(a,b) :=
√

[φp(a,b)]2+α(a+b+)2, α > 0. (9)

We define theith component of GCP functionΦ(x) in (2)
as

Φi(x) = φ3( fi(x),gi(x))

:=
√

[φp( fi(x),gi(x))]2+α( fi(x)+gi(x)+)
2, α > 0

Example 5Consider following GCP function

φ4(a,b) :=
√

[φp(a,b)]2+α[(ab)+]2, α > 0. (10)

This function is motivated from NCP function in [2].
Define theith component of GCP functionΦ(x) in (2) as

Φi(x) = φ3( fi(x),gi(x))

:=
√

[φp( fi(x),gi(x))]2+α[( fi(x)gi(x))+]
2
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whereα > 0.
Example 6 We consider the following GCP function
which is based on another family of NCP functions [12]

φθ ,p(a,b) := a+b− p
√

θ (|a|p+ |b|p)+ (1−θ )|a−b|p(11)

whereθ ∈ (0,1]. It is clear that (11) reduce to (6) when
θ = 1. In the following, we will denote

φ1,p(a,b) = φp(a,b) = a+b−‖(a,b)‖p.

We define theith component of GCP functionΦ(x) in (2)
as

Φi(x) = φθ ,p( fi(x),gi(x)) := fi(x)+gi(x)
− p
√

θ (| fi(x)|p+ |gi(x)|p)+ (1−θ )| fi(x)−gi(x)|p

whereθ ∈ (0,1].
Example 7 Based on (11) and NCP function in [2], we
consider the following GCP function

φα ,θ ,p(a,b) :=
α
2
[(ab)+]

2+
1
2
[φθ ,p(a,b)]

2
, α ≥ 0 (12)

whereφα ,θ ,p(a,b) : R2 → R+. The ith component of GCP
functionΦ(x) in (2) is defined as

φα ,θ ,p( fi(x),gi(x))
:= α

2 [( fi(x)gi(x))+]2+ 1
2 [φθ ,p( fi(x),gi(x))]2, α ≥ 0.

In this article, we give global error bounds generalized
complementarity problem, denoted by GCP(f ,g) based
on the generalized Fisher-Burmeister function and its
generalizations under Relatively uniform(P)- conditions.
These error bounds can be viewed as extensions of
previously known results in [17], [20], [19] [16].

A word about our notation. Vector inequalities are
interpreted componentwise. Vectors inRn are regarded as
column vectors. The inner-product between two vectorsx
andy in Rn is denoted by eitherxTy or 〈x,y〉. For a matrix
A, the ith row of A is denoted byAi . For a differentiable
function f : Rn → Rm, the Jacobian matrix off at x̄ is
denoted by∇ f (x̄). The p-norm ofx is denoted||x||p and
the Euclidean norm ofx is denoted by||x||. Assume thatp
is a fixed real number in(1,∞). Also, we use the natural
residual merit functionΨNR : Rn → R+ defined by

ΨNR(x) := 1
2

n

∑
i=1

φ2
NR( fi(x),gi(x)) where φNR : R2 → R

denotes the minimum GCP-function min{a,b}.
In [27], the author generalized the concepts of

monotonicity,P0-property and their variants for functions
and use them to establish some conditions to get a
solution for generalized complementarity problem when
the underlying functionsf andg areH-differentiable. .

Let us recall the following definitions from [27].

Definition 1For functions f,g : ℜn → ℜn, we say that f
and g are:
(a) Relatively monotone if

〈 f (x)− f (y),g(x)−g(y)〉 ≥ 0 for all x,y∈ ℜn
.

(b) Relatively strictly monotone if

〈 f (x)− f (y),g(x)−g(y)〉> 0 for all x,y∈ ℜn
.

(c) Relatively strongly monotone if there exists a constant
µ > 0 such that

〈 f (x)− f (y),g(x)−g(y)〉 ≥ µ‖x− y‖2 for all x,y∈ ℜn
.

(d) RelativelyP0(P)-functions if for any x6= y in ℜn,

max
i:xi 6=yi

[ f (x)− f (y)]i [g(x)−g(y)]i ≥ (>)0.

(e) Relatively uniform(P)-functions if there exists a
constantη > 0 such that for any x,y∈ ℜn,

max
1≤i≤n

[ f (x)− f (y)]i [g(x)−g(y)]i ≥ η‖x− y‖2
.

Note that relatively strongly monotone functions are
relatively strictly monotone, and relatively strictly
monotone functions are relatively monotone.

2 The main result

We start by defining the concepts of a residual, lower and
upper error bounds.

Definition 2Let e: ℜn → ℜ,X ∈⊆ ℜn and let

dist(x,X) := inf
y∈X

‖x− y‖

denote the distance of an arbitrary vector x to the set X.
Assume that GCP( f,g) has a nonempty solution set X∗.
Then:

(a)the function e is called a residual of GCP( f,g) if
e(x) ≥ 0, for all x ∈ ℜn, and e(x) = 0 if and only if x
solves GCP( f,g);

(b)a residual e is lower global error bound for GCP( f,g)
if there exists some constantτ1 > 0 such thatτ1e(x)≤
dist(x,X∗), for each x∈ ℜn; a residual e is lower local
error bound for GCP( f,g) if there exists some constant
τ̄1 > 0 such thatτ̄1e(x) ≤ dist(x,X∗), for each x∈ B,
where B⊂ ℜn;

(c)a residual e is upper global error bound for
GCP( f,g) if there exists some constantτ2 > 0 such
that dist(x,X∗)≤ τ2e(x), for each x∈ ℜn; a residual e
is upper local error bound for GCP( f,g) if there
exists some constant τ̄2 > 0 such that
dist(x,X∗)≤ τ̄2e(x), for each x∈ B, where B⊂ ℜn.

For eachi ∈ {1,2, . . . ,n}, define

r i(x) := min{ fi(x),gi(x)}.
Let r(x) denote the vector with componentsr i(x),
i ∈ {1,2, . . . ,n}. ‖r(x)‖ is called the natural residual for
GCP.

First, we show that the Lipschitz continuity is all what
we need forr(x) to be a lower error bound fordist(x,X)
for any GCP.
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Lemma 1[16, Lemma 7.2] Assume that f and g are
Lipschitz continuous with constant L> 0. Then for all
i ∈ {1,2, . . . ,n}, we have

|r i(x)| ≤ L‖x− x∗‖, for all x ∈ ℜn

where x∗ is an arbitrary solution of GCP( f,g).

Lemma 2[16, Lemma 7.4] Assume that f and g are
Lipschitz continuous with constant L> 0. Then for each
i ∈ {1,2, . . . ,n} and any solution x∗ ∈ ℜn of GCP( f,g),
we have

( fi(x)− fi(x
∗))(gi(x)−gi(x

∗))≤ 2L|r i(x)|‖x− x∗‖,

for all x ∈ ℜn.

The proof of the following lemma is similar to Lemma
3.2 and Proposition 3.1 in [3] so we omit the proof.

Lemma 3Let φp : ℜ2 → ℜ be defined as (6). Then for any
p> 1, we have

(i)

(2−2
1
p )|min{a,b}|≤ |φp(a,b)| ≤ (2+2

1
p )|min{a,b}|.

(ii)

[2−2
1
p ]2ΨNR(x)≤Ψp(x)≤ [2+2

1
p ]2ΨNR(x)

for all x ∈ Rn.

Lemma 4Let φ1 : ℜ2 → ℜ be defined as (7). Then for any
p> 1 andα > 0, we have

(i)

(2−2
1
p )|min{a,b}| ≤ |φ1(a,b)|

≤ (2+2
1
p +αC1)|min{a,b}|

for any a,b ∈ B1, where B1 is a set such that
maxx∈B1 x≤C1.

(ii)

[2−2
1
p ]2ΨNR(x)≤Ψ1(x)≤ [2+2

1
p +αC1]

2ΨNR(x)

for all x ∈ Rn.

Proof. It is enough to show part(i). Whena > 0,b > 0,
thenφp(a,b)> 0 anda+b+ > 0, then we have

(2−2
1
p )|min{a,b}| ≤ |φ1(a,b)|= φ1(a,b)

= φp(a,b)+αa+b+ ≤ (2+2
1
p +αC1)|min{a,b}|;

otherwise,(2−2
1
p )|min{a,b}| ≤ |φ1(a,b)|= |φp(a,b)| ≤

(2+2
1
p )|min{a,b}|.

Lemma 5Let φ2 : ℜ2 → ℜ be defined as (8). Then for any
p> 1 andα > 0, we have

(i)

|φ2(a,b)| ≤ (2+2
1
p +αC1)|min{a,b}|

for any a,b ∈ B1, where B1 is a set such that
maxx∈B1 |x| ≤C1.

(ii)

Ψ2(x)≤ [2+2
1
p +αC1]

2ΨNR(x)

for all x ∈ Rn.

Proof. Let us show part(i). If a> 0,b> 0, thenφp(a,b)>
0 and(ab)+ > 0, then we have

|φ2(a,b)|= φ1(a,b) = φp(a,b)+α(ab)+
≤ (2+2

1
p +αC1)|min{a,b}|;

If a< 0,b< 0, thenφp(a,b)< 0 and(ab)+ > 0, then

|φ2(a,b)| ≤ |φp(a,b)|+α(ab)+
≤ (2+2

1
p +αC1)|min{a,b}|

in the other case,

|φ2(a,b)|= |φp(a,b)| ≤ (2+2
1
p )|min{a,b}|.

Above all, we have that the conclusion of this Lemma
holds.

Remark 1For φ2, there does not exist a constant C> 0
such that |φ2(a,b)| ≥ C|min{a,b}|. Now we give an
example. let a= −1, b= −1, and α = 2+

√
2, then we

have|φ2(a,b)|= 0.

Lemma 6Let φ3 : ℜ2 → ℜ be defined as (9). Then for any
p> 1 andα > 0, we have

(i)

(2−2
1
p )|min{a,b}| ≤ φ3(a,b)

≤
√

(2+2
1
p )2+αC2

1|min{a,b}|
for any a,b ∈ B1, where B1 is a set such that
maxx∈B1 |x| ≤C1.

(ii)

[2−2
1
p ]2ΨNR(x) ≤Ψ3(x)

≤ [(2+2
1
p )2+αC2

1]ΨNR(x) for all x ∈ Rn.

Proof. We will prove part(i). When a > 0,b > 0, then
φp(a,b)> 0 and(ab)+ > 0, then we have

(2−2
1
p )|min{a,b}| ≤ φp(a,b)≤ φ3(a,b)

=
√

φp(a,b)2+α(a+b+)2

≤
√

φp(a,b)2+α max{|a|, |b|}2|min{a,b}|2

≤
√

(2+2
1
p )2+αC2

1|min{a,b}|;
otherwise,

(2−2
1
p )|min{a,b}| ≤ |φ3(a,b)|= |φp(a,b)|

≤ (2+2
1
p )|min{a,b}|.
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Lemma 7Letφ4 : ℜ2 →ℜ be defined as (10). Then for any
p> 1 andα > 0, we have

(i)

(2−2
1
p )|min{a,b}| ≤ |φ4(a,b)|

≤
√

(2+2
1
p )2+αC2

1|min{a,b}|
for any a,b ∈ B1, where B1 is a set such that
maxx∈B1 |x| ≤C1.

(ii)

[2−2
1
p ]2ΨNR(x) ≤Ψ4(x)≤ [(2+2

1
p )2+αC2

1]ΨNR(x)

for all x ∈ Rn.

Proof. We will show part(i). Whena > 0,b > 0 or a <

0,b< 0, then(ab)+ > 0, then we have

(2−2
1
p )|min{a,b}| ≤ |φp(a,b)|

≤ φ4(a,b)

=
√

φp(a,b)2+α(ab)2
+

≤
√

φp(a,b)2+α max{|a|, |b|}2|min{a,b}|2

≤
√

(2+2
1
p )2+αC2

1|min{a,b}|;
otherwise,

(2−2
1
p )|min{a,b}| ≤ |φ4(a,b)|= |φp(a,b)|

≤ (2+2
1
p )|min{a,b}|.

In the following theorems, the merit functions of the
GCP functions based on generalized Fisher-Burmeister
function and its generalizations provide global error
bounds for GCP(f ,g) under appropriate conditions.

Recall that when the solution set is nonempty andf
andg are relatively uniform(P)-functions, the solution of
GCP(F, G) is unique [16].

Theorem 1Assume that f and g are Lipschitz continuous
with constant L> 0. Suppose that the solution set X∗ of
GCP is nonempty. Then for any p> 1, we have

Ψp(x)≤
(2+2

1
p )2

2
nL2dist(x,X∗)2

,

for all x ∈ ℜn.

Proof. By Lemma1, we have

|r i(x)| ≤ Ldist(x,X∗), for all i ∈ {1,2, . . . ,n}.

Combining the inequality with Lemma3, it follows that

Ψp(x) = 1
2 ∑n

i=1 |φp( fi(x),gi(x))|2

≤ 1
2 ∑n

i=1(2+2
1
p )2r2

i (x)

≤ (2+2
1
p )2

2 nL2dist(x,X∗)2.

The proof is complete.

Theorem 2Assume that f and g are Lipschitz continuous
with constant L> 0, and that f and g are relatively
uniform (P)-functions with constantη > 0. Suppose that
the solution set X∗ of GCP is nonempty. Then for any
p> 1, we have

Ψp(x)≥
(2−2

1
p )2η2

8L2 ‖x− x∗‖2
,

for all x ∈ ℜn and all x∗ ∈ X∗.

Proof. From Lemma2 and the property off andg being
relatively uniform(P)-functions, there exists at least one
indexi0 such that

|r i0(x)| ≥
η
2L

‖x− x∗‖,

which together with Lemma3 implies that

Ψp(x) = 1
2 ∑n

i=1 φ2
p( fi(x),gi(x))

≥ 1
2φ2

p( fi0(x),gi0(x))

≥ (2−2
1
p )2

2 |r i0(x)|2

≥ (2−2
1
p )2η2

8L2 ‖x− x∗‖2.

We get the results.

Theorem 3Assume that f and g are Lipschitz continuous
with constant L> 0. Suppose that the solution set X∗ of
GCP is nonempty. Then for any p> 1 and α > 0, there
exists a constant C> 0 such that

Ψ1(x)≤Cdist(x,X∗)2
, for all x ∈ B,

where B is a bounded set.

Proof. Since f andg are continuous andB is bounded,
then∃C1 > 0 such that

| max
1≤i≤n

{| fi(x)|, |gi(x)|}| ≤C1, for all x∈ B. (13)

From the definition ofφ1 in (7) and Lemma3, for any
a,b∈ ℜ and max{|a|, |b|} ≤C1, we have

|φ1(a,b)|
≤ |φp(a,b)|+αa+b+
≤ (2+2

1
p +αC1)|min{a,b}|

(14)

where the first inequality and the last inequality are from

0≤ a+b+≤ |ab| ≤max{|a|, |b|}|min{a,b}|≤C1|min{a,b}|.

Combining the inequality in Lemma1, it is followed that

Ψ1(x) = 1
2 ∑n

i=1 |φ1( fi(x),gi(x))|2

≤ 1
2(2+2

1
p +αC1)

2 ∑n
i=1 r2

i (x)

≤ 1
2(2+2

1
p +αC1)

2nL2dist(x,X∗)2.

for any x ∈ B. DenoteC := 1
2(2+ 2

1
p + αC1)

2nL2, then
C> 0 andΨ1(x)≤Cdist(x,X∗)2 for anyx∈ B.
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Theorem 4Assume that f and g are Lipschitz continuous
with constant L> 0. Suppose that the solution set X∗ of
GCP is nonempty. Then for any p> 1 and α > 0, there
exist constants Ci > 0, i = 2,3,4 such that

Ψi(x)≤Cidist(x,X∗)2
, i = 2,3,4, for all x ∈ B,

where B is a bounded set.

Proof. By a similar proof as in Theorem3, we can get
the results.

Theorem 5Assume that f and g are Lipschitz continuous
with constant L> 0, and that f and g are relatively
uniform (P)-functions with constantη > 0. Suppose that
the solution set X∗ of GCP is nonempty. Then for any
p> 1,α > 0, there exist constants̄Ci > 0, i = 1,3,4 such
that

Ψi(x)≥ C̄i‖x− x∗‖2
, for all x ∈ B and all x∗ ∈ X∗

.

where B is a bounded set.

Proof. By a similar proof as Theorem2, we can get

C̄1 = C̄3 = C̄4 =
(2−2

1
p )2η2

8L2 .

The proof of part(i) in the following lemma will be
similar to Lemma 3.1 [10] (for NCP context) so we omit
the proof.

Lemma 8Let φθ ,p : ℜ2 → ℜ be defined in (11). Then, for
any p> 1 andθ ∈ (0,1],

(i)
(

2− (2θ )
1
p

)

|min{a,b}| ≤ |φθ ,p(a,b)|
≤
(

2+(2θ )
1
p

)

|min{a,b}|.

(ii)
[

2− (2θ )
1
p

]2
ΨNR(x)≤Ψθ ,p(x)

≤
[

2+(2θ )
1
p

]2
ΨNR(x).

Lemma 9Letψα ,θ ,p : ℜ2 →ℜ be defined as (12). Then for
any p> 1, θ ∈ (0,1] andα ≥ 0, we have

(2−(2θ)
1
p )2

2 |min{a,b}|2 ≤ ψα ,θ ,p

≤ (2+(2θ)
1
p )2+αC2

1
2 |min{a,b}|2

i.e.,

(2−(2θ)
1
p )2

2 ΨNR(x) ≤Ψα ,θ ,p(x)

≤ (2+(2θ)
1
p )2+αC2

1
2 ΨNR(x).

for any a,b∈ B1, where B1 is a set such thatmaxx∈B1 |x| ≤
C1.

Proof. Since for anya,b∈ ℜ and max{|a|, |b|} ≤ C1,
whereC1 is defined in (13),

[(ab)+]2 ≤ a2b2 ≤ (max{|a|, |b|})2(min{a,b})2
≤C2

1(min{a,b})2 (15)

Combining (15) and Lemma8, and with the definition in
(12), we have

ψα ,θ ,p(a,b) =
α
2 [(ab)+]2+ 1

2 φθ ,p(a,b)2

≤ 1
2

(

αC2
1 +

(

2+(2θ )
1
p

)2
)

(min{a,b})2

for anya,b∈ ℜ and max{|a|, |b|} ≤C1.

Theorem 6Assume that f and g are Lipschitz continuous
with constant L> 0. Suppose that the solution set X∗ of
GCP is nonempty. Then for any p> 1 andθ ∈ (0,1], we
have

Ψθ ,p(x)≤ (2+(2θ)
1
p )2

2 nL2dist(x,X∗)2,

for all x ∈ ℜn.

Proof. By Lemma8, we have

|r i(x)| ≤ Ldist(x,X∗), for all i ∈ {1,2, . . . ,n}.

Combining the inequality with Lemma3, it follows that

Ψθ ,p(x) =
1
2 ∑n

i=1 |φθ ,p( fi(x),gi(x))|2

≤ 1
2 ∑n

i=1(2+(2θ )
1
p )2r2

i (x)

≤ (2+(2θ)
1
p )2

2 nL2dist(x,X∗)2.

The proof is complete.

Theorem 7Assume that f and g are Lipschitz continuous
with constant L> 0, and that f and g are relatively
uniform (P)-functions with constantη > 0. Suppose that
the solution set X∗ of GCP is nonempty. Then for any
p> 1, we have

Ψθ ,p(x)≥ (2−(2θ)
1
p )2η2

8L2 ‖x− x∗‖2,

for all x ∈ ℜn and all x∗ ∈ X∗.

Proof. From Lemma2 and the property off andg being
relatively uniform(P)-functions, there exists at least one
indexi0 such that

|r i0(x)| ≥
η
2L

‖x− x∗‖,

which together with Lemma3 implies that

Ψθ ,p(x) =
1
2 ∑n

i=1 φ2
p( fi(x),gi(x))

≥ 1
2φ2

p( fi0(x),gi0(x))

≥ (2−(2θ)
1
p )2

2 |r i0(x)|2

≥ (2−(2θ)
1
p )2η2

8L2 ‖x− x∗‖2.
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Theorem 8Assume that f and g are Lipschitz continuous
with constant L> 0. Suppose that the solution set X∗ of
GCP is nonempty. Then any p> 1, θ ∈ (0,1] andα ≥ 0,
there exists a constantC > 0 such that

Ψα ,θ ,p(x)≤ C dist(x,X∗)2
, for all x ∈ B,

where B is a bounded set.

Proof. From Lemma then for allx∈ B,
Ψα ,θ ,p(x) = ∑n

i=1 ψα ,θ ,p( fi(x),gi(x))

≤ 1
2 ∑n

i=1

(

αC2
1 +

(

2+(2θ )
1
p

)2
)

r2
i (x)

≤
αC2

1+

(

2+(2θ)
1
p

)2

2 nL2dist(x,X∗)2.

for anyx∈B. DenoteC :=
αC2

1+

(

2+(2θ)
1
p

)2

2 nL2, thenC >

0 andΨα ,θ ,p(x)≤ Ldist(x,X∗)2 for anyx∈ B.

Theorem 9Assume that f and g are Lipschitz continuous
with constant L> 0, and that f and g are relatively
uniform (P)-functions with constantη > 0. Suppose that
the solution set X∗ of GCP is nonempty. Then for any
p> 1, θ ∈ (0,1] andα ≥ 0, we have

Ψα ,θ ,p(x)≥
(2− (2θ )

1
p )2η2

8L2 dist(x,X∗)2
, for all x ∈ B,

where B is a bounded set.

Proof. The proof can be obtained in a similar way.

Corollary 1Under the assumptions that f and g are
Lipschitz continuous and f and g are relatively uniform
(P)-functions, the functions

√

Ψp(x) and
√

Ψθ ,p(x)
provide lower and upper global error bounds for
GCP( f,g); the functions

√

Ψ1(x),
√

Ψ3(x),
√

Ψ4(x) and
√

Ψα ,θ ,p(x) provide lower and upper local error bounds
for GCP( f,g).

Final Remarks
In this paper, we established global error bounds on

the generalized complementarity problem, GCP( f ,g),
based on generalized Fischer-Burmeister function and its
generalizations which are not only the extensions of those
for the classical nonlinear complementarity problems but
also new results for the nonlinear/generalized
complementarity problems. For example, our results give
various results for generalized complementarity problem
whenp-norm replace by 2-norm (or whenp is an integer
greater than 2). Also, wheng(x) = x, our results further
give a unified/generalization treatment of such results for
the nonlinear complementarity problem based on
generalized Fisher-Burmeister function and its
generalizations.

Definitely, we may use the error bound estimation to
establish quick convergence rate of the Newton-type
method and derivative free algorithms for solving the
GCP( f ,g), this is a topic for future research by the
authors. The results obtained in this paper can be taken as
an extension of the existing global error bound for the
classical nonlinear complementarity problems.
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