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Abstract: We investigate the length approximation of the unknown regular curve in arbitrary Euclidean space upon applying a
piecewise-quadratic interpolation based onε-uniformly sampled reduced data in combination with the exponential parameterization.
As proved in this paper, similarly to the trajectory estimation, there is a discontinuity in the quality of length estimation with exponential
parameterization performing no better than a blind uniformguess for the unknown knots, except for the case of cumulative chords. The
theoretical asymptotic estimates established here for length approximation are also experimentally confirmed to be nearly sharp.
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1 Introduction

Reduced data form an ordered collection ofm+ 1 points
q0,q1, . . . ,qm in Euclideann-spaceEn upon sampling an
unknown but sufficiently smooth and regular curve
γ : [0,1] → En at 0= t0 < t1 < t2 < .. . < tm = 1, where
the interpolation knotst1, t2, . . . , tm−1 are also assumed to
be unknown. Hereqi = γ(ti) for 0 ≤ i ≤ m and any
interpolation scheme based on reduced data is described
asnonparametric interpolation. More precisely, the task
is to estimate the unknown curveγ (or its length) by a
curve γ̂ : [0,1] → Em such that γ̂(t̂i) = qi for all
i = 0,1, . . . ,m, where γ̂ and the t̂i are computed from
q0,q1, . . . ,qm exclusively. To emphasize that the knots
{ti}m

i=0 are not given, we also call reduced data
Qm = {qi}m

i=0 asnonparametric data. Some applications
of nonparametric data interpolation in computer vision,
computer graphics, engineering or physics are given e.g.
in [1], [2], [3], [4] or [5].

In order to approximate the length (see [6])

d(γ) =
∫ 1

0
‖γ̇(t)‖dt

of the interpolated curveγ it is necessary to assume that
our samplings{ti}m

i=0 satisfy the so-calledadmissibility
condition:

lim
m→∞

δm = 0, where δm = max
0≤i≤m−1

(ti+1− ti). (1)

Remark 1. Recall that, a family { fδm,δm > 0} of
functions fδm : [0,T] → E is said to be oforder O(δ p

m)

when there is a constantK > 0 such that, for somēδ ,
| fδm(t)| < Kδ p

m, for all δm ∈ (0, δ̄ ) and all t ∈ [0,T]. For
the family of vector-valued functionsFδm : [0,T] → En

(e.g. forT = 1 andFδm = γ̂ ◦ψ − γ; hereγ̂ and a special
ψ : [0,1] → [0,1] depend on δm) we write that
Fδm = O(δ α

m) when ‖Fδm‖∞ = O(δ α
m), where

‖Fδm‖∞ = supt∈[0,T] ‖Fδm(t)‖ and ‖ · ‖ denotes the
Euclidean norm. The latter holds if there exists constant
K̂ > 0 such that for somêδ > 0 we have‖Fδm‖ ≤ K̂δ α

m,
for all δm ∈ (0, δ̂ ) and allt ∈ [0,T]. HereK andK̂ depend
on curveγ and possibly on samplings{ti}m

i=0. Note that
for Fδm continuous over compact[0,T] we have
‖Fδm‖∞ = maxt∈[0,T ] ‖Fδm(t)‖. In case of length
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approximation we setfδm = d(γ̂) − d(γ), where fδm
depends only onδm but not ont ∈ [0,T]. ⊓⊔

We introduce now two special subfamilies of
admissible samplings(1).

Definition 1. The sampling{ti}m
i=0 is more-or-less uniform

(see e.g. [3], [ 7] or [ 8]) when, for someβ ∈ (0,1], and all
sufficiently large m and all i= 1,2, . . . ,m, we have:

β δm ≤ ti − ti−1 ≤ δm. (2)

Alternatively, for sampling(2) we have

β0

m
≤ ti − ti−1 ≤

β1

m
, (3)

for some 0 < β0 ≤ β1, sufficiently large m and all
i = 1,2, . . . ,m. Necessarilyβ1 ≥ 1, by summing the
inequalities(3). ⊓⊔

Note that both inequalities(2) and(3) may hold with
different constantsβ , β0 andβ1 for various more-or-less
uniform samplings.

Definition 2. For each ε > 0, the sampling{ti}m
i=0 is

coined asε-uniform (see e.g. [9]) when, for some C∞

diffeomorphismφ : [0,1]→ [0,1], sufficiently large m and
all 0≤ i ≤ m, we have:

ti = φ(
i
m
)+O(

1
m1+ε ). (4)

Theε-uniformity(4) is more restrictive than more-or-less
uniformity(2) (see [3]). Since by(1), mδm ≥ 1 the second
term in(4) reads also as O(δ 1+ε

m ). ⊓⊔

Again both φ and the termO(δ 1+ε
m ) determine each

ε-uniform sampling. One of the most frequently used
method to approximate the unknown knots{ti}m

i=0 is to
invoke the so-calledexponential parametrization(see e.g.
[4]), defined as follows:

Definition 3. Chooseλ ∈ [0,1] and set t̃0 = 0. Then,
inductively, for1≤ i ≤ m, we define:

t̃i = t̃i−1+ ‖qi −qi−1‖λ . (5)

Finally, upon normalization set̂ti = t̃i/t̃m, for 0≤ i ≤ m. It
is implicitly assumed qi 6= qi+1 so thatt̃i < t̃i+1. ⊓⊔

Varying the parameterλ ∈ [0,1] affects the shape of
curve γ̂ (see [10]). The choice ofλ = 0 yields uniform
t̂i = i, corresponding toa blind guessof {ti}m

i=0, which
does not incorporate the geometrical distribution of the
interpolation points{qi}m

i=0. The latter is manifested by
the following (see [9]):

Theorem 1. Let γ beC4 and let the unknown{ti}m
i=0 be

sampled ε-uniformly, where ε > 0. If γ̂ = γ̂2 is
constructed using piecewise-quadratic Lagrange
interpolation based onλ = 0 (a blind uniform guess) and

mδm = O(1) then, for piecewise-C∞ re-parameterization
ψ : [0,1]→ [0,1] (computed only from dataQm), we have
the asymptotic estimate:

d(γ) = d(γ̂2)+O(δ min{4,4ε}
m ).

⊓⊔

On the other hand, still in the context of length
approximation, a much better estimate of{ti}m

i=0 follows
from the so-calledcumulative chord parameterization
forming a special case of exponential parameterization
(5) with λ = 1. Indeed by [11] we have:

Theorem 2. Let γ beC4 and let the unknown{ti}m
i=0 be

sampled ε-uniformly, where ε > 0. If γ̂ = γ̂2 is
constructed using piecewise-quadratic Lagrange
interpolation based onλ = 1 (scaled cumulative chord
parameterization) and mδm = O(1) then, for
piecewise-C∞ re-parameterizationψ : [0,1] → [0,1]
(computed only from dataQm), the sharp asymptotic
estimate reads as:

d(γ) = d(γ̂2)+O(δ min{4,3+ε}
m ). (6)

In fact formula(6), for wider class of arbitrary admissible
samplings(1), holds withO(δ 3

m) error. ⊓⊔
So scaled cumulative chord parametrization performs

(with λ = 1) at least at cubic order of length approximation
getting accelerated by min{1,ε} for ε-uniform samplings.
At the other extreme (i.e. forλ = 0)), the asymptotics for
the blind uniform guess of Th.1 are much worse for small
values ofε. Upon collating the above opposite cases, one
might expect a steady increase in the exponent ofδm (or
of 1/m) asλ varies from 0 to 1. Unexpectedly the latter
does not occur, as proved in Th.3 constitutingour main
result. Indeed the following generalization of Th.1 and
Th. 2 holds:

Theorem 3. Let γ beC4 and the unknown knots{ti}m
i=0

be sampledε-uniformly with ε > 0 andmδm = O(1). For
γ̂ = γ̂2 defined as previously as a piecewise-quadratic
Lagrange interpolant combined with the exponential
parameterization(5) with parameterλ ∈ [0,1] and for
some piecewise-quadratic-C∞ re-parameterization
ψ : [0,1] → [0,1] (computed only from reduced dataQm)
the following holds:

d(γ) = d(γ̂2)+











O(δ min{4,4ε}
m ), λ ∈ [0,1);

O(δ min{4,3+ε}
m ), λ = 1;

O(δ 4
m), ti = i

m.

(7)

⊓⊔

The last section of this paper supplements Th.3 with
the numerical tests indicating a near sharp character of the
asymptotics established in(7). In particular a
discontinuity in asymptotic orders(7) at λ = 1 and their
independence onλ ∈ [0,1) and dependence onε ∈ (0,1]
is also confirmed.
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A similar phenomenon of non-steady jump in
asymptotics for trajectory estimation based on
exponential parameterization(5), ε-uniform (or
more-or-less uniform) samplings(4) (or (2)) and
piecewise-quadratic Lagrange interpolation has been
recently established in [12] and [13].

2 A proof - asymptotics in length
approximation for exponential
parameterization andε-uniform samplings

We pass now to the proof of Th.3, which claim(7) also
entails already established two special cases ofλ = 0 (see
Th. 1) and ofλ = 1 (see Th.2).

Proof. As shown in [13] it is sufficient to prove the
asymptotics (7) for {t̂i}m

i=0 (instead of using
unnormalized knots{t̃i}m

i=0 - see(5)). In addition, one can
consider shifted knots according tôt − t̂i (over each
segment Ii = [ti , ti+2]). Therefore we use the same
notation for(5) and (8). Let ψi : [ti , ti+2] → [t̂i , t̂i+2] = Îi
be the quadratic polynomial satisfying interpolation
conditionsψi(ti+ j) = t̂i+ j , with j = 0,1,2, where

t̂i = 0, t̂i+1 = ‖qi+1−qi‖λ ,

t̂i+2 = t̂i+1+ ‖qi+2−qi+1‖λ , (8)

for λ ∈ [0,1]. The track-sum of {ψi}m−2
i=0 (for

i = 0,2,4. . .m− 2) defines a continuous piecewise-C∞

mappingψ : [0,1] → [0, T̂], whereT̂ = t̂m. Note that by
[13] the function ψi is asymptotically a
re-parameterization for eachε > 0 and λ ∈ [0,1].
Noticeably, the latter may not hold forε = 0 and
λ ∈ [0,1) (see [12]). The proof of Th.3 is divided into
three steps:

2.1 Step 1: difference between interpolantγ̂2
and curveγ

Let the interpolant̂γ2(t̂i) = qi be defined as a track-sum of
quadraticsγ̂2,i : [t̂i , t̂i+2] → En satisfyingγ̂2,i(t̂i+ j) = qi+ j ,
for j = 0,1,2 and i = 2k, wherek = 0,1, . . . ,m/2 (m is
assumed here to be even). By [13], the difference between
the interpolant̂γ = γ̂2 and the unknown curveγ over each
Ii (and thus over[0,1] sinceψi is a re-parameterization)
reads as:

fi(t) = (γ̂2,i ◦ψi)(t)− γ(t). (9)

Thus asγ̂2,i(t̂i+ j) = (γ̂2,i ◦ ψi)(ti+ j) (for j = 0,1,2) we
arrive at

fi(ti+ j) = 0. (10)

An inspection of the proof of Hadamard’s Lemma (see
[14]; Part 1, Lemma 2.1) combined with(10) leads to:

fi(t) = (t − ti)(t − ti+1)(t − ti+2)gi(t), (11)

wheregi(t) = O( f (3)i (t)), uniformly over compactIi and
gi ∈ C1. Consequently, since bothψi and γ̂2,i are

quadratics, the chain rule applied tof (3)i (see also(9))
yields1:

gi(t) = O(γ̂ ′′2,i(t̂)) ·O(ψ(1)
i (t)) ·O(ψ(2)

i (t))+O(1). (12)

By [13] each contributing termO(γ̂ ′′2,i(t̂)), O(ψ(1)
i (t)) and

O(ψ(2)
i (t)) occurring in(12) reads as:

γ ′′2,i(t̂) =

{

O(δ min{2−2λ ,1+ε−2λ}
m ), λ ∈ [0,1);

O(δ 2−2λ
m ), λ = 1 or ti = i

m,

(13)
for t̂ ∈ Îi and

ψ(1)
i (t) =

{

O(δ−1+λ
m ), λ ∈ [0,1);

δ−1+λ
m +O(δ 1+λ

m ), ti = i
m,

(14)

together with

ψ(2)
i (t) =











O(δ min{−1+λ ,−2+λ+ε}
m ), λ ∈ [0,1);

O(δ min{2,1+ε}
m ), λ = 1;

O(δ 1+λ
m ), ti = i

m,

(15)

for t ∈ Ii . Combining(12) with (13), (14) and(15) yields:

gi(t) =

{

O(δ min{0,−2+2ε}
m ), λ ∈ [0,1);

O(1), λ = 1 or ti = i
m.

(16)

Finally, upon coupling(11) with (16) we arrive at the
sharp asymptotics for the trajectory estimation (see [13]):

fi(t) =

{

O(δ min{3,1+2ε}
m ), λ ∈ [0,1);

O(δ 3
m), λ = 1 or ti = i

m,
(17)

for t ∈ Ii andt̂ ∈ Îi .

2.2 Step 2: difference betweenγ̂ ′2 andγ(1)

Furthermore, upon differentiating(11) we obtain (for any
t ∈ Ii):

f (1)i (t) = O(δ 2
m) ·gi(t)+O(δ 3

m) ·g
(1)
i (t). (18)

Hadamard’s Lemma together with the chain rule yield:

g(1)i (t) = O((γ̂2,i ◦ψi − γ)(4)(t))

= O(γ ′′2,i(t̂)(ψ
(2)
i (t))2− γ(4)(t)) (19)

1 Derivatives overt̂ are denoted by apostrophes, whereas
calculated overt use superscript notation.
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as bothγ2,i andψi are quadratics. Thus sinceγ ∈ C4 over
compact[0,1], once we combine(13), (15) and(19) we
obtain (overIi) the following:

g(1)i (t) =



















O(δ min{2−2λ ,1+ε−2λ}
m )

·O(δ min{−2+2λ ,−4+2(ε+λ )}
m )+O(1), λ ∈ [0,1);

O(1) ·O(δ min{4,2+2ε}
m )+O(1), λ = 1;

O(δ 2−2λ
m ) ·O(δ 2+2λ

m )+O(1), ti = i
m.

(20)

Taking into account that

min{2−2λ ,1+ ε−2λ} + min{−2+2λ ,−4+2ε+2λ}

=

{

−3+3ε, 0< ε < 1;
0, ε ≥ 1,

formula(20), for t ∈ Ii , reads as:

g(1)i (t) =







O(δ−3+3ε
m ), 0< ε < 1, λ ∈ [0,1);

O(1), ε ≥ 1, λ ∈ [0,1);
O(1), λ = 1 or ti = i

m;

=

{

O(δ min{0,−3+3ε}
m ), λ ∈ [0,1);

O(1), λ = 1 or ti = i
m.

(21)

The latter combined with(16) and(18) renders (overIi):

f (1)i (t) = O(δ 2
m) ·

{

O(δ min{0,−2+2ε}
m ), λ ∈ [0,1);

O(1), λ = 1 or ti = i
m;

+ O(δ 3
m) ·

{

O(δ min{0,−3+3ε}
m ), λ ∈ [0,1);

O(1), λ = 1 or ti = i
m;

=

{

O(δ min{2,2ε}
m ), λ ∈ [0,1);

O(δ 2
m), λ = 1 or ti = i

m.
(22)

2.3 Step 3: asymptotics in length approximation

Let V⊥
γ(1)(t) denote the orthogonal complement of the

space spanned byγ(1)(t). As γ is regular and can be
parameterized by arc-length we have‖γ(1)(t)‖ = 1 and
therefore overIi :

(γ̂2,i ◦ψi)
(1)(t) = 〈(γ̂2,i ◦ψi)

(1)(t),γ(1)(t)〉γ(1)(t)+ v(t),
(23)

wherev(t) is the orthogonal projection of(γ2,i ◦ψi)
(1)(t)

ontoV⊥
γ(1)(t). Here〈·, ·〉 denotes a standard Euclidean dot

product inEn. By (9) (γ̂2,i ◦ψi)
(1)(t) = f (1)i (t) + γ(1)(t)

which combined with(23) and‖γ(1)(t)‖= 1 results in

(γ̂2,i ◦ψi)
(1)(t) = (1+〈 f (1)i (t),γ(1)(t)〉γ(1)(t)+v(t). (24)

Hence the latter coupled with(22) leads to (fort ∈ Ii):

v(t) = f (1)i (t)−〈 f (1)i (t),γ(1)(t)〉γ(1)(t)

=

{

O(δ min{2,2ε}
m ), λ ∈ [0,1);

O(δ 2
m), λ = 1, or ti = i

m.
(25)

Subsequently, again by(24) we have:

‖(γ̂2,i ◦ψi)
(1)(t)‖=

√
A=

√
B, (26)

where

A = (1+ 〈 f (1)i (t),γ(1)(t)〉)2+ ‖v(t)‖2

+2(1+ 〈 f (1)i (t),γ(1)(t)〉)〈γ(1)(t),v(t)〉,

B = 1+2〈 f (1)i (t),γ(1)(t)〉+(〈 f (1)i (t),γ(1)(t)〉)2+ ‖v(t)‖2

as〈γ(1)(t),v(t)〉= 0. By Taylor expansion we haveh(x) =
(1+ x)1/2 = 1+(1/2)x+O(x2) for anyx separated from
−1. Combining(22) with (25) leads to:

x = 2〈 f (1)i (t),γ(1)(t)〉+(〈 f (1)i (t),γ(1)(t)〉)2+ ‖v(t)‖2

=

{

O(δ min{2,2ε}
m ), λ ∈ [0,1);

O(δ 2
m), λ = 1 or ti = i

m,
(27)

which is asymptotically separated from−1. Hence by
(26), (27) and Taylor expansion ofh(x) we arrive at:

‖(γ̂2,i ◦ψi)
(1)(t)‖ = 1+ 〈 f (1)i (t),γ(1)(t)〉

+

{

O(δ min{4,4ε}
m ), λ ∈ [0,1);

O(δ 4
m), λ = 1 or ti = i

m.

Thus over each sub-intervalIi (as‖γ(1)(t)‖= 1) we obtain:

‖(γ̂2,i ◦ψi)
(1)(t)‖ − ‖γ(1)(t)‖= 〈 f (1)i (t),γ(1)(t)〉

+

{

O(δ min{4,4ε}
m ), λ ∈ [0,1);

O(δ 4
m), λ = 1 or ti = i

m.

Subsequently, over eachIi we have:

Ji =

∫ ti+2

ti
(‖(γ̂2,i ◦ψi)

(1)(t)‖−‖γ(1)(t)‖)dt

=

∫ ti+2

ti
〈 f (1)i (t),γ(1)(t)〉dt

+

{

∫ ti+2
ti O(δ min{4,4ε}

m )dt, λ ∈ [0,1);
∫ ti+2
ti O(δ 4

m)dt, λ = 1 or ti = i
m.

(28)

The first integral in(28) (denoted asJ1,i) upon integration
by parts and by(11) reads as:

J1,i =

∫ ti+2

ti
〈 f (1)i (t),γ(1)(t)〉dt

= 〈 fi(t),γ(1)(t)〉|ti+2
ti −

∫ ti+2

ti
〈 fi(t),γ(2)(t)〉dt

= −
∫ ti+2

ti
〈 fi(t),γ(2)(t)〉dt

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 1, 107-115 (2016) /www.naturalspublishing.com/Journals.asp 111

= −
∫ ti+2

ti
(t − ti)(t − ti+1)(t − ti+2)〈gi(t),γ(2)(t)〉dt,

(29)

since at interpolation pointsqi andqi+2 we havefi(ti) =

fi(ti+2) = 0. In addition asg(1)i ∈C1 (see(11)) the function
r i(t) = 〈gi(t),γ(2)(t)〉 satisfying〈 fi(t),γ(t)〉 = (t − ti)(t −
ti+1)(t − ti+2)r i(t) is of classC1 and thusr i(t) = r i(ti)+

(t − ti)r
(1)
i (ξi) (for t ∈ Ii and someξi ∈ Ii). Therefore(29)

reads as:

J1,i = −〈gi(ti),γ(2)(ti)〉 ·
∫ ti+2

ti
(t − ti)(t − ti+1)(t − ti+2)dt

−
∫ ti+2

ti
(t − ti)

2(t − ti+1)(t − ti+2)〈g(1)i (ξi),γ(2)(ξi)〉dt

−
∫ ti+2

ti
(t − ti)

2(t − ti+1)(t − ti+2)〈gi(ξi),γ(3)(ξi)〉dt.

(30)

Again, invoking integration by parts results in
∫ ti+2
ti (t − ti)(t − ti+1)(t − ti+2)dt

=

∫ ti+2

ti

(t − ti)2(ti+1− t)
2

dt+
∫ ti+2

ti

(t − ti)2(ti+2− t)
2

dt

=
(ti − ti+2)

3(ti+2− ti+1)

6
+

1
3

∫ ti+2

ti
(t − ti)

3dt

=
(ti − ti+2)

3

12
(ti+2−2ti+1+ ti)

= O(δ 3
m)O(δ min{2,1+ε}

m )

= O(δ min{5,4+ε}
m ), (31)

where in the latterε-uniformity (4) together with Taylor

expansion yieldti+2−2ti+1+ ti = O(δ min{2,1+ε}
m ). Forti =

i/muniform the last integral vanishes asti+2−2ti+1+ ti =
0. Note that min{0,−3+3ε}≤min{0,−2+2ε} for ε > 0.
Consequently, by(16), (21) and(31) we obtain in(30):

J1,i =

{

O(δ min{5,4+ε}
m ), ti 6= i/m;

0, ti = i
m;

·
{

O(δ min{0,−2+2ε}
m ), λ ∈ [0,1);

O(1), λ = 1 or ti = i
m;

+O(δ 5
m) ·

{

O(δ min{0,−3+3ε}
m ), λ ∈ [0,1);

O(1), λ = 1 or ti = i
m;

=











O(δ min{5,2+3ε}
m ), λ ∈ [0,1);

O(δ min{5,4+ε}
m ), λ = 1;

O(δ 5
m), ti = i

m.

(32)

The asymptotics of the second integral in(28) (denoted as
J2,i) amounts to:

J2,i =

{

O(δ min{5,1+4ε}
m ), λ ∈ [0,1);

O(δ 5
m), λ = 1 or ti = i

m.
(33)

Upon recalling thatJi = J1,i+J2,i, the combination of(29),
(32), (33) leads to (over eachIi):
∫ ti+2

ti
(‖(γ̂2 ◦ψi)

(1)(t)‖−‖γ(1)(t)‖)dt

=











O(δ min{5,2+3ε}
m ), λ ∈ [0,1);

O(δ min{5,4+ε}
m ), λ = 1;

O(δ 5
m), ti = i

m;

+







O(δ min{5,1+4ε}
m ), λ ∈ [0,1);

O(δ 5
m), λ = 1;

O(δ 5
m), ti = i

m;

=











O(δ min{5,1+4ε}
m ), λ ∈ [0,1);

O(δ min{5,4+ε}
m ), λ = 1;

O(δ 5
m), ti = i

m,

(34)

as 1+4ε ≤ 2+3ε, for 0< ε ≤ 1 and 5≤ min{1+4ε,2+
3ε}, for ε ≥ 1. Finally, by(34) the estimate for error in
length approximation stands as:

d(γ̂2)−d(γ) =
m=2k

∑
i=0

∫ ti+2

ti
(‖(γ̂2◦ψi)

(1)(t)‖−‖γ(1)(t)‖)dt

=
m
2
·











O(δ min{5,1+4ε}
m ), λ ∈ [0,1);

O(δ min{5,4+ε}
m ), λ = 1;

O(δ 5
m), ti = i

m.

(35)

Formula(7) follows from(35) upon resorting to the drawn
assumptionmδm = O(1). The proof of Th.3 is henceforth
completed. ⊓⊔

3 Experiments

In the closing section of this paper we verify numerically
the asymptotics established in Th.3. More specifically,
we test the sharpness of(7), its independence from
λ ∈ [0,1) and a discontinuity in asymptotical convergence
orders from Th.3 for length estimation atλ = 1.

The tests are performed inMathematica 9.0(see [15])
and are carried out on a 2.4GHZ Intel Core 2 Duo
computer with 8GB RAM. Observe that since
T = ∑m

i=1(ti+1 − ti) ≤ mδ we havem−β = O(δ β
m), for

β > 0. Hence the investigated asymptotics in terms of
O(δ β

m) can be examined in terms ofO(1/mβ )
asymptotics. Note that for a parametric regular curve
γ : [0,1] → En, λ ∈ [0,1] with m varying between
mmin ≤ m≤ mmax the i-th component of the error ford(γ)
estimation reads as:

Ei
m =

∫ t̂i+2

t̂i
‖γ̂ i′

2 (ŝ)‖dŝ−
∫ ti+2

ti
‖γ(1)(s)‖ds

= d(γ̂ i
2)−d(γ|[ti ,ti+2]),

where γ̂ i
2 : [ti , ti+2] → En is a Lagrange quadratic

satisfyingγ̂2|[ti ,ti+2] = γ̂ i
2. Recall that by [13], the function

ψi : [ti , ti+2]→ [t̂i , t̂i+2] (see also the proof of Th.3) forms
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a re-parameterization for eachε > 0 and forλ ∈ [0,1].
Even more by [11], the quadraticψi defines also a
re-parameterization for all admissible samplings(1) in
case whenλ = 1. Obviously, the quantityEm defined here
as a sum of Ei

m represents the searched error

d(γ̂2) − d(γ) = O(δ β (λ )
m ) in length approximation of

curveγ. From the set ofabsolute errors{Em}mmax
m=mmin

the
numerical estimatēβ (λ ) of genuine orderβ (λ ) is next
computed by usinga linear regressionapplied to the pair
of points A = {(log(m),− log(Em))}mmax

m=mmin
(see also

[3]). Since piece-wiselydeg(γ̂2) = 2 the number of
interpolation points{qi}m

i=0 is assumed to be odd i.e.
m = 2k is even as indexing runs over 0≤ i ≤ m. The
Mathematicabuilt-in functionsLinearModelFityields the
coefficient β̂ (λ ) from the computed regression line
y(x) = β̂ (λ )x+ b based onA . Our experiments use the
following two testing families ofε-uniform samplings:

ti =
i
m
+

(−1)i+1

m1+ε , (36)

and

ti =























i
m, if i even;

i
m + 1

2m1+ε , if i = 4k+1;

i
m − 1

2m1+ε , if i = 4k+3.

(37)

For both samplings(36) and (37) we sett0 = 0 and
tm = 1, and henceti ∈ [0,1]. Some examples of plotting
the distribution of{γ(ti)}m

i=0 for the aboveε-uniform
samplings(36) and(37) are presented e.g. in [3]. We pass
now to the experiments designed to test numerically the
convergence orders established in(7).

3.1 Length estimation for reduced data from
planar curves

The first test is performed for length estimation of the
cubic curve inE2.

Example 1.Consider now the following regularcubic
curve γc : [0,1] → E2: γc(t) = (πt,(πt + 1)3(π + 1)−3),
sampled according to either(36) or (37). For the first
sampling we setmmin = 40 andmmax= 200, whereas for
the second onemmin = 100 and mmax = 120. The
corresponding length ofγc reads asd(γc) = 3.452. The
linear regression applied tommin ≤ m ≤ mmax renders
computedβ̂ε(λ ) approximatingβε(λ ) = min{4,4ε} (for
ε > 0), which are listed in Table1 and Table2.

The sharpnessof Th. 3 for eitherλ = 1 with ε > 0 or
for λ ∈ [0,1) with ε = 1 is confirmed in Table1 (see the
last row or the last column, respectively). On the other
hand, Table2 shows more clearly the discontinuity in
convergence ordersβε(λ ) at λ = 1 for ε ∈ (0,1),
predicted by Th.3. Table 2 also underlines (see each

Table 1: Estimatedβ̂ε(λ ) ≈ βε (λ ) = min{4,4ε} for γc and
sampling(36) interpolated bŷγ2 with λ ∈ [0,1] andε ∈ (0,2].

λ ε = 0.1 ε = 0.33 ε = 0.5 ε = 0.7 ε = 0.9 ε = 1.0 ε = 2.0
βε(λ ) 0.400 1.320 2.000 2.800 3.600 4.000 4.000
0.00 2.597 2.800 3.064 3.456 3.857 4.043 4.095
0.10 2.601 4.977 3.686 4.033 3.981 4.058 4.001
0.33 2.183 2.640 2.664 3.333 3.702 3.963 3.890
0.50 2.196 2.646 2.971 3.346 3.730 3.992 3.909
0.70 2.196 2.644 2.969 3.340 3.718 3.982 3.902
0.90 2.194 2.629 2.936 3.265 3.363 4.139 3.814

βε(1) 3.100 3.330 3.500 3.700 3.900 4.000 4.000
1.00 3.111 3.364 3.541 3.749 3.954 4.056 7.070

Table 2: Estimatedβ̂ε(λ ) ≈ βε (λ ) = min{4,4ε} for γc and
sampling(37) interpolated bŷγ2 with λ ∈ [0,1] andε ∈ (0,2].

λ ε = 0.1 ε = 0.33 ε = 0.5 ε = 0.7 ε = 0.9 ε = 1.0 ε = 2.0
βε(λ ) 0.400 1.320 2.000 2.800 3.600 4.000 4.000
0.00 2.379 2.743 3.051 3.449 3.865 4.067 4.044
0.10 2.555 1.196 2.862 3.287 3.480 3.374 4.001
0.33 2.216 2.283 3.026 3.431 3.835 4.025 4.037
0.50 2.221 2.684 3.027 3.432 3.837 4.029 4.037
0.70 2.221 2.684 3.028 3.431 3.836 4.027 4.036
0.90 2.223 2.684 2.025 3.426 3.823 4.008 4.032

βε(1) 3.100 3.330 3.500 3.700 3.900 4.000 4.000
1.00 4.157 4.404 4.578 4.773 4.971 5.078 3.974

column) the expected independence ofβε(λ ) on λ onceε
is fixed. Both Tables1 and2 also indicate that forλ fixed,
increasingε from 0 to 1, makeŝβε(λ ) bigger and closer
to 4. Upon satisfying inequalityε ≥ 1 the quartic orders
in convergence are reached. The latter coincides with the
asymptotics held by{ti}m

i=0 uniform. However, the results
obtained in both Tables1 and 2 for λ ∈ [0,1) suggest
faster convergence ratesβε(λ ) as compared to(7). In
case of{ti}m

i=0 uniform the computed convergence orders
β̂ ≈ 4 (see(7)) as for λ ∈ {0,0.1,0.33,0.5,0.7,0.9,1}
they are{4.036,4.044,4.036,4.037,4.037,4.039,4.074},
respectively. Evidently, the sharpness of(7) for uniform
sampling is experimentally confirmed.⊓⊔

We pass now to the second example which tests the
asymptotics in(7) on a planar spiral.

Example 2.Consider now a planar regular spiral
γsp1 : [0,1] → E2 defined here as γsp1(t) =
((t + 0.2)cos(π(1 − t)),(t + 0.2)sin(π(1 − t))). To
estimateβε(λ ) a linear regression is applied again to
100 = mmin ≤ m ≤ mmax = 120 and to ε-uniform
samplings (37). The pertinent numerical results for
β̂ε(λ ) ≈ βε(λ ) are listed in Table3. Similarly as in
Example 1, Table 3 shows that the computed orders
β̂ε(λ ) exceed (for λ ∈ [0,1) and ε ∈ (0,1)) the
convergence rates established in Th.3. However, still the
inequality β̂ε(λ ) ≥ βε(λ ) resulting from Table3 is
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Table 3: Estimatedβ̂ε (λ ) ≈ βε (λ ) = min{4,4ε} for γsp1 and
sampling(37) interpolated bŷγ2 with λ ∈ [0,1] andε ∈ (0,2].

λ ε = 0.1 ε = 0.33 ε = 0.5 ε = 0.7 ε = 0.9 ε = 1.0 ε = 2.0
βε(λ ) 0.400 1.320 2.000 2.800 3.600 4.000 4.000
0.00 2.368 2.704 2.914 3.054 4.110 4.044 4.035
0.10 2.522 2.827 3.618 3.987 4.039 4.041 4.035
0.33 2.220 2.706 3.103 3.639 3.992 4.037 4.035
0.50 2.224 2.701 3.089 3.611 3.983 4.036 4.035
0.70 2.224 2.704 3.095 3.623 3.987 4.037 4.035
0.90 2.233 2.728 3.160 3.729 4.011 4.038 4.035

βε(1) 3.100 3.330 3.500 3.700 3.900 4.000 4000
1.00 4.102 4.100 4.071 4.052 4.043 4.040 4.035

consistent with(7). On the other hand, the sharpness of
(7) is confirmed forλ = 1 with ε > 0 or for λ ∈ [0,1)
with ε ≥ 1. Visibly, each column (i.e. with fixedε) and
λ ∈ (0,1) shows almost equal̂βε(λ ). Similarly, each row
of Table3 indicates the increasing tendency in values of
β̂ε(λ ) while varyingε from 0 to 1. Onceε = 1 is reached,
the ordersβ̂ε=1,2(λ ) ≈ 4 are attained. In addition, the
expected discontinuity ofβε(λ ) at λ = 1 is also
manifested upon inspecting the last three rows of Table3.
Finally, the case when{ti}m

i=0 is uniform rendersβ̂ ≈ 4
(see (7)) for λ ∈ {0,0.1,0.33,0.5,0.7,0.9,1} equal to
{4.0352,4.0351,4.0350,4.0349,4.0348,4.0348,4.0348},
respectively. The sharpness of(7) for uniform sampling is
thus also experimentally confirmed.⊓⊔

3.2 Length estimation for reduced data from
spatial curves

The last experiment verifies the asymptotics in(7) for
curves inE3. However, it should be emphasized here, that
the Th.3 applies to an arbitrary multidimensional reduced
data Qm by sampling regular curve inEn according to
ε-uniform fashion. More examples testing(7) for n= 2,3
(including segmentation of medical images) as well as
some applications of fitting reduced data forn > 3 are
discussed e.g. in [2] or [10].

Example 3.Consideran elliptical helix γh : [0,1] → E3,
where γh(t) = ((3/2)cos(2πt),sin(2πt),(2πt)/4), with
t ∈ [0,1] and sampledε-uniformly in accordance with
(36). The respective length ofγh is d(γh) = 8.090. To
approximateβε(λ ), a linear regression is used with
mmin = 100≤ m≤ mmax= 120. The computed estimates
β̂ε(λ ) approximatingβε(λ ) = min{4,4ε} are presented
in Table 4. Visibly the results are consistent with the
asymptotics from Th.3, though the examined sharpness
of (7) is again not experimentally confirmed (for
λ ∈ [0,1)). However, the expected discontinuity inβ (λ )
at λ = 1 together with its independence onλ ∈ [0,1) are
again demonstrated in Table4. ⊓⊔

Table 4: Estimatedβ̂ε(λ )≈ βε(λ )= {4,4ε} for γh and sampling
(36) interpolated bŷγ2 with λ ∈ [0,1] andε ∈ (0,2].

λ ε = 0.1 ε = 0.33 ε = 0.5 ε = 0.7 ε = 0.9 ε = 1.0 ε = 2.0
βε(λ ) 0.400 1.320 2.000 2.800 3.600 4.000 4.000
0.00 2.516 2.685 2.755 5.980 4.066 4.037 4.034
0.10 2.527 3.021 3.749 4.002 4.033 4.034 4.034
0.33 2.191 2.694 3.128 3.706 4.001 4.031 4.033
0.50 2.197 2.686 3.104 3.672 3.994 4.031 4.033
0.70 2.197 2.689 3.114 3.687 3.997 4.031 4.033
0.90 2.212 2.731 3.217 3.803 4.015 4.034 4.033

βε(1) 3.100 3.330 3.500 3.700 3.900 4.000 4.000
1.00 4.056 4.079 4.050 4.037 4.034 4.034 4.033

4 Conclusion

In this work we generalize the existing results for length
estimation of the regular curve in En via
piecewise-quadratic interpolation based onε-uniformly
sampled reduced data Qm. We analyze the dynamics of
the above asymptotics once the exponential
parameterization(5) depending on parameterλ ∈ [0,1] is
invoked. Such parameterization of the reduced dataQm is
commonly used in computer graphics for curve modeling
- see e.g. [4]. The case whenλ = 0 is studied in [9]
yielding the upper bounds on convergence rates equal to
βε(0) = min{4,4ε}. At the other extreme whenλ = 1 the
so-called cumulative chords are used. The latter is already
analyzed in [3] or [11] yielding sharp convergence orders
βε(1) = {4,3+ ε} in length approximation. In this paper
we extend these two results to all parametersλ ∈ [0,1]
(determining the full class of exponential
parameterizations(5)) given reduced dataQm are
ε-uniformly sampled. As established and numerically
verified in this paper the upper bounds on convergence
ratesβε(λ ) = min{4,4ε} are independent onλ ∈ [0,1)
but are sensitive to the variation of 0< ε < 1. In addition,
the discontinuity inβ (λ ) occurs atλ = 1 and 0< ε < 1
with the expected jumps from at least 4ε to 4.

A similar phenomenon occurs in asymptotic
behaviour ofα(λ ) measuring the convergence orders in
trajectory approximation - i.e. determining the following

difference (γ̂2 ◦ ψ)(t) − γ(t) = O(δ α(λ )
m ) over [0,T].

Indeed, as shown in [12], for samplings(2) the sharp
estimatesα(λ ) = 1 (for all λ ∈ [0,1)) andα(1) = 3 hold.
In addition (see [9]), for samplings(4) the following
sharp ordersαε>0(λ ) = {3,1+ 2ε} (for all λ ∈ [0,1))
andαε>0(1) = 3 are established.

An obvious open problem stemming out of Th.3
concerns the analysis ofε = 0 case and the issue of
sharpness in asymptotics(7). Another possible extension
of this work is to invoke smooth interpolation schemes
(see [16]) combined with reduced data exponential
parameterization (see [4]). Certain clues may be given in
[17], where completeC2 splines are dealt with forλ = 1,
to obtain the fourth orders of convergence in length
estimation. The analysis ofC1 interpolation for reduced
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data with cumulative chords (i.e. again withλ = 1) can
additionally be found in [3] or [18].

Different classes of parameterizations applied mainly
on sparse reduced dataQm (though also equally
applicable to the denseQm) include blending
parameterization [19], monotonicity or convexity
preserving ones[4] or an alternative approach discussed
in [20].
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