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Abstract: In this paper we carry out a research project whose main goal is the study of an undirected graph by means of investigation
tools provided by Pawlak rough set theory. Specifically, we determine both the lower and the upper rough approximation functions
for an information table induced from a cycle or a path onn vertices. For such graphs we also provide a complete description of the
corresponding exact subsets.
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1 Introduction

Graphs are objects ubiquitously present in mathematics
and computer science. The graph structure has been
studied mostly from a geometric point of view, by
searching for the analogies with the various types of
geometries. In fact, classical problems in graph theory
concern the determination of distances, neighborhoods,
connectivity and so on. Recently, the impetuous
development of computer science has placed new
questions about the graph structures. For example, the
graphs can be studied in terms of sequential dynamical
systems (see [2,3,4,5]), by means of parallel dynamics
(see [1]), or also for their analogies with both sequential
and parallel dynamics on order structures (see [7,8,9,10,
15,17,18,19,20,21]).
In this paper we continue a research project started in [22,
23], where a simple undirected graph is studied as a
particular type of information system. According to
Pawlak (see [40]) an information systemis a structure
I = 〈U,Att,Val,F〉, where U = {u1,u2, . . . ,um} is a
non-empty finite set called universe set,
Att = {a1,a2, . . . ,an} is a non-empty finite set called
attribute setand F : U × Att → Val, called information
map, is an application from the direct productU × Att
into the so calledvalue set Val. The elements ofU are
called objects and the elements ofAtt are called
attributes. In particular, ifVal = {0,1} we say thatI is a
Boolean information system. An information system
occurs in all situations in which a huge amount of data

needs to be classified in a table according to some
criterion of subdivision, therefore it is a structure that is
very frequent in various fields of study, both of qualitative
and quantitative type. In his seminal works [38,39,40],
Pawlak introduced several investigation tools in order to
better analyze and reduce the complexity of a generic
information system. In this framework, Pawlak proposed
the rough set theory, abbreviated RST (see also the more
recent papers [41,42,43]), that is a useful methodological
tool for reasoning about knowledge of objects represented
by attributes. Nowadays, RST (and its more general
version called granular computing [45]) is a well
investigated research field [6,12,13,14,27,28,52,53],
which has connections with operative research [30],
preclusivity spaces [11], machine learning [51], interval
analysis [35], formal concept analysis [34,49], database
theory [31,46], data mining [32,36,37,50], fuzzy set
theory [33,44,54], interactive computing [47,48]. The
fundamental assumption of RST is based on the famous
Law of Indiscernibility, according to which two objects
are indiscernible (i.e. similar) if and only if they share the
same properties. Formally, ifI = 〈U,Att,Val,F〉 is an
information system and A ⊆ Att, we call
A-indiscernibility the equivalence relation≡A on the
universe setU defined as follows: ifu,u′ ∈U then

u≡A u′ :⇐⇒ F(u,a) = F(u′,a),∀a∈ A. (1)

In rough set theory, there exist different kinds of sets:

–Elementary sets, which are sets of all indiscernible
objects;

∗ Corresponding author e-mail:giampiero.chiaselotti@unical.it

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/100111


118 G. Chiaselotti et al.: Rough sets forn-cycles andn-paths

–Exact sets, which are unions of elementary sets;
–Rough (in the sense of imprecise) sets, which are not
exact.

The objects can be classified as belonging to exact
sets or to their complements, but it isn’t true in the case of
rough sets. Thus the behavior of rough sets is more
interesting than that of exact sets. In fact, we can classify
objects by means of the knowledge degree we have about
them, but in the case of rough sets, there are some objects
which belong to a so calledboundary region, namely
those for which it is not possible to say with certainty that
belong to the set or to its complement. Hence, rough sets
represent vague concepts. The way of studying these sets
consists in substituting any vague concept with two
precise concepts, called respectivelylower approximation
andupper approximation. The lower approximation of an
non-emptyY (briefly lA(Y)) represents the set of objects
that surely belong toY, with respect to our knowledge
provided by A; the upper approximation of an object
subsetY (briefly uA(Y)) is the set of objectssurely or
possiblybelonging toY with respect to our knowledge
expressed byA. Furthermore, we say that an object subset
is A-exact if itsA-lower approximation coincides with its
A-upper approximation.
Some natural links of RST with both graph and
hypergraph theory have recently been founded. In fact, in
[22,23,24,25,26] the idea to study any simple undirected
graphG as if it were a Boolean information system was
developed (in [16] this idea has been also extended to
hypergraph theory). The basic tool to connect graphs and
Boolean information systems is the adjacency matrix of
G, which in [22,23,24,25,26] has been interpreted as the
Boolean table of a particular information system.
Specifically, in [22,23,24] some graph families, such as
the complete graphKn or the complete bipartite graph
Kp,q, have been broadly studied in terms of information
tables. In particular, in the above papers, theA-lower and
the A-upper approximations, theA-positive region of any
vertex subsetB, the A-attribute dependency function and
the rough membership function, whereA, B and Y are
vertex subsets, have been completely determined both for
the complete graphKn and the complete bipartite graph
Kp,q.
In this paper we apply the RST tools respectively to the
cases of the cycleCn and of the pathPn on n vertices
(respectively, n-cycle and n-path). Specifically, we
determine theA-lower and theA-upper approximations
for both Cn and Pn. Moreover, we also determine all
A-exact sets, i.e. those sets for which theA-lower
approximation coincide with theA-upper approximation.
Although the structure of bothCn andPn is quite simple,
the complete determination of the correspondingA-lower
and A-upper approximations was found quite complex,
since it was necessary to treat many sub-cases. In fact, the
indiscernibility with respect to a vertex subsetA gives rise
to three setsA′, A′′ andA′′′, which provide a partition of
the vertex setV(G), for both G = Cn and G = Pn. All

occurring sub-cases correspond then to all possible
relations between the vertex subsetY and the previous
three sets. From this, the need to express in detail our
results in three tables. Our results show that, also for
simple graph structures, the complete determination of
both theA-lower and theA-upper approximations can be
quite complex. Therefore one expects that the complete
computation of these approximations for more
complicated families of graphs can be a difficult goal to
achieve.

To conclude this introduction we now briefly describe
the content of the sections in this paper. In Section 2, we
firstly introduce the basic notations that we use in the
sequel. Next, we characterize in our graph context the
form of two classical RST notions: indiscernibility
relation and approximation functions. In Section 3, for
any n we completely determine the indiscernibility
partition form for both then-cycle and then-path. In
Section 4 we compute theA-upper approximation and the
A-lower approximation for bothCn and Pn. Finally, in
Section 5 we use the results obtained in Section 4 in order
to find all A-exact subsets for bothCn andPn.

2 Basic Results

If X is any finite set, we denote by|X| the number of
elements in the setX and byP(X) the power set ofX. If
Y ⊆ X and X is clear from the context, we writeYc

instead ofX \Y.
If R is an equivalence relation onX andx is an element of
X, we denote by[x]R the equivalence class ofx with
respect to the relationR.

We recall now the following classical notion.

Definition 1.A set-partitionπ on X is a finite collection of
non-empty subsets B1, . . . ,BM of X such that Bi ∩B j = /0
for all i 6= j and such that

⋃M
i=1Bi = X. The subsets

B1, . . . ,BM are called blocks of π and we write
π := B1| . . . |BM to denote thatπ is a set partition having
blocks B1, . . . ,BM.

In this paper we treat exclusively with finite
undirected simple graphs and we refer to [29] for any
general notion concerning graph theory. Here we recall
only some basic definitions and we fix some notations
which we will use in the sequel. We always denote by
G = (V(G),E(G)) a finite simple (i.e. no loops and no
multiple edges are allowed) undirected graph, with vertex
set V(G) = {v1, . . . ,vn} and edge set E(G). If
v,v′ ∈ V(G), we will write v ∼ v′ if {v,v′} ∈ E(G) and
v≁ v′ otherwise.

Definition 2.Let v∈ V(G). We call neighborhood of v in
G the set NG(v) := {w ∈ V(G) : v ∼ w}. In particular, if
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A⊆V(G) we call neighborhood of A in G the set

NG(A) :=
⋃

v∈A

NG(v) (2)

In the next definition we see how a graphG becomes a
Boolean information system (for details see [22] and [23]).

Definition 3.We call information systemof the graph G
the Boolean information system

I[G] := 〈U(G),Att(G),{0,1},FG〉,

where U(G) :=V(G), Att(G) :=V(G) and

FG(u,v) :=

{

1 if u∼ v
0 otherwise

Let A⊆V(G) a vertex subset. By (1), we can define the
A-indiscernibility relation≡A for the information system
of the graphG as follows:

v≡A v′ :⇐⇒ FG(v,a) = FG(v
′,a),∀a∈ A. (3)

By the previous definition it follows the next result.

Proposition 1.Let v,v′ ∈ G and A⊆V(G). Then:
(i) v ≡A v′ if and only if for all z∈ A it results that v∼ z if
and only if v′ ∼ z.
(ii) If v ∼ v′ then v6≡A v′ or {v,v′}∩A= /0.
(iii) If v ≡A v′ and{v,v′}∩A 6= /0, then v≁ v′.

Proof.(i) It follows immediately by Definition3 and by
(3).
(ii) We suppose thatv∼ v′ andv≡A v′. We must show that
{v,v′}∩A= /0. We suppose by contradiction that{v,v′}∩
A 6= /0. Without loss of generality, we can assumev ∈ A.
By (3) we deduce thatFG(v,v) = FG(v′,v), but FG(v,v) =
0 since there are no loops inG while by our assumption
FG(v′,v) = 1. So the equalityFG(v,v) = FG(v′,v) does not
hold, absurd. The casev′ ∈ A is analogous.
On the other hand, a similar argument shows that ifv∼ v′

and{v,v′}∩A 6= /0 thenv 6≡A v′. In fact we just observe that
if v ∈ A, thenFG(v,v) 6= FG(v′,v), hence we conclude by
(3). This proves(ii).
(iii ) It is the contra-nominal version of(ii).

If A⊆ V(G) andv,v′ ∈ V(G) it is easy to note, by(i)
of Proposition1, that:

v≡A v′ :⇐⇒ NG(v)∩A= NG(v
′)∩A (4)

We denote byπG(A) the set partition ofV(G) induced
from the equivalence relation≡A. If v∈V(G), we denote
by [v]A the equivalence class of the vertexv with respect
to ≡A. Let us also note that[v] /0 =V(G) for all v∈ V(G),
thereforeπ /0(G) =V(G).

We recall now the following basic notions of RST.

Definition 4.Let I = 〈U,Att,Val,F〉 be an information
system, A⊆ Att and Y⊆ U. The A-lower approximation
of Y is the following subset of U:

lA(Y) := {x∈U : [x]A ⊆Y}=
⋃

{C∈ πA(I) : C⊆Y}.

The A-upper approximation of Y is defined as:

uA(Y) := {x∈U : [x]A∩Y 6= /0}=
⋃

{C∈ πA(I) :C∩Y 6= /0}.

The subset Y is called A-exactif and only if lA(Y) = uA(Y)
and A-roughotherwise.

The lower approximation represents the elements that
certainly, with respect to our knowledge expressed byA,
belongs toY. On the other hand, the upper approximation
is the set of objectspossiblybelonging toY.

For theA-lower andA-upper approximation functions
we obtain the following geometrical interpretation in the
simple graph context.

Proposition 2.Let G = (V(G),E(G)) be a simple
undirected graph and letI[G] be the Boolean information
system associated to G. Let A and Y be two subsets of
V(G). Then:
(i) uA(Y) = {v∈V(G) : ∃u∈Y : NG(u)∩A= NG(v)∩A}.
Therefore, v∈ uA(Y) iff v is an A-symmetric vertex of
some u∈Y.
(ii) lA(Y) = {v ∈ V(G) : (u ∈ V(G) ∧ NG(u) ∩ A =
NG(v)∩A) =⇒ u∈Y}.
Therefore, v∈ lA(Y) iff all A-symmetric vertices of v are
in Y .

Proof.It follows directly by (4) and from the definitions of
the approximations.

Hence the lower approximation of a vertex setY
represents a subset ofY such that there are no elements
outsideY with the same connections of any vertex in
lA(Y) (relatively toA). The upper approximation ofY is
the set of vertices with the same connections (w.r.t.A) of
at least one element inY. By the previous proposition it is
natural to call lA(Y) the A-symmetry kernelof Y and
uA(Y) theA-symmetry closureof Y.

3 Cn and Pn as Boolean Information Systems

In this section we consider then-cycleCn and ten-path
Pn. Recall the definitions of the two graphs and introduce
some particular vertex subsets which will be used
extensively in this paper.

Definition 5.Let n be a positive integer. The n-cycleCn is
the graph having vertex set V(Cn) = {v1, . . . ,vn} and edge
set:

E(Cn) = {{v1,v2},{v2,v3}, . . . ,{vn−1,vn},{vn,v1}}.

If A ⊆V(Cn), we set A∗ := {vi ∈ A : vi−2 /∈ A∧vi+2 /∈ A},
A′ := (NCn(A))

c, A′′ := NCn(A
∗) and A′′′ := (A′∪A′′)c. Let

us note that V(Cn) = A′∪A′′∪A′′′.
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Definition 6.Let n be a positive integer. The n-pathPn is
the graph having vertex set V(Pn) = {v1, . . . ,vn} and edge
set:

E(Pn) = {{v1,v2},{v2,v3}, . . . ,{vn−1,vn}}.

If A ⊆V(Pn), we set A∗ := {vi ∈ A : 3≤ i ≤ n−2∧vi−2 /∈
A∧vi+2 /∈ A}, A′ := (NPn(A))

c, A′′ := NPn(A
∗) and A′′′ :=

(A′∪A′′)c. Let us note that V(Pn) = A′∪A′′∪A′′′.

In the next result we provide a complete description of
the indiscernibility partition ofCn.

Proposition 3.Let
A = {vi1, . . . ,vik} ⊆ V := V(Cn) = {v1, . . . ,vn},
A′′′ = {vs1, . . . ,vsl } and A∗ = {v j1, . . . ,v jh}. Then:

πCn(A) = A′|v j1−1v j1+1| · · · |v jh−1v jh+1|vs1| · · · |vsl ,

where the index sums are taken mod(n).

Proof.In what follows, all the index sums are taken
mod(n). Let vi , v j ∈ V, with i < j. Thenvi ≡A v j if and
only if NCn(vi) ∩ A = NCn(v j) ∩ A = /0 or
NCn(vi)∩A= NCn(v j)∩A= {vi+1}= {v j−1}. At first, we
observe that for each i ∈ {1, . . . ,n},
NCn(vi) = {vi−1,vi+1}. The proof follows easily by
observing that, sincevi 6= v j , then|NCn(vi)∩NCn(v j)| ≤ 1
and the equality holds if and only ifj = i + 2. Hence, if
NCn(vi) ∩ A = NCn(v j) ∩ A, then NCn(vi) ∩ A =
(NCn(vi) ∩ NCn(v j)) ∩ A ⊆ NCn(vi) ∩ NCn(v j). By
Proposition 1, vi ≡A v j if and only if
NCn(vi) ∩ A = NCn(v j) ∩ A. Thus
|NCn(vi)∩A|= |NCn(v j)∩A| ≤ 1 and the equality holds if
and only if j = i +2 andvi+1 = v j−1 ∈ A. This proves the
thesis. In fact, letvi , v j ∈ V(G), with i < j andvi ≡A v j .
Then either NG(vi) ∩ A = NG(v j) ∩ A = /0 or
NG(vi)∩A= NG(v j)∩A= {vi+1} = {v j−1}. But the first
condition is equivalent to say thatvi , v j ∈ A′, whereas the
second is equivalent to say that{vi,v j}= NG(v), for some
v∈ A∗. The proposition is thus proved.

Example 1.Let C10 be the 10-cycle on the set
V = {v1, . . . , v10}. Let A= {v2, v4, v7}. Then

A′ = {v2,v4,v7,v9,v10}

A∗ = {v7}

A′′ = {v6,v8}

and
A′′′ = {v1,v3,v5}

Thus
πCn(A) = v2v4v7v9v10|v6v8|v1|v3|v5

We give now a complete description of the
indiscernibility partition for the graphPn for any vertex
subsetA⊆V(Pn).

Proposition 4.Let A= {vi1, . . . ,vik} ⊆ V := V(Pn), A′′′ =
{vs1, . . . ,vsl } and A∗ = {v j1, . . . ,v jh}. Then:

πPn(A) = A′|v j1−1v j1+1| · · · |v jh−1v jh+1|vs1| · · · |vsl .

Proof.At first, we observe that for eachi ∈ {1, . . . ,n}

NPn(vi) =







{v2} if i = 1
{vn−1} if i = n
{vi−1,vi+1} otherwise.

Let vi , v j ∈ V, with i < j. Then vi ≡A v j if and only if
NG(vi) ∩ A = NG(v j) ∩ A = /0 or
NG(vi)∩ A = NG(v j )∩A = {vi+1} = {v j−1}. The proof
follows easily by observing that, sincevi 6= v j , then
|NG(vi)∩NG(v j)| ≤ 1 and the equality holds if and only if
j = i +2. It follows that, ifNG(vi)∩A= NG(v j)∩A, then
NG(vi) ∩ A = (NG(vi) ∩ NG(v j)) ∩ A ⊆ NG(vi) ∩ NG(v j).
By Proposition 1, vi ≡A v j if and only if
NG(vi) ∩ A = NG(v j) ∩ A. Thus
|NG(vi)∩A| = |NG(v j)∩A| ≤ 1 and the equality holds if
and only if j = i + 2 and vi+1 = v j−1 ∈ A. Now, let
vi , v j ∈ V(G), with i < j and vi ≡A v j . Then either
NG(vi) ∩ A = NG(v j) ∩ A = /0 or
NG(vi)∩A= NG(v j)∩A= {vi+1} = {v j−1}. But the first
condition is equivalent to say thatvi , v j ∈ A′, while the
second is equivalent to say that{vi,v j}= NG(v), for some
v∈ A∗. The proposition is thus proved.

Example 2.Let G = P8 be the 8-path on the set
V = {v1, . . . , v8}. Let A= {v2,v4,v7}. Then

A′ = {v2,v4,v7}

A∗ = /0

A′′ = /0

and
A′′′ = {v1,v3,v5,v6,v8}

Thus
πG(A) = v1|v3|v5|v6|v8|v2v4v7

4 The A-upper and the A-lower
Approximations For Cn and Pn

In this section, we compute theA−upper and the
A−lower approximation functions for both then−cycle
Cn and then−pathPn. Let us note that it is sufficient to
treat only the case ofCn. In fact, by Proposition4, the
A-indiscernibility partitions ofPn andCn have the same
structure and the result proved below depends only by the
form of the A-indiscernibility partition. In order to
determine the general form of theA-upper approximation
function of Cn, we must examine all possible relations
between the vertex subsetY and the three subsetsA′, A′′

andA′′′. Next, we also show that any possible choice of
the vertex subsetsA andY is included in the cases we
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examined. In what follows we will use the notations
introduced in Definition5.

If A andY are two vertex subsets ofCn we set

QA(Y) :=
⋃

{NCn(v) : v∈ A∗∧NCn(v)∩Y 6= /0}.

Theorem 1.Let A and Y be two vertex subsets of Cn. The
map u : (A,Y) ∈ P(V(Cn)) × P(V(Cn)) 7→ uA(Y) ∈
P(V(Cn)) is completely described from the cases listed
in the following table:

CASE CONDITIONS uA(Y)
1) Y =V(Cn) V(Cn)
2) Y = /0 /0
3) Y 6= /0∧Y ⊆ A′ A′

4) Y 6= /0∧Y ⊆ A′′ QA(Y)
5) Y 6= /0∧Y ⊆ A′′′ Y
6) Y∩A′ 6= /0∧Y∩A′′ 6= /0∧Y∩A′′′ = /0 QA(Y)∪A′

7) Y∩A′ 6= /0∧Y∩A′′′ 6= /0∧Y∩A′′ = /0 A′∪Y
8) Y∩A′′ 6= /0∧Y∩A′′′ 6= /0∧Y∩A′ = /0 QA(Y)∪Y
9) Y∩A′ 6= /0∧Y∩A′′ 6= /0∧Y∩A′′′ 6= /0 A′∪Y∪QA(Y)

Proof.We recall that for a generic vertex subsetA we have

πCn(A) = A′|v j1−1,v j1+1| . . . |v jh−1v jh+1|vs1| . . . |vsl ,

where {v j1−1,v j1+1, . . . ,v jh−1,v jh+1} = A′′ and
{vs1, ...,vsl }= A′′′.
1): Let Y = V(Cn) and A any vertex subset ofV(Cn).
Obviously [v]A ∩ Y 6= /0 for every vertex v, so
uA(V(Cn)) =V(Cn).
2): Let Y = /0 and A any vertex subset ofV(Cn).
Obviously[v]A∩ /0= /0 for every vertexv, souA( /0) = /0.
3): Let A and Y be two vertex subsets such that
Y 6= /0∧Y ⊆ A′. This means that the indiscernibility block
intersectingY is exactlyA′, therefore[v]A ∩Y 6= /0 if and
only if v∈ A′.
4): Let A and Y be two vertex subsets such that
Y 6= /0∧Y ⊆ A′′. Recalling thatA′′ = NCn(A

∗), we deduce
thatY intersects only the neighbourhoods of some points
v j1, . . . ,v jm ∈ A∗, therefore QA(Y) 6= /0 and
uA(Y) = QA(Y).
5): Let A and Y be two vertex subsets such that
Y 6= /0∧Y ⊆ A′′′. Since the elements ofA′′′ form single
blocks in theA−indiscernibility partition, we have that
Y ∩ [v]A 6= /0 if and only if v ∈ A′′′ ∩ Y = Y. Hence
uA(Y) =Y.
6): Let A and Y be two vertex subsets such that
Y∩A′ 6= /0∧Y∩A′′ 6= /0∧Y∩A′′′ = /0. In other words,Y is
transversal only toA′ and A′′; therefore we have that
[v]A ∩ Y 6= /0 if and only if v ∈ A′ or
∃w ∈ A∗ : v ∈ NCn(w) ∧ NCn(w) ⊆ QA(Y). Thus
uA(Y) = A′∪QA(Y).
7): Let A and Y be two vertex subsets such that
Y∩A′ 6= /0∧Y∩A′′′ 6= /0∧Y∩A′′ = /0. In this case,Y is
transversal only toA′ andA′′′, hence[v]A ∩Y 6= /0 if and
only if v ∈ A′ or v ∈ Y ∩ A′′′. Thus
uA(Y) = A′∪ (Y∩A′′′) =Y∪A′.

8): Let A and Y be two vertex subsets such that
Y∩A′′ 6= /0∧Y∩A′′′ 6= /0∧Y∩A′ = /0. Then[v]A∩Y 6= /0
if and only if v ∈ Y ∩ A′′′ or
∃w ∈ A∗ : v ∈ NCn(w) ∧ NCn(w) ⊆ QA(Y), since Y is
transversal to bothA′′ and A′′′. So, we conclude that
uA(Y) = QA(Y)∪ (Y∩A′′′) = QA(Y)∪Y.
9): Let A and Y be two vertex subsets such that
Y∩A′ 6= /0∧Y∩A′′ 6= /0∧Y∩A′′′ 6= /0. It means thatY is
transversal to the three sets. Therefore we have
[v]A ∩Y 6= /0 if and only if v ∈ A′ or v ∈ Y ∩ A′′′ or
∃w ∈ A∗ : v ∈ NCn(w) ∧ NCn(w) ⊆ QA(Y). Therefore,
uA(Y) = A′∪QA(Y)∪ (Y∩A′′′) =Y∪A′ ∪QA(Y) and we
are done.
At this point, we prove that the previous cases are all
disjoint each other and they are all possible cases that can
occur. LetY be a proper vertex subset ofV =V(Cn), then
sinceV(Cn) = A′ ∪A′′ ∪A′′′, we deduce thatY can be a
subset of one of these three sets, as we have said writing
down the conditions 3), 4) and 5), or it can be transversal
to two of them, without containing none of them and
without intersecting the third, as we have said writing
down the conditions 6), 7) and 8). Finally, Y can be
transversal to every set, without containing none of them,
as written in the last condition. So, the cases discussed
above are disjoint one another and, above all, describe all
possible occurring situations. In this way we have shown
the theorem.

Let us compute now theA−lower approximation
function for the n−cycle Cn. By Proposition 4 the
A-indiscernibility partitions ofPn andCn have the same
structure and the next result depends only from this
partition structure.
Also to compute theA-lower approximation function of
Cn we will use the previous proof technique, namely we
study all possible relations between the vertex subsetY
and the three subsetsA′, A′′ and A′′′ determining the
A-indiscernibility partition. In what follows we will use
the notations introduced in Definition5.

If A andY are two vertex subsets ofCn we set

TA(Y) :=
⋃

v∈A∗

{NCn(v) : NCn(v)⊆Y}.

Theorem 2.Let A and Y be two vertex subsets of Cn. The
map
l : (A,Y) ∈ P(V(Cn))×P(V(Cn)) 7→ lA(Y) ∈ P(V(Cn))
is completely described from the cases listed in the
following table:

CASE CONDITIONS lA(Y)
1) Y =V(Cn) V(Cn)
2) Y $ A′ /0
4) Y ⊇ A′∧TA(Y) = /0 A′∪ (Y∩A′′′)
5) Y ⊇ A′∧TA(Y) 6= /0 A′∪ (Y∩A′′′)∪TA(Y)
6) Y∩A′ 6= /0∧A′ 6⊆Y∧TA(Y) = /0 Y∩A′′′

7) Y∩A′ 6= /0∧A′ 6⊆Y∧TA(Y) 6= /0 (Y∩A′′′)∪TA(Y)

Proof.We recall that by definition
lA(Y) = {v ∈ V(Cn) : [v]A ⊆ Y}. We also recall that, by
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Proposition3, if A is a generic vertex subset, we have

πCn(A) = A′|v j1−1v j1+1| . . . |v jh−1v jh+1|vs1| . . . |vsl ,

where{v j1, . . . ,v jh}= A∗ and{vs1, . . . ,vsl }= A′′′.
1): Let Y = V(Cn) andA be any vertex subset ofV(Cn).
Obviously [v]A ⊆ V(Cn) for every vertex v, so
lA(V(Cn)) =V(Cn).
2): Let Y = /0 and A be any vertex subset ofV(Cn).
Obviously no indiscernibility class is contained in the
empty set, solA( /0) = /0.
3): Let A andY be two vertex subsets such thatY $ A′.
SinceA′ forms a single block and sinceY is disjoint from
A′′ and A′′′, we deduce that there is no vertex whose
indiscernibility class is contained inY, thuslA(Y) = /0.
4): Let A andY be two vertex subsets such thatY ⊇ A′

andTA(Y) = /0. We observe thatY may or not intersect the
vertex subsetA′′ and, in the first case, in such a way that
there not exists any vertexw ∈ A∗ whose neighbourhood
is contained inY. Furthermore,Y may or not intersect
A′′′. Thus we conclude that[v]A ⊆ Y if and only if v ∈ A′

or, possibly,v∈Y∩A′′′, i.e. lA(Y) = A′∪ (Y∩A′′′).
5): Let A andY be two vertex subsets such thatY ⊇ A′

andTA(Y) 6= /0. We observe thatY may or not intersect the
vertex subsetA′′′. Moreover, there exists at least one
vertex w ∈ A∗ whose neighbourhood is contained inY.
Hence we conclude that[v]A ⊆ Y if and only if v ∈ A′ or
v ∈ NCn(w) ⊆ TA(Y) for some w ∈ A∗ or, possibly,
v∈Y∩A′′′, i.e. lA(Y) = A′∪TA(Y)∪ (Y∩A′′′).
6): Let A and Y be two vertex subsets such that
Y∩A′ 6= /0∧A′ 6⊆ Y∧TA(Y) = /0. SinceA′ forms a single
block, we conclude thatA′ 6⊆ lA(Y). We also observe that
Y may or not intersect the vertex subsetA′′′. Moreover,
there is no vertexw ∈ A∗ such thatv ∈ NCn(w) and
NCn(w) ⊆ Y. This means that[v]A ⊆ Y if and only if
v∈Y∩A′′′, i.e. lA(Y) =Y∩A′′′.
7): Let A and Y be two vertex subsets such that
Y∩A′ 6= /0∧A′ 6⊆ Y∧TA(Y) 6= /0. SinceA′ forms a single
block, we conclude thatA′ 6⊆ lA(Y). We also observe that
Y may or not intersect the vertex subsetA′′′. Furthermore,
there exists at least a vertexw∈ A∗ such thatv ∈ NCn(w)
and NCn(w) ⊆ Y. In other words, we are saying that
[v]A ⊆ Y if and only if v ∈ Y ∩ A′′′ or
∃w ∈ A∗ : v ∈ NCn(w) ∧ NCn(w) ⊆ TA(Y), i.e.
lA(Y) = (Y∩A′′′)∪TA(Y).
At this point, we show that we have studied all the
occurring cases. LetY be a proper vertex subset of
V =V(Cn). In case 3) we have thatY $ A′ while in cases
4) and 5) we are requiring thatY containsA′ and it may
(or not) be transversal to bothA′′ andA′′′. Finally,Y may
only transversal toA′, without containing it, as we have
seen in the last two cases. So, the cases discussed above
are disjoint one another and, above all, describe all
possible occurring situations. Hence, the theorem is
proved.

5 A-exact subsets ofCn and Pn

Let A be a vertex subset of a given graph. By Definition4,
we recall that a vertex subsetY is A-exact if and only if its
A-lower approximation ofY coincide with its A-upper
approximation. In this section we determine the general
form of all A−exact subsets ofCn. Also in this case we
will obtain an identical form also for theA-exact subsets
of Pn, because both theA-lower approximation function
and theA-upper approximation function are identical for
Cn andPn. As in the previous sections, in what follows we
will use the notations introduced in Definition5.

Proposition 5.Let A and Y be two vertex subsets of V(Cn).
Then Y is A-exact if and only if one of the following cases
holds:

CASE CONDITIONS
1) A=V(Cn)
2) Y =V(Cn)
3) Y = /0
4) Y = A′

5) Y ⊆ A′′′

6) Y ⊆ A′′∧∃v j1, . . . ,v jk ∈ A∗ : Y =
m
⋃

k=1
NCn(v jk)

7) Y∩A′′′ 6= /0∧Y∩A′ = /0∧A′′′ 6⊆Y∧∃v j1, . . . ,v jk ∈ A∗ : Y∩A′′ =
m
⋃

k=1
NCn(v jk)∧A′′ 6⊆Y

8) Y % A′∧∃v j1, . . . ,v jk ∈ A∗ : Y∩A′′ =
m
⋃

k=1
NCn(v jk)

9) Y % A′∧Y∩A′′ = /0∧Y∩A′′′ 6= /0∧A′′′ 6⊆Y∧A′′′ 6⊆Y
10) Y % A′′∧Y∩A′ = /0∧Y∩A′′′ 6= /0∧A′′′ 6⊆Y∧A′′′ 6⊆Y

11) Y % A′′′∧Y∩A′ = /0∧∃v j1, . . . ,v jk ∈ A∗ : Y∩A′′ =
m
⋃

k=1
NCn(v jk)∧A′′ 6⊆Y

12) Y % A′∪A′′′∧∃v j1, . . . ,v jk ∈ A∗ : Y∩A′′ =
m
⋃

k=1
NCn(v jk)

13) Y = A′∪A′′′

14) Y = A′′∪A′′′

Proof.By Theorems1 and2, it’s easy to show that ifA and
Y satisfy one of the conditions of the previous table, then
Y is A−exact. Viceversa, letA andY be two vertex subsets
different from the previous. We will examine all possible
cases.
If A andY are two vertex subsets such thatY $ A′, we
deduce thatlA(Y) = /0 6= A′ = uA(Y), thereforeY can’t be
A-exact.
Suppose thatY∩A′ 6= /0∧Y∩A′′ = /0∧A′ 6⊆Y. In order to
havelA(Y) = uA(Y), it must resultY∩A′′′ = (Y∩A′′′)∪A′.
In other words, we must require thatA′ ⊆Y∩A′′′ or A′ = /0.
Both these conclusions are false, sinceA′ 6⊆ A′′′ and since
the conditionY∩A′ 6= /0 ensures thatA′ 6= /0.
In the other cases to analyze, we always have that

Y∩A′′ 6= /0∧∄vi1, . . . ,vik ∈A∗ : Y∩A′′ =
k
⋃

j=1

NCn(vi j ). (5)

It’s easy to see that whenever (5) holds, it results that
TA(Y) $ QA(Y). This means that the A-lower
approximation and theA-upper approximation ofY must
differ each other.
In this way, we have shown that in all possible situations
different from those listed in the above table
lA(Y) 6= uA(Y), thus we have completed the proof.
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6 Conclusions

This paper is a further contribution to the interpretation of
a simple undirected graph in terms of Boolean
information table. We have completely determined both
theA-lower andA-upper approximation functions for the
n-cycles and then-paths. We have shown that the
complete study of these functions can be very laborious,
in spite the simplicity of examined graph structure. Our
study is part of a research project started in [22,23] and it
will be further developed in forthcoming papers relatively
to others graph families and by means of others RST
investigation tools.
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