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Abstract: We investigate the length approximation of the unknown l@gaurve in arbitrary Euclidean space upon applying a
piecewise-quadratic interpolation basedsuoniformly sampled reduced data in combination with theosgntial parameterization.
As proved in this paper, similarly to the trajectory estiimafthere is a discontinuity in the quality of length esttioa with exponential
parameterization performing no better than a blind unifgrass for the unknown knots, except for the case of cumelatierds. The
theoretical asymptotic estimates established here fothempproximation are also experimentally confirmed to tlgesharp.
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1 Introduction of the interpolated curvg it is necessary to assume that
our samplings{ti}{", satisfy the so-calledhdmissibility

Reduced data form an ordered collectiomof- 1 points condition

do,ds,---,0m in Euclideann-spaceE" upon sampling an
unknown but sufficiently smooth and regular curve i
y:[0,]] =EMatO0=ty<t; <tp <...<tm=1, where ri]'LT‘m5m:Oa where 5m:0<ri71%>£1(ti+1—ti)- (1)
the interpolation knots, to, ... ,ty,_1 are also assumed to T
be unknown. Heregi = y(tj)) for 0 < i < m and any .
interpolation scheme basfad) on reduced data is describe%em?rk 1. Recall that, a fam”y{f&"’ém > 0} Sf
asnonparametric interpolationMore precisely, the task unctions fs, = [0,T] — E is said to be oforder O(dm)
is to estimate the unknown curye(or its length) by a  When there is a constait > 0_such that, for somé,
curve 7 : [0,1] — EM such thaty(§) = g for all  |fs,(t)| < K&k, for all dn € (0,8) and allt € [0, T]. For
i =0,1,...,m, wherey and thef; are computed from the family of vector-valued functions, : [0,T] — E"
0o,d1, ---,0m exclusively. To emphasize that the knots (€.9. forT =1 andFs, = yo g —y; herey and a special
{t}M, are not given, we also call reduced datay : [0,1] — [0,1] depend ondy) we write that
Qm = {Gi}", asnonparametric dataSome applications Fs, = O(d5) when |[Fs [lo = O(37), where
of nonparametric data interpolation in computer vision, ||[Falle = SURe[o,Tii\Fan(t)H and || - || denotes the
computer graphics, engineering or physics are given e_gEUClidean norm. The Iattgr holds if there exists Aconstant
in [1], [2], [3], [4] or [5]. K > 0 such th:i\t for somé > 0 we have||F5, || < Ko7,
In order to approximate the length (s&#)[ for all om € (0,0) and allt € [0, T]. HereK andK depend
on curvey and possibly on samplingd; }{",. Note that
1 for Fs, continuous over compac{O,T] we have
d(y) =/0 [[v(t)[|dt [Fslle = maxcor|[|Fs,(t)]. In case of length
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approximation we setfs = d(y) — d(y), where f5
depends only ody, but notont € [0,T]. O

We introduce now two special
admissible samplingdl).

subfamilies of

Definition 1. The samplindt; }{" ; is more-or-less uniform
(see e.g.3], [ 7] or [ 8]) when, for some3 € (0,1], and all

sufficiently large m and all+ 1,2,... ,m, we have:
Bom <ti—ti_1< om. 2)
Alternatively, for sampling2) we have
BB @

for some 0 < By < B1, sufficiently large m and all
i = 1,2,....m. NecessarilyB; > 1, by summing the
inequalities(3). O

Note that both inequalitie®) and(3) may hold with
different constantg, o and ; for various more-or-less
uniform samplings.

Definition 2. For each & > 0, the sampling{ti}[", is

coined ase-uniform (see e.g. 9]) when, for some €

diffeomorphisnp : [0,1] — [0, 1], sufficiently large m and

all 0 <i <m, we have:

[ 1
) +0(—).

Thee-uniformity (4) is more restrictive than more-or-less
uniformity (2) (see B]). Since by(l) mc}n > 1the second
term in(4) reads also as @y%+¢).

ti=o(— (4)

Again both ¢ and the termO(&%¢) determine each
e-uniform sampling. One of the most frequently used
method to approximate the unknown kndts}", is to
invoke the so-calleéxponential parametrizatiofsee e.g.
[4]), defined as follows:

Definition 3. ChooseA € [0,1] and setfy = 0. Then,
inductively, forl <i < m, we define:

f —q1). (5)

Finally, upon normalization sef = i /ty, for 0 <i <m. It
is implicitly assumed;g# g1 so thatfi < f 1. O

=fi_1+]ai

Varying the parametek € [0,1] affects the shape of
curvey (see [LQ]). The choice ofA =0 ylelds uniform
fi =i, corresponding ta blind guessof {ti}™,, which
does not incorporate the geometrical distribution of the
interpolation points{q; }{",. The latter is manifested by
the following (see9)):

Theorem 1.Let y be C* and let the unknowrdt;}™ ; be
sampled e-uniformly, where ¢ > 0. If y = % is
constructed using  piecewise-quadratic
interpolation based oA = 0 (a blind uniform guess) and

Lagrangeindependence oA €

mdm = O(1) then, for piecewis&™ re-parameterization
Y :[0,1] — [0,1] (computed only from dat®m), we have
the asymptotic estimate

d(y) =d(y) + (a4,

O

On the other hand, still in the context of length
approximation, a much better estimate{af}" , follows
from the so-calledcumulative chord parameterization
forming a special case of exponential parameterization
(5) with A = 1. Indeed by 11] we have:

Theorem 2. Let y be C* and let the unknowrti };, be
sampled e-uniformly, where ¢ > 0. If y = ¥ s
constructed using  piecewise-quadratic ~ Lagrange
interpolation based ol = 1 (scaled cumulative chord
parameterization) and mdm O(1) then, for
piecewiseC™ re-parameterizationy : [0,1] — [0,1]
(computed only from datd)y), the sharp asymptotic
estimate reads as:

d(y) = d(ys) +O(aR ™43+, (6)

In fact formula(6), for wider class of arbitrary admissible
samplingg1), holds withO(&3) error. O

So scaled cumulative chord parametrization performs
(with A = 1) at least at cubic order of length approximation
getting accelerated by mfith, €} for e-uniform samplings.

At the other extreme (i.e. fox = 0)), the asymptotics for
the blind uniform guess of TH. are much worse for small
values ofe. Upon collating the above opposite cases, one
might expect a steady increase in the exponerd,pfor

of 1/m) asA varies from 0 to 1. Unexpectedly the latter
does not occur, as proved in TB.constitutingour main
result Indeed the following generalization of Th.and
Th. 2 holds:

Theorem 3. Let y be C* and the unknown knot§t;}™

be sampled-uniformly with € > 0 andmdm = O(1). For

y = ¥ defined as previously as a piecewise-quadratic
Lagrange interpolant combined with the exponential
parameterizatior(5) with parameterA € [0,1] and for
some piecewise-quadraii® re-parameterization

Y :[0,1] — [0,1] (computed only from reduced dafa)

the following holds:

O(émm{AAE})
O(érl’r?mH 3+s})’
O(y),

A €[0,1);
d(y) =d(%) + A=1; (@)

t
O

The last section of this paper supplements Fkith
the numerical tests indicating a near sharp character of the
asymptotics established in(7). In particular a
discontinuity in asymptotic order¥) atA = 1 and their
[0,1) and dependence ane (0, 1]
is also confirmed.
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A similar phenomenon of non-steady jump in whereg;(t) :O(f-<3)(t)), uniformly over compact; and

asymptotics for trajectory estimation based
exponential parameterization(5), e&-uniform  (or
more-or-less uniform) samplingg4) (or (2)) and

piecewise-quadratic Lagrange interpolation has bee

recently established irlp] and [13].

2 A proof - asymptotics in length
approximation for exponential
parameterization and e-uniform samplings

We pass now to the proof of T8, which claim(7) also
entails already established two special cases ef0 (see
Th. 1) and ofA =1 (see Th2).

Proof. As shown in [L3] it is sufficient to prove the
asymptotics (7) for {fi}", (instead of using
unnormalized knotgfi } ", - see(5)). In addition, one can
consider shifted knots according to— i (over each

segmentl; = [t,t2]). Therefore we use the same

notation for(5) and (8). Let ¢ : [ti,ti 2] — [fi,fi 2] =i

be the quadratic polynomial satisfying interpolation

conditionsy (ti+j) = fi;j, with j = 0,1,2, where

fi :07 fi+1: ||qi+l_quA7

ﬂ+2:ﬂ+1+”qi+2_qi+1”)\7 (8)

for A € [0,1]. The track-sum of {¢}"? (for

i =0,2,4...m-2) defines a continuous piecewicg-
mappingy : [0,1] — [0,T], whereT = {n. Note that by
[13] the function ; is asymptotically a
re-parameterization for eacls > 0 and A € [0,1].

Noticeably, the latter may not hold foe = 0 and
A €10,1) (see L2)). The proof of Th.3 is divided into
three steps:

2.1 Step 1: difference between interpolgnt
and curvey

Let the interpolanfs(fi) = qi be defined as a track-sum of
quadratics)s; : [f.fi.2] — E" satisfyingfh;(fi+}) = g,
for j =0,1,2 andi = 2k, wherek =0,1,...,m/2 (m s
assumed here to be even). By, the difference between
the interpolany/ = y» and the unknown curvg over each

li (and thus ovef0,1] sincey; is a re-parameterization)

reads as:

fi(t) = (Vaio ¢h)(t) — v(t). 9)
Thus asysi(fis}) = (i o )(ti+j) (for j = 0,1,2) we
arrive at

fi(tisj) = 0. (10)

An inspection of the proof of Hadamard’'s Lemma (see

[14]; Part 1, Lemma 2.1) combined witl10) leads to:

fi(t) = (t—ti)(t —tipa) (t —tir2)Qi(t), (11)

ong € Cl. Consequently, since bothy and y; are

quadratics, the chain rule applied f{)3) (see also(9))

ryieldsl:

gi(t) = O(% () - o™ (t) - oy (t) + O(1). (12)

By [13] each contributing ter®(%;(£)), O(y"(t)) and
O(L[Ji(z) (t)) occurring in(12) reads as:

(6 - {0<5&“‘“{2‘”’”5‘”} PR XY

0(822), A=1lort=L
A (13)
forf el and
@y _ J O3 1H), A €[0,1);
lM (t) - { 5rﬁl+)\ + (5%#\)’ t = nlqv (14)
together with
o awin{—l+)\7—2+)\+s}) = [0 1)
wi(Z) (t) = O(dwin{Z,lJre})’ A= 1; (15)
0(5%#)‘), ti = Lmv

fort € l;. Combining(12) with (13), (14) and(15) yields:

A €]0,1);

min{0,—2+2¢}

o). (16)

Finally, upon coupling(11) with (16) we arrive at the
sharp asymptotics for the trajectory estimation (S&9){

min{3,1+2¢}

fort € Iy andf € I;.

A €10,1);

: 17
A=1lorti=+, (17

2.2 Step 2: difference betweghand ytV

Furthermore, upon differentiatind 1) we obtain (for any
tel):

(1) =0(82) - ai(t) +0(53) - g (1).
Hadamard's Lemma together with the chain rule yield:
oV (t) = O((faio gt — V)@ (1))

= (i (O )2 =y (1))

1 Derivatives overf are denoted by apostrophes, whereas
calculated ovet use superscript notation.

(18)

(19)
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as bothy,; andy; are quadratics. Thus singes C* over
compact[0,1], once we combing¢l3), (15) and(19) we
obtain (over;) the following:

O(dwin{zfm 1+872)\})

g_(l)(t) _ O(émm{ 242) ,—4+2(e+A) })—FO( )7 = [07 1)
i O(l) 'O(dwln{4,2+2£}) + O( )’ A=1
O(852)-0(85) +0(1),  ti=p.
(20)

Taking into account that
min{2—2A,1+&—-2A} + min{—2+2A,—4+2c+2A}

| —3+3¢,
=10,

formula(20), fort € |;, reads as:

O<e<l;
£>1,

0(5,;3%), 0<e<1,Ae[0,1);
g (1) = { 0(1), £>1,A€[0,1);
0(1), A=1lorti=L;
_ o(6rrTr]1in{07—3-s-3e})7 Ael01); 1)
0(1), A=1lort=d.

The latter combined witli16) and(18) renders (ovel;):

m|n{0 —2+2¢} .
e = o { E 1), ! ﬁi[f’olr)t} — i
( mln{O 3+3a}) Ac [O, 1);
+oa-{ o A—Tort— i
B O(dwln{Z,ZE})’ Ac [0’ 1);
B {O((Sr%), A=1lort= L. (22)

2.3 Step 3: asymptotics in length approximation

Let Vyﬁ denote the orthogonal complement of the

space spanned by (t)
parameterized by arc- Iength we halygd(t)

therefore ovel;:
(Foi o )M (t) = (i o un) M (1), VD )y (1) + vt
23)

wherev(t) is the orthogonal projection df; o q,/i)(lS (t)
ontoV)jl

)] =1 and

product inE™. By (9) (o i) D(t) )+ y (1)
which combined with{23) and ||y (t) | = 1 results in
(Foiown) V(1) = 1+ (57 0. ¥V O ) +v(b). (24)

Hence the latter coupled wii22) leads to (fott € I;):

vit) = £V — (FP ), P )y @)

ti2
. As y is regular and can be J 2[ (I (i o wn)™

_ fo(ammEEn oy e 0,1);
B {0(6,%), A=1 orti= L. (25)
Subsequently, again b24) we have:
I(fiow)M (1) = VA= VB, (26)
where
A= ( t), Y (0))?+ v(t)[|?
+a1+<#”ax¢”a»x¢”a>vt
B =1+2(f7 ),y (t) t), (1)) + [Iv(t) |
as y(1 =0.By Taonr expansion we havex) =
(1+ x)l/2 1+ (1/2)x+ O(x?) for anyx separated from
—1. Combining(22) with (25) leads to:
W),y )+ (K 0, D 0)2 + v |12
- o(érwin{ZZe})7 Ac [07 1);
B { 0(32), A=1lort= L 27)

which is asymptotically separated froml. Hence by
(26), (27) and Taylor expansion df(x) we arrive at:

I(Fi o )P )] = 1+ (P (0),y V(1))

o™ aepy;
o(6%), A=1lortj=1.
Thus over each sub-intenda(as|| y(1 (t)|| = 1) we obtain:
(B0 ) D)l — YD) = (5 1),y (0))
4 mﬂm“%,Aemn:_
o(6%), A=1lortj=1.
Subsequently, over eathwe have:
1= Iy )
tir2
AU AIOIEE
il 2 min{4,4¢} .
Ji2 O(oy)dt, A=1lorti= .

- Here(,-) denotes a standard Euclidean dot the first integral in28) (denoted ash ;) upon integration

by parts and by11) reads as:

i = [i+2<fi<1)(t),y<l> (t))dt
0.y O /Mﬂﬁaxwaa»m
&

_ /t )y
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Upon recalling thali = J1; +J.;, the combination of29),
(32), (33) leads to (over each):

Ii

B _%tiﬂ(t_t)(t—tl+1)(t_t|+2 g. V<2

29) (20 e 0)] = IV 0)
since at interpolation poinﬁ andg;2 we havefi(tj) = o(sm mln{5 2+3£} A €[0,1);
fi(tir2) = 0. In addition asgi( Ject (see(11)) the function o Smin{s. 4+s} A =1
),y (1) satisfying(fi (t), y(t)) = (t —t;)(t - (33 ti=
tipa)(t —t|+2) i(t) is of classC! and thusri(t) = ri(tj) +
oM m|n{5 1+4¢g} Ac [O 1)
(t—t)r'Y (&) (fort € I; and somé; € I;). Therefore(29) (Jm T ) 1)
reads as: + 0(5@), A= 1
O(53) =i
Jii = —(gi(t),y*? (ti)>-/ (t=t)(t—tiy1)(t —tiy2)dt mll:{s 1+4e} i
L O(dm ), A€l0,1);
tii2 - min{5,4+¢}
2z o) . A=1; (34)
- [P -2 6 @) O @)t o aTh
tiy2 .
— t—t)2(t—tq)(t—t (&), Y3 (&))dt. as 1+4e <2+ 3¢, for0<e <land 5< min{l1+4¢,2+
/ti (=~ tea)(t~ s2) (060, V9 () 3¢}, for € > 1. Finally, by (34) the estimate for error in
(30)  length approximation stands as:
Again, invoking integration by parts results in m=2k
Ji =) (t—tipa) (t —ti2)dt Z}/ (I(Fo ) D) = IyP()
_ /ti+2 (t—ti)2(2ti+1_t)dt+/n+z (t—ti)z(z'[i+2—t)dt . o5 Smin{s, 1+4£})7 A e[0,1);
t t — . m|n{5 4+¢e} 4.
_ 3 f 2| 9om hoA= :|L 49
_ (ti —tiy2) (tisa —tiva) +}/|+2(t—ti)3dt 0(83), ti =&
6 i Formula(7) follows from(35) upon resorting to the drawn
(t —ti2)3 _ assumptiormadny, = O(1). The proof of Th3is henceforth
T 12 (tiez = 2ip1 +1) completed. O
_ O(éa)o(ﬂin{Zl-&-s})
. 3 Experiments
_ o(6m|n~{574-~-£})7 (31)

In the closing section of this paper we verify numerically

where in the lattee-uniformity (4) together with Taylor the asympotics established in Th. More specifically,

L in{2,1+
expansion yieldi 2 — 2ti.1 +t; =Q(5rrnmn{ 7). Forti= e test the sharpness ), its independence from
i/muniform the last integral vanishes®s; — 2t 1+t = ) ¢ [0,1) and a discontinuity in asymptotical convergence
0. Note that mif0, —3+3e} <min{0, —2+4-2e}fore >0.  qrders from Th3 for length estimation ak = 1.
Consequently, by16), (21) and(31) we obtain in(30): The tests are performed Mathematica 9.@see [L5))
O(dwin{5,4+£}) t£i/m and are carried out on a 2.4GHZ Intel Core 2 Duo
Jij = {O ) t? 1. ’ computer with 8GB RAM. Observe that since
’ min{0, 24 2¢} - T =3 (tis —t) < md we havem P = O(5f), for
_{O(ém ' ), Ae€0l);, B > 0. Hence the investigated asymptotics in terms of
O(1), A=1lorti=g; O(38) can be examined in terms ofo(1/mPf)
min{0,~3+3¢} : asymptotics. Note that for a parametric regular curve
(55)-{85?)“ ) ;\\E[f’olr)t'- . y:[0,1] — E", A € [0,1] with m varying between
' - T Mmin < M < Mmax thei-th component of the error fak(y)
O(awin{5,2+3£})7 A €[0,1); estimation reads as:
= oErm ), A= D e [l [T Ivoslos
0(55)1)7 ti _ nL] m f ||V|2( H h HV< ”
The asymptotics of the second integra(28) (denoted as = d(yh) —d(y] ftiti12])s

Joi) amounts to: R ) )
’ where 4 : [ti,ti;o] — E" is a Lagrange quadratic

o(smMsIHEl ) e [0,1); satisfying{s|y, 1., = V- Recall that by 13, the function
Joj = p ’ AR (33) e
0(8), A=1lort=1 Wi : Ttitiyo] — [ti,tiy2] (see also the proof of TI8) forms
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a re-parameterization for eagh> 0 and forA e [0,1].  Table 1: EstimatedBs(A) ~ Be(A) = min{4,4¢} for y. and
Even more by 11], the quadraticy; defines also a sampling(36) interpolated byj, with A € [0,1] ande € (0, 2].
re-parameterization for all admissible samplings in T =01 =033c =05 =07 =09l =10l =20

case when\ = 1. Obviously, the quantitiy, defined here Be(A)| 0.400| 1.320 | 2.000 | 2.800 | 3.600 | 4.000 | 4.000
as a sum of E|, represents the searched error [0.00[ 2.597 | 2.800 | 3.064 | 3.456 | 3.857 | 4.043 | 4.095

d(f) — d(y) = O(3E™) in length approximation of 00| 2601 4.977 | 3.686| 4.033] 3.981] 4.058 | 4.00L

0.33| 2.183 | 2.640 | 2.664 | 3.333| 3.702 | 3.963 | 3.890
curvey. From the set obsolute erors{Em}ms,, the 0.50| 2.196 | 2.646 | 2.971| 3.346 | 3.730 | 3.992 | 3.909

numerical estimatg8(A) of genuine orde3(A) is next 0.70| 2.196 | 2.644 | 2.969 | 3.340 | 3.718 | 3.982 | 3.902
computed by using linear regressiorapplied to the pair 0.90| 2.194| 2.629 | 2.936| 3.265| 3.363 | 4.139 | 3.814
of points & = {(log(m), —l0g(Em)) jmm&  (see also B:(1)] 3.100| 3.330 | 3.500 | 3.700 | 3.900 | 4.000 [ 4.000
[3]). Since piece—wiselydeqf/z) — 2 the number of 1.00| 3.111 | 3.364 | 3.541 | 3.749 | 3.954 | 4.056 | 7.070
interpolation points{q;}!", is assumed to be odd i.e.
m = 2Kk is even as indexing runs over<0i < m. The

Mathematicabuilt-in functionsLinearModelFityields the

coefficient B(A) from the computed regression line

y(X) = B(A)x+ b based oneZ. Our experiments use the

Table 2: Estimatedﬁg()\) ~ Be(A) = min{4,4¢} for y and
sampling(37) interpolated byj, with A € [0,1] ande € (0,2)].

following two testing families o€-uniform samplings: A |e=01/e=033]¢=05]e=07/¢=09]e=10]e=20
B:(A)| 0.400 | 1.320 | 2.000 | 2.800 | 3.600 | 4.000 | 4.000

i~ 0.00| 2.379 | 2.743 | 3.051| 3.449 | 3.865 | 4.067 | 4.044

==+, (36) 0.10| 2.555| 1.196 | 2.862 | 3.287 | 3.480 | 3.374 | 4.001

m  mtE 033| 2.216 | 2.283 | 3.026 | 3.431 | 3.835 | 4.025| 4.037

q 050| 2.221 | 2.684 | 3.027| 3.432 | 3.837 | 4.029 | 4.037
an i 1 , 0.70| 2.221 | 2.684 | 3.028 | 3.431 | 3.836 | 4.027 | 4.036
m Ir1even; 0.90| 2.223 | 2.684 | 2.025| 3.426 | 3.823 | 4.008 | 4.032

_ B:(1)| 3.100 | 3.330 | 3.500] 3.700 | 3.900 | 4.000 | 4.000

t = n'—q+2mhg, if i =4k+1; (37) 1.00| 4.157| 4.404 | 4578 4.773 | 4.971| 5.078| 3.974

h— e, if i =4k+3.
For both sampling$36) and (37) we setty = 0 and
tm = 1, and hencé; € [0,1]. Some examples of plotting column) the expected independencg8gfA ) onA oncee
the distribution of {y(t)}, for the abovee-uniform is fixed. Both Tabled and2 also indicate that foh fixed,
samplingg36) and(37) are presented e.g. iB]f We pass  increasinge from 0 to 1, makegB;(A) bigger and closer
now to the experiments designed to test numerically theto 4. Upon satisfying inequalitg > 1 the quartic orders
convergence orders established 7. in convergence are reached. The latter coincides with the
asymptotics held byt } , uniform. However, the results
obtained in both Table4 and 2 for A € [0,1) suggest
3.1 Length estimation for reduced data from  faster convergence ratef(A) as compared tq7). In
case of{t; }|" ; uniform the computed convergence orders
planar curves - '
B ~ 4 (see(7)) as forA € {0,0.1,0.330.5,0.7,0.9,1}
they are{4.036,4.044,4.036,4.037,4.037,4.039 4.074},
respectively. Evidently, the sharpness(@j for uniform
sampling is experimentally confirmedD

The first test is performed for length estimation of the
cubic curve ing2.

Example 1Consider now the following regulacubic )
curve e 1 [0,1] — EZ ye(t) = (7t (7t + 1)3(1r+ 1)73), We pass now to the second example which tests the

sampled according to eithéB6) or (37). For the first ~asymptotics in(7) on a planar spiral.

sampling we seimmin = 40 andmmax = 200, whereas for ) )
the second oneMmin = 100 and Myax = 120. The Example 2.Consider now a planar regular spiral

corresponding length of; reads asd(y.) = 3.452. The  Yspt - 0,1 — E? defined here as ysp(t) =
linear regression applied t@min < M < Mmax renders  ((t + 0.2)cogm(1 — 1)), (t 4+ 0.2)sin(r(1 — t))). To
computedﬁg()\) approximatingBe (A) = min{4,4¢} (for estimate3¢(A) a linear regression is applied again to

£ > 0), which are listed in Tablg and Table2. 100 = Myip < M < Mpax = 120 and to e-uniform
The sharpnessf Th. 3 for eitherA — 1 with & > 0 or samplings (37). The pertinent numerical results for

for A € [0,1) with € = 1 is confirmed in Tabld (see the ~Pe(A) = Be(A) are listed in Table3. Similarly as in
last row or the last column, respectively). On the otherExample 1, Table 3 shows that the computed orders

hand, Table2 shows more clearly the discontinuity in Be(A) exceed (for A € [0,1) and € € (0,1)) the
convergence ordergs(A) at A = 1 for € € (0,1), convergence rates established in BhHowever, still the

predicted by Th.3. Table 2 also underlines (see each inequality B:(A) > B¢(A) resulting from Table3 is
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Table 3: Estimatedﬁg(}\) ~ Be(A) = min{4,4¢} for ysn and Table 4: Estimatetﬁg(/\) ~ Be(A) = {4,4¢} for y, and sampling

sampling(37) interpolated byj, with A € [0,1] ande € (0,2)]. (36) interpolated by, with A € [0,1] ande € (0,2].

A |€=01]e=033]e=05/e=0.7/e=0.9/e=10|e=20 A |€=01]e=033]e=05/e=0.7/e=0.9/e=10|e=20
Be(A)| 0.400| 1.320 | 2.000| 2.800 | 3.600 | 4.000 | 4.000 Be(A)] 0.400| 1.320 | 2.000| 2.800 | 3.600 | 4.000 | 4.000
0.00| 2.368 | 2.704 | 2.914| 3.054 | 4.110| 4.044 | 4.035 0.00| 2.516 | 2.685 | 2.755| 5.980 | 4.066 | 4.037 | 4.034
0.10| 2.522| 2.827 | 3.618 | 3.987 | 4.039 | 4.041 | 4.035 0.10| 2.527| 3.021 | 3.749 | 4.002 | 4.033 | 4.034 | 4.034
0.33| 2.220| 2.706 | 3.103| 3.639 | 3.992 | 4.037 | 4.035 0.33| 2.191| 2.694 | 3.128 | 3.706 | 4.001 | 4.031 | 4.033
0.50| 2.224| 2.701 | 3.089 | 3.611 | 3.983 | 4.036 | 4.035 0.50| 2.197 | 2.686 | 3.104 | 3.672 | 3.994 | 4.031 | 4.033
0.70| 2.224| 2.704 | 3.095| 3.623 | 3.987 | 4.037 | 4.035 0.70| 2.197| 2.689 | 3.114 | 3.687 | 3.997 | 4.031 | 4.033
0.90| 2.233| 2.728 | 3.160| 3.729 | 4.011| 4.038 | 4.035 0.90| 2.212| 2.731 | 3.217 | 3.803 | 4.015| 4.034 | 4.033
Be(1)| 3.100| 3.330 | 3.500| 3.700 | 3.900 | 4.000 | 4000 Be(1)| 3.100| 3.330 | 3.500 | 3.700 | 3.900 | 4.000 | 4.000
1.00| 4.102 | 4.100 | 4.071 | 4.052 | 4.043 | 4.040 | 4.035 1.00| 4.056 | 4.079 | 4.050 | 4.037 | 4.034 | 4.034 | 4.033

consistent with(7). On the other hand, the sharpness of 4 Conclusion
(7) is confirmed forA = 1 with € > 0 or for A € [0,1)
with € > 1. Visibly, each column (i.e. with fixed) and

A € (0.1) shows almost equi:(A). Similarly, each row piecewise-quadratic interpolation based @runiformly

of Table3 mdlca.tes the increasing tendency in values Ofsampled reduced dataQWe analyze the dynamics of
Be(A) while varyinge from O to 1. Once = lisreached, ihe  apove asymptotics oncethe  exponential
the ordersPs—1,(A) ~ 4 are attained. In addition, the parameterizatior{5) depending on parametare [0,1] is
expected discontinuity ofg(A) at A = 1 is also jnvoked. Such parameterization of the reduced @aas
manifested upon inspecting the last three rows of T8ble commonly used in computer graphics for curve modeling
Finally, the case whe#t;}[", is uniform renderg8 ~ 4 - see e.g.4]. The case whem = 0 is studied in 9]
(see (7)) for A € {0,0.1,0.33,0.5,0.7,0.9,1} equal to yielding the upper bounds on convergence rates equal to
{4.03524.03514.03504.03494.0348 4.0348 4.0348}, Be(0) = min{4,4¢}. At the other extreme wheh = 1 the
respectively. The sharpness(@) for uniform samplingis  so-called cumulative chords are used. The latter is already
thus also experimentally confirmedO analyzed in 8] or [11]] yielding sharp convergence orders
Be(1) = {4,3+ €} in length approximation. In this paper
we extend these two results to all parameters [0, 1]
(determining the full class of exponential
parameterizations(5)) given reduced dataQn, are
e-uniformly sampled. As established and numerically
verified in this paper the upper bounds on convergence
The last experiment verifies the asymptotics(i#) for ratesf:(A) = min{4,4¢} are independent oA € [0,1)
curves inE3. However, it should be emphasized here, thatbut are sensitive to the variation okO¢ < 1. In addition,
the Th.3 applies to an arbitrary multidimensional reduced the discontinuity in3(A) occurs al =1 and 0< e < 1
dataQm by sampling regular curve iE" according to  with the expected jumps from at least # 4.
g-uniform fashion. More examples testi(ig) forn= 2,3 A similar phenomenon occurs in asymptotic
(including segmentation of medical images) as well asbehaviour ofa(A) measuring the convergence orders in
some applications of fitting reduced data for- 3 are  trajectory approximation - i.e. determining the following
discussed e.g. ir?] or [10]. difference (§ o Y)(t) — y(t) = 0(5#]!(/\)) over [0,T].

) . ) _ 3 Indeed, as shown inlp], for samplings(2) the sharp
Example 3Consideran elliptical helix y, : [0,1] — E* estimatesr(A) = 1 (forall A € [0,1)) anda (1) = 3 hold.
where (t) = ((3/2)cos2mt),sin(2mt), (27it)/4), With 1y aqdition (see g]), for samplings(4) the following
t € [0,1] and samplece-uniformly in accordance with sharp ordersig-o(A) = {3,1+ 2¢} (for all A € [0,1))
(36). The respective length ofy, is d(y,) = 8.090. To andag-o(1) = 3 are established.
approximate B¢(A), a linear regression is useq with An obvious open problem stemming out of T8.
Miin = 100 < M < Mmax= 120. The computed estimates ¢oncerns the analysis of = 0 case and the issue of
Be(A) approximatingBe(A) = min{4,4¢} are presented sharpness in asymptoti¢g). Another possible extension
in Table 4. Visibly the results are consistent with the of this work is to invoke smooth interpolation schemes
asymptotics from Th3, though the examined sharpness (see [L6]) combined with reduced data exponential
of (7) is again not experimentally confirmed (for parameterization (sed]]. Certain clues may be given in
A € [0,1)). However, the expected discontinuity #{A)  [17], where complet€? splines are dealt with fok = 1,
atA = 1 together with its independence anc [0,1) are  to obtain the fourth orders of convergence in length
again demonstrated in Table O estimation. The analysis @ interpolation for reduced

In this work we generalize the existing results for length
estimation of the regular curve InE" Vvia

3.2 Length estimation for reduced data from
spatial curves
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data with cumulative chords (i.e. again with= 1) can  [19]Lj.M. Koci¢, A.C. Simoncelli, B. Della Vecchia, Facta

additionally be found in3] or [1§]. Universitatis (NB), Series Mathematics and Informatis
Different classes of parameterizations applied mainly =~ 95-107 (1990).

on sparse reduced dat®, (though also equally [20] K. Mgrken and K. Scherer, Mathematics of Computation

applicable to the denseQm) include blending 66(217), 237-260 (1997).

parameterization [19], monotonicity or convexity

preserving one$4] or an alternative approach discussed

in [20]. \ Ryszard Kozera
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