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Abstract: In this paper we carry out a research project whose main gadhéistudy of an undirected graph by means of investigation
tools provided by Pawlak rough set theory. Specifically, weethmine both the lower and the upper rough approximatiotions
for an information table induced from a cycle or a pathrovertices. For such graphs we also provide a complete déseripf the

corresponding exact subsets.
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1 Introduction

Graphs are objects ubiquitously present in mathematic
and computer science. The graph structure has bee
studied mostly from a geometric point of view, by b
searching for the analogies with the various types of:
geometries. In fact, classical problems in graph theory,
concern the determination of distances, neighborhood

connectivity and so on. Recently, the

graphs can be studied in terms of sequential dynamic
systems (see?[3,4,5]), by means of parallel dynamics
(see []), or also for their analogies with both sequential
and parallel dynamics on order structures (s&€8,p, 10,
15,17,18,19,20,21)).

In this paper we continue a research project startedan [
23], where a simple undirected graph is studied as
particular type of information system. According to
Pawlak (see40]) an information systenis a structure
J = (U,Att,Val,F), whereU = {ug,up,...,un} is a
non-empty  finite  set called universe  set,
Att = {ay,a,...,an} is a non-empty finite set called
attribute setand F : U x Att — Val, called information
map is an application from the direct produbt x Att
into the so calledralue set Val The elements ob) are
called objects and the elements ofAtt are called
attributes In particular, ifVal = {0,1} we say tha¥ is a
Boolean information systemAn information system

occurs in all situations in which a huge amount of data

needs to be classified in a table according to some
criterion of subdivision, therefore it is a structure that i
very frequent in various fields of study, both of qualitative

And quantitative type. In his seminal work38[39,40],

Bawlak introduced several investigation tools in order to
etter analyze and reduce the complexity of a generic
information system. In this framework, Pawlak proposed
therough set theoryabbreviated RST (see also the more

impetuous%ﬂecem paperdil, 42,43)), that is a useful methodological

development of computer science has placed new,
questions about the graph structures. For example, the

tool for reasoning about knowledge of objects represented
y attributes. Nowadays, RST (and its more general
Yersion called granular computing [49)) is a well

ainvestigated research field6,[L2 13,14,27,28,52,53,

which has connections with operative resear@q],|
preclusivity spacesil], machine learning41], interval
analysis B5], formal concept analysis3f, 49|, database
theory [B1,46], data mining B236,37,50], fuzzy set
theory [B3,44,54], interactive computing 47,48]. The

%undamental assumption of RST is based on the famous

Law of Indiscernibility according to which two objects
are indiscernible (i.e. similar) if and only if they shareth
same properties. Formally, O = (U,Att,Val,F) is an
information system and A C Att, we call
A-indiscernibility the equivalence relatior=a on the
universe sety defined as follows: ifi, U’ € U then

u=alU <= F(u,a)=F(Uu,a),vac A (1)

In rough set theory, there exist different kinds of sets:

—Elementary sets, which are sets of all indiscernible
objects;
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—Exact sets, which are unions of elementary sets; occurring sub-cases correspond then to all possible
—Rough (in the sense of imprecise) sets, which are notelations between the vertex subdetand the previous
exact. three sets. From this, the need to express in detail our

results in three tables. Our results show that, also for

The objects can be classified as belonging to exacsimple graph structures, the complete determination of
sets or to their complements, but it isn't true in the case ofboth theA-lower and theA-upper approximations can be
rough sets. Thus the behavior of rough sets is moreguite complex. Therefore one expects that the complete
interesting than that of exact sets. In fact, we can classifjcomputation of these approximations for more
objects by means of the knowledge degree we have abowomplicated families of graphs can be a difficult goal to
them, but in the case of rough sets, there are some objecthieve.
which belong to a so callethoundary region namely
those for which it is not possible to say with certainty that ~ To conclude this introduction we now briefly describe
belong to the set or to its complement. Hence, rough setshe content of the sections in this paper. In Section 2, we
represent vague concepts. The way of studying these sefgstly introduce the basic notations that we use in the
consists in substituting any vague concept with twosequel. Next, we characterize in our graph context the
precise concepts, called respectivielwer approximation  form of two classical RST notions: indiscernibility
andupper approximationThe lower approximation of an relation and approximation functions. In Section 3, for
non-emptyY (briefly Ia(Y)) represents the set of objects any n we completely determine the indiscernibility
that surely belong toY, with respect to our knowledge partition form for both then-cycle and then-path. In
provided by A; the upper approximation of an object Section 4 we compute th&upper approximation and the
subsetY (briefly ua(Y)) is the set of objectsurelyor  A-lower approximation for bottC, and P,. Finally, in
possiblybelonging toY with respect to our knowledge Section 5 we use the results obtained in Section 4 in order
expressed byA. Furthermore, we say that an object subsetto find all A-exact subsets for bot®, andP;.
is A-exact if itsA-lower approximation coincides with its
A-upper approximation.
Some natural links of RST with both graph and :
hypergraph theory have recently been founded. In fact, in2 Basic Results
[22,23,24,25,26] the idea to study any simple undirected ) o
graphG as if it were a Boolean information system was |f X is any finite set, we denote bX| the number of
developed (in 16] this idea has been also extended to €lements in the set and by Z(X) the power set oK. If
hypergraph theory). The basic tool to connect graphs ang’ € X and X is clear from the context, we writ¥®
Boolean information systems is the adjacency matrix ofinstead ofX\'Y. _ .
G, which in [22,23,24,25,26] has been interpreted as the |f Ris an equivalence relation Qﬁandx is an element of
Boolean table of a particular information system. X, we denote by[x|z the equivalence class of with
Specifically, in p2,23,24] some graph families, such as respectto the relatioR.
the complete graplK, or the complete bipartite graph ) ] ]
Kpq, have been broadly studied in terms of information ~ We recall now the following classical notion.
tables. In particular, in the above papers, fawer and
the A-upper approximations, th&-positive region of any Definition 1.A set-partitionrton X is a finite collection of
vertex subseB, the A-attribute dependency function and non-empty subsets;B..,By of X such that B1Bj =0
the rough membership function, whefe B andY are  for all i # j and such thatUiM:lBi = X. The subsets
vertex subsets, have been completely determined both fdBs,...,Byy are called blocks of m and we write
the complete grapk, and the complete bipartite graph 7:=Bs|...|Bv to denote thatt is a set partition having

Kp,g- blocks B,...,Bu.
In this paper we apply the RST tools respectively to the
cases of the cycl€, and of the path?, on n vertices In this paper we treat exclusively with finite

(respectively, n-cycle and n-path). Specifically, we undirected simple graphs and we refer &9][for any
determine theA-lower and theA-upper approximations general notion concerning graph theory. Here we recall
for both C, and RB,. Moreover, we also determine all only some basic definitions and we fix some notations
A-exact sets, i.e. those sets for which thelower  which we will use in the sequel. We always denote by
approximation coincide with th&-upper approximation. G = (V(G),E(G)) a finite simple (i.e. no loops and no
Although the structure of bot@,, andR, is quite simple,  multiple edges are allowed) undirected graph, with vertex
the complete determination of the correspondialpwer  set V(G) = {vi,...,vn} and edge setE(G). If
and A-upper approximations was found quite complex, v,V € V(G), we will write v~ V if {v,V} € E(G) and
since it was necessary to treat many sub-cases. In fact, the- V' otherwise.

indiscernibility with respect to a vertex subgegives rise

to three set#\, A” andA”, which provide a partition of  Definition 2.Let ve V(G). We call neighborhood of v in
the vertex seV(G), for both G = C, and G = Py. All G the set N(v) := {we V(G) : v~ w}. In particular, if
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A CV(G) we call neighborhood of A in G the set
Ne(A) == [ Na(v) (2)

VEA

In the next definition we see how a gra@tbecomes a
Boolean information system (for details s@g][and [23]).

Definition 3.We callinformation systenof the graph G
the Boolean information system

J[G] := (U(G),Att(G),{0,1},Fg),
where UG) :=V(G), Att(G) :=V(G) and

. Jlifu~v
Fo(u,v) := { 0 otherwise

LetACV(G) a vertex subset. Bylj, we can define the
A-indiscernibility relation=4 for the information system
of the graphG as follows:

v=pV <= Fg(v,a) =Fg(V,a),vac A

®3)
By the previous definition it follows the next result.

Proposition 1Let vV € G and AC V(G). Then:

() v=aV if and only if for all ze A it results that v z if
and only if V ~ z.

(i) If v ~ V then v£a V or {V,V} NA=0.

(i) f v =aV and{v,V} NA# 0, then vx V.

Proof.(i) It follows immediately by Definition3 and by
(3).

(i) We suppose that~ V' andv =4 V.. We must show that
{v,V} NA = 0. We suppose by contradiction thatVv'} N

A # 0. Without loss of generality, we can assume A.
By (3) we deduce thas(v,v) = Fg(V,V), butFs(v,v) =

0 since there are no loops @& while by our assumption
Fs(V,v) = 1. So the equalitf¥g(v,v) = Fg(V,Vv) does not
hold, absurd. The casé < Ais analogous.

On the other hand, a similar argument shows thatifv
and{v,V'} NA# 0 thenv#a V. In fact we just observe that
if ve A, thenFg(v,v) # Fg(V,V), hence we conclude by
(3). This proveqii).

(iii ) It is the contra-nominal version dii ).

If ACV(G) andy,V € V(G) itis easy to note, byi)

of Propositiont, that:
VEA\/Z<:> NG(V)QAZ NG(\/)QA 4)

We denote byt (A) the set partition o¥/ (G) induced
from the equivalence relatiaaa. If v e V(G), we denote
by [v]a the equivalence class of the vertexvith respect
to =a. Let us also note thdv]p =V (G) for all ve V(G),
thereforery(G) =V (G).

We recall now the following basic notions of RST.

Definition 4.Let 7 = (U,Att,Val,F) be an information
system, AC Att and YC U. The Alower approximation
of Y is the following subset of U:

IA(Y):={xeU:xaCY}=J{Cem(T):CCY}
The A-upper approximation of Y is defined as:
Ua(Y) :={xeU:[xanY #0} =| J{Ce m(J):CNY #0}.

The subsetY is called éxactif and only if [o(Y) = ua(Y)
and Afoughotherwise.

The lower approximation represents the elements that
certainly, with respect to our knowledge expressedAyy
belongs toY. On the other hand, the upper approximation
is the set of objectpossiblybelonging toY.

For theA-lower andA-upper approximation functions
we obtain the following geometrical interpretation in the
simple graph context.

Proposition2Let G = (V(G),E(G)) be a simple
undirected graph and |€5[G] be the Boolean information
system associated to G. Let A and Y be two subsets of
V(G). Then:

() ua(Y)={veV(G):TueY :Ng(uynA=Ng(v)NA}.
Therefore, ve ua(Y) iff v is an A-symmetric vertex of
some LY.

(i) 1a(Y) = {v e V(G) :
Ne(V)NA) = ueY}.
Therefore, e 15(Y) iff all A-symmetric vertices of v are
iny.

Prooflt follows directly by @) and from the definitions of
the approximations.

(ue V(G) ANg(uyNA =

Hence the lower approximation of a vertex Sét
represents a subset ¥fsuch that there are no elements
outsideY with the same connections of any vertex in
Ia(Y) (relatively toA). The upper approximation of is
the set of vertices with the same connections (WA).tof
at least one element .. By the previous proposition it is
natural to callla(Y) the A-symmetry kernebf Y and
ua(Y) the A-symmetry closuref Y.

3 C, and P, as Boolean Information Systems

In this section we consider thecycle C, and ten-path

P.. Recall the definitions of the two graphs and introduce
some particular vertex subsets which will be used
extensively in this paper.

Definition 5.Let n be a positive integer. TheaycleC, is
the graph having vertex set@,) = {va,...,vn} and edge
set:

E(Cn) = {{V17V2}7 {V27V3}7 ceey {anlavn}a {Vn7vl}}'
IFACV(Cy),wesetA:={vie A: Vi & ANV 12 ¢ A},
A= (N, (A)¢, A" :=Ng, (A*) and A" := (A UA")C. Let
us note that VC,) = A UA"UA".
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Definition 6.Let n be a positive integer. Thepath P, is
the graph having vertex set(®,) = {vi1,...,vs} and edge
set:

E(R) = {{v1,v2},{v2,v3},...,{Vh_1,Vn} }.

fFACV(R),wesetA:={vieA:3<i<n-2AV, ¢
AAVii2 ¢ A}, A = (Ng,(A))¢ A’ := Np,(A*) and A" :=
(A'UA")C. Let us note that YR,) = A UA"UA".

In the next result we provide a complete description of
the indiscernibility partition oC,.

Proposition 3Let
A Vi, Vilb € Vo= V(Cy) = {vi,...,Vn},
A" ={vg,...,vg } and A = {vj,,...,vj, }. Then:

Te, (A) = A'Vj, 1V sa| - [Vj -1V alVe |- v
where the index sums are taken rfod

Proofln what follows, all the index sums are taken
mod(n). Letvj, vj € V, with i < j. Thenv; =4 v;j if and
only if Ng,(vi) N A = Ng,(vj) NA =0 or
N, (Vi) NA=Ng, (vj) NA={Viy1} = {vj_1}. Atfirst, we
observe that for each i < {1,....n}
Ne,(Vi) = {Vi—1,Viz1}. The proof follows easily by
observing that, since # vj, then|Ng, (vi) N1 Nc, (vj)| <1
and the equality holds if and only if =i+ 2. Hence, if
Ne,(vi) N A = Ne,(vj) N A then Ng (i) N A =

(Ney (V) N Ne, (V) NA C Ne,() N Ne(vy). By
Proposition 1, vi =a vj if and only if
vi) N A = Nelvy) n A Thus

INc, (Vi) NA| = |Ng, (vj) NA] < 1 and the equality holds if
and only ifj =i42 andvi.1 = vj_1 € A. This proves the
thesis. In fact, lew;, vj € V(G), with i < j andv; =av;.
Then either Ng(vi) " A = Ng(vj)) " A = 0 or
Ne(Vi) NA=Ng(vj) NA= {Viy1} = {vj_1}. But the first
condition is equivalent to say that, vj € A, whereas the
second is equivalent to say thak,v;} = Ng(v), for some
v € A*. The proposition is thus proved.

the set

Example 1Let Ci;o be the 10-cycle on

V= {Vl, e VlO}- LetA= {V2, Vg, V7}. Then
A = {V2,V4,V7,Vg,V10}
A" ={v7}
AU = {VG,Vg}
and
A" = {v1,v3,Vs5}
Thus

T, (A) = VoVaV7VoV10| VeVg| V1 V3| Vs

We give now a complete description of the
indiscernibility partition for the graple, for any vertex
subsetA CV(Py).

Proposition 4Let A= {vi;,...,Vi,} CV :=V(R), A" =
{Vs),..-,Vg } and A = {vj,,...,vj, }. Then:

T, (A) = AV, 1V 1] -+ [Vj—1Vjp+1lVsy | -+ [V

ProofAt first, we observe that for eadke {1,...,n}
{Vz} ifi=1
Ne, (Vi) =

{Vn-1} ifi=n

{Vi_1,Vi;1} otherwise.
Let vi,vj € V, with i < j. Thenv; =4 v; if and only if
N(g(Vi) n A NG(VJ') n A 0 or
No(Vi) NA = Ng(vj) "A= {Vi;1} = {vj_1}. The proof
follows easily by observing that, sincg # vj, then
INg (Vi) "Ng(vj)| < 1 and the equality holds if and only if
j =i+ 2. Itfollows that, ifNg(vi) "A= Ng(v;) NA, then
Ne(vi) NA = (Ng(vi) N NG(VJ')) NAC Ng(vi)n NG(VJ').
By Proposition 1, vi =a v; if and only if
Ne(vi) N A Ne(vi) n A Thus
INg(Vi) NA| = [Ng(vj) NA] < 1 and the equality holds if
and only if j =i+2 andvi:1 = vj—1 € A. Now, let
Vi,Vj € V(G), with i < j and vi =a vj. Then either
N(g(Vi) n A NG(VJ') n A 0 or
Ne(Vi) "A= Ng(vj) NA= {Vi11} = {vj_1}. But the first
condition is equivalent to say that, v; € A, while the
second is equivalent to say tha#, vj} = Ng(V), for some
v € A*. The proposition is thus proved.

Example et G = P be the 8-path on the set

V= {Vl, ...,Vg}. LetA= {V27V4,V7}. Then
A = {Vvz,v4,v7}
A =0
A'=0
and
A" = {v1,V3,Vs, Ve, Vg }
Thus

TG (A) = V1|V3|Vs|Ve|Vg|V2Vav7

4 The A-upper and the A-lower
Approximations For C, and P,

In this section, we compute thé—upper and the
A—lower approximation functions for both the-cycle

Cn and then—path R,. Let us note that it is sufficient to
treat only the case d,. In fact, by Propositiord, the
A-indiscernibility partitions ofR, andC, have the same
structure and the result proved below depends only by the
form of the A-indiscernibility partition. In order to
determine the general form of tiheupper approximation
function of C,, we must examine all possible relations
between the vertex subsétand the three subsefg, A’
andA”. Next, we also show that any possible choice of
the vertex subset8 andY is included in the cases we
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examined. In what follows we will use the notations
introduced in Definitiorb.

If AandY are two vertex subsets Gf, we set
=N, (v) 1V E A" AN, (V) NY # 0}

Theorem 1Let A and Y be two vertex subsets gf Che
map u : (AY) € Z(V(Cy)) x (V(Cn)) — ua(Y) €

8): Let A and Y be two vertex subsets such that
YNA"£O0AYNA" £OAYNA =0. ThenvjanY # 0

if and only if v e€ Y n A" or

aw e A" 1 ve Ng, (W) ANg,(w) € Qa(Y), sinceY is
transversal to bothA” and A”. So, we conclude that
ua(Y) =Qa(Y)U(YNA")=Qa(Y)UY

9): Let A and Y be two vertex subsets such that
YNA £OAYNA" £O0AYNA" #£0. It means tha is
transversal to the three sets. Therefore we have

P (V(Cy)) is completely described from the cases listed[V]anY # 0 if and only if ve A" or ve YNA" or

in the following table:
CASE| CONDITIONS ua(Y)
) | Y=V(C) V(o)
2) Y=0 0
3) YZOAYCA A
4) YZOANYCA QalY)
5) YZOAY CA” Y
6) YNAZOAYNA"AOAYNA" =0 | Qa(Y)UA
7) YNA LOAYNA"£O0AYNA"=0 | AUY
8) YNA ZOAYNA"ZO0AYNA =0 | Qa(Y)UY
9) YNA LOAYNATZOAYNA"£0 | AUYUQA(Y)

ProofWe recall that for a generic vertex subgete have

e, (A) = A'Vj—1,Vjy 1] - [Vj,—1Vj, 1| Ve, | - - - [V s

where  {vj,_ 1,vjl+1,
{Vey, Vg } =

1): LetY = V(Cn) and A any vertex subset o¥ (C,).
Obviously [VJaNnY # O for every vertexv, so
UA(V/(Cn)) = V(Cn).

2): Let Y = 0 and A any vertex subset oW (C,).
Obviously[v]aN 0 = 0 for every vertex, soua(0) = 0.

3): Let A and Y be two vertex subsets such that
Y £0AY C A. This means that the indiscernibility block
intersectingY is exactlyA', therefore[vjaNY = 0 if and
onlyif ve A,

4): Let A and Y be two vertex subsets such that
Y #A0OAY C A’. Recalling thal” = Ng, (A*), we deduce

A/ /

and

th—17vjh+1}

thatY intersects only the neighbourhoods of some points

Vii,---,Vjm € A%, therefore Qa(Y) # 0 and
UA(Y) = QA(Y).
5): Let A and Y be two vertex subsets such that

Y £0AY C A”. Since the elements &"” form single
blocks in theA—indiscernibility partition, we have that
YN[va #0 if and only if ve A”NY =Y. Hence
UA(Y) =Y.

6): Let A and Y be two vertex subsets such that
YNA £DAYNA"#OAYNA" =0. In other wordsy is
transversal only toA’ and A”; therefore we have that
ManNY # 0 if and only if v.e A or
Iw e A* 1 v e Ng, (W) AN, (w) C Qa(Y). Thus
UA(Y) = A/UQA(Y).

7). Let A and Y be two vertex subsets such that
YNA £ZOANYNA" DAY NA" = 0. In this caseY is
transversal only t& andA”, hencelvj]aNY =# 0 if and
only if v e A o v e YnA” Thus
ua(Y)=AU(YNA")=YUA.

Iw e A* v e Ng, (W) AN, (w) € Qa(Y). Therefore,
ua(Y) =AUQa(Y)U(YNA")=YUA UQA(Y) and we
are done.

At this point, we prove that the previous cases are all
disjoint each other and they are all possible cases that can
occur. LetY be a proper vertex subset\éf=V(C,), then
sinceV(Cy) = AUA’"UA”, we deduce thaY can be a
subset of one of these three sets, as we have said writing
down the conditions 3 4) and 5, or it can be transversal

to two of them, without containing none of them and
without intersecting the third, as we have said writing
down the conditions 6 7) and 8. Finally, Y can be
transversal to every set, without containing none of them,
as written in the last condition. So, the cases discussed
above are disjoint one another and, above all, describe all
possible occurring situations. In this way we have shown
the theorem.

Let us compute now theéA—lower approximation
function for the n—cycle C,. By Proposition 4 the
A-indiscernibility partitions ofP, and C, have the same
structure and the next result depends only from this
partition structure.

Also to compute theA-lower approximation function of
Cn we will use the previous proof technique, namely we
study all possible relations between the vertex sulyset
and the three subse®’, A" and A” determining the
A-indiscernibility partition. In what follows we will use
the notations introduced in Definitidn

If AandY are two vertex subsets 6f, we set

= U {Ne,(v) 1 N, (v) € Y}

VEA*

Theorem 2Let A and Y be two vertex subsets gf Che
map

I (AY) € Z(V(Co)) x Z(V(Cn)) —Ia(Y) € 2(V(Cy))

is completely described from the cases listed in the
following table:

CASE[ CONDITIONS 1Y)

1) Y=V(G) V(Cn)

2) YCN 0

4) YOAATA(Y)=0 AUNNAT)

5) YOAATAY)#0D AUNYNAT)YUTAY)

6) YNAZOANANZYATAY)=0 | YNA"

7) YAANZOANN ZYATAY)Z0 | YNAYUTAY)
ProofWe recall that by definition

a(Y) ={veV(C): [vla C Y}. We also recall that, by
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Propositior3, if A is a generic vertex subset, we have 5 A-exact subsets o€, and B,

Let A be a vertex subset of a given graph. By Definitédhn
e, (A) = A/|VJ'1—1VJ'1+1| o Vi1V 1/ Vsy | - - - [V we recall that a vertex subsétis A-exact if and only if its
A-lower approximation ofY coincide with its A-upper
approximation. In this section we determine the general
form of all A—exact subsets df,. Also in this case we
will obtain an identical form also for thA-exact subsets
of Py, because both tha-lower approximation function
and theA-upper approximation function are identical for

AV (Cn)) =V (Cn). Cn andR,. As in the previous sections, in what follows we
2): Let Y = 0 and A be any vertex subset of (Cy). " o o e

Obviously no indiscernibility class is contained in the will use the notations introduced in Definitiai
empty set, s (0) = 0.

3): Let A andY be two vertex subsets such that; A'.
SinceA’ forms a single block and sinégis disjoint from

A" and A", we deduce that there is no vertex whose
indiscernibility class is contained iy, thusla(Y) = 0.

4): Let A andY be two vertex subsets such thap A’
andTa(Y) = 0. We observe that may or not intersect the CASE] CONDTIONS
vertex subsef” and, in the first case, in such a way that [ |v=vic)
there not exists any vertax € A* whose neighbourhood |5—1—%

is contained inY. FurthermoreY may or not intersect [5 [YCA”

where{vj,,...,vj,} = A" and{vs,,...,v5 } = A".
1): LetY =V(Cy) andA be any vertex subset &(C,).
Obviously [v]a C V(C,) for every vertex v, so

Proposition 5Let Aand Y be two vertex subsets ¢0CV).
ThenY is A-exact if and only if one of the following cases
holds:

A" Thus we conclude that]s C Y if and only if v e A’ 6 | YNNI Vi EATY = U Noo (Vi)
or, possiblyy € YNA"  i.e.la(Y) = A U(YNA"). 7 | YNAT£OAYAA = OANT Y A, vy €A :YﬁA”:ngll\k;n(vjk)/\A”gY
5): Let A andY be two vertex subsets such thap A’ ) Y;A,HVM‘__,,\,WAV;YQAHZKQMW

andTa(Y) # 0. We observe that may or not intersectthe o7 voaAvrA=oAvAA Z0AA VAR ZY

vertex subsetd”. Moreover, there exists at least one [0 [YZAANYOA=0NOATZONATZVARTEY
vertexw € A* whose neighbourhood is contained Yn 1| VRATAYONZ 0N i ATV = O N (Vi) AT Y
Hence we conclude thag]a C Y if and only if v e A’ or 12) | Y2AUA" AV, Vi EATTYNAT = U Noo(Vi)

vV € Ng,(w) C Ta(Y) for somew € A" or, possibly, e

veYNA” i.e.la(Y)=AUTA(Y)U(YNA").

6): Let A and Y be two vertex subsets such that proofBy Theorems and2, it's easy to show that ik and
YNA #0AA ZYATA(Y) = 0. SinceA’ forms a single v satisfy one of the conditions of the previous table, then
block, we conclude tha’ Z IA(Y). We also observe that v js A—exact. Viceversa, let andY be two vertex subsets
Y may or not intersect the vertex subgef. Moreover,  different from the previous. We will examine all possible
there is no vertexw € A" such thatv € Ng,(w) and  cases.

Nc,(w) € Y. This means thafvla € Y if and only if  |f A andY are two vertex subsets such thag A', we
veYNA” iela(Y) =YNA", deduce thata(Y) = 0 # A’ = ua(Y), thereforeY can’t be
7): Let A and Y be two vertex subsets such that a-exact.

YON #ONA ZYATA(Y) # 0. SinceA’ forms a single  Suppose that NA' £ OAYNA” =0AA Z Y. In order to
block, we conclude tha' Z Ia(Y). We also observe that havela(Y) = ua(Y), it must resulty NA” = (Y NA")UA.

Y may or not intersect the vertex subgét. Furthermore,  |n other words, we must require th&tC Y NA” or A' = 0.
there exists at least a vertexc A" such thatv € Nc,(W)  Both these conclusions are false, sidéeZ A” and since
and Nc,(w) C Y. In other words, we are saying that the conditiony NA’ # 0 ensures thak' # 0.

Ma € Y if and only if v € Y N A” or |nthe other cases to analyze, we always have that

Iw € A 1 v € Ng,(w) A Ng,(w) € Ta(Y), ie.

[A(Y) = (YNA"YUTA(Y). k

At this point, we show that we have studied all the YNA"#0A%vi,...,vi, € A" YNA" = N, (vi;). (5)
occurring cases. LeY be a proper vertex subset of j=1

V =V(G). In case 3 we have tha¥ & A" while in cases

4) and 5 we are requiring thaY containsA’ and it may It's easy to see that wheneves) (holds, it results that
(or not) be transversal to bo’ andA”. Finally,Y may ~ Ta(Y) & Qa(Y). This means that the A-lower
only transversal t@&V, without containing it, as we have approximation and thé-upper approximation of must
seen in the last two cases. So, the cases discussed abadiéfer each other.

are disjoint one another and, above all, describe allin this way, we have shown that in all possible situations
possible occurring situations. Hence, the theorem igdifferent from those listed in the above table
proved. [A(Y) # ua(Y), thus we have completed the proof.
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6 Conclusions [13] G. Cattaneo, D. Ciucci, D. Bianucci, Entropy and Co-
entropy of Partitions and Coverings with Applications
This paper is a further contribution to the interpretatién o to Roughness Theory, inGranular Computing: At the
a simple undirected graph in terms of Boolean Junction of Rough Sets and Fuzzy s&sries: Studies on
information table. We have completely determined both ~ Fuzziness and Soft Computing. R. Bello, R. Falcon, W
the A-lower andA-upper approximation functions for the Pedrycz and J. Kacprzyk, Eds., vol. 224, Springer-Verlag,
n-cycles and then-paths. We have shown that the 2008, pp.55-77.
complete study of these functions can be very laborious|14] G. Cattaneo, An investigation about rough set theory:
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