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Abstract: This study is concerned with a fundamental issue of timeesaepresentation for modeling and prediction with Fuzzy
Cognitive Maps. We introduce two distinct time series regprgation schemes for Fuzzy Cognitive Map design. The fieghad is
based on the temporal relationships, namely time serieditadgy amplitude change, and change of amplitude changea(dics
perspective). The second scheme is based on three consdustorical observations: present value, past value efatd® past value
(history perspective, 2nd order relationships). Intratliprocedures are experimentally verified and comparedvenaesynthetic and
real-world time series of various characteristics. Theéonjsoriented time series representation turned out to beeradvantageous.
Quality of FCM-based time series models and one-step-apestictions were measured in terms of Mean Squared Errohaie
shown that models designed with history-oriented timeeserepresentation generally require less FCM nodes to beroparable
quality to models built on dynamics-oriented time seriggesentation. As a result, with the history-oriented timiées representation
scheme we are able to construct simpler and better models.

Keywords: Fuzzy Cognitive Maps, concepts, time series modeling aedigtion

1 Introduction The material presented in this article refers to the
original approach of Stach et al. We present a research on
Fuzzy Cognitve Maps are an alternative modelingtime series representation for modeling with Fuzzy
framework for complex phenomena. Since their Cognitive Maps. Also, we introduce two new methods for
introduction by B. Kosko in 2], Fuzzy Cognitive Maps ~Fuzzy Cognitive Map design. We compare and test
have been in the scope of interest of both theoretical andToPOSed procedures in a series of experiments on both
applications-oriented researchers. Almost three decade®/nthetic and real-world time series.
of intensive studies have resulted in efficient
methodologies for Fuzzy Cognitive Maps learning and  The objectives of this article are to discuss and
applications. compare two different time series representation schemes
Time series modeling and prediction with Fuzzy for time series modeling and prediction with Fuzzy
Cognitive Maps is a relatively new stream of studies. It Cognitive ~ Maps. The first method exploits
emerged around 2008, when Stach et al. published theia representation space formed by on time series
research in9]. The original methodology for time series amplitude, amplitude change and change of amplitude
modeling with Fuzzy Cognitive Maps laid the change. Hence, we use here the name “dynamics”
groundwork for present studies in this area. perspective. The second is based on three successive
In brief, Stach et al. proposed a modeling methodvalues of time series: time series present values
based on time series amplitude and its change elevated bfamplitude), past values and before past values. Hence,
fuzzification to concepts. we have named it "history” perspective.
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The paper is structured as follows. In Sect®nwe —N  corresponding goals (targets), namely:
introduce time series representations for modeling with  G1,Gy,...,Gn, where
Fuzzy Cognitive Maps. Sectio covers discussion on Gi = [01,02i,---,0n] fori=1,2,... N,

Fuzzy Cognitive Maps design and presents experiments’ -N map responses corresponding to activations,
schemes that we conducted to compare and illustrate namely: Y1,Yz....,Yy, where Y, = [y1i,Yai,...,Yni] "
proposed approach. In Sectidrwe discuss the results of fori=1,2,...,N,

the experiments. Sectiorb covers conclusion and

identifies future research directions. The aim is to design (reconstruct) a Fuzzy Cognitive

Map. We use verb "reconstruct” to highlight that the
assumption of modelling with FCMs is that given
phenomena could be perfectly represented with a map of

2 Concepts linked nodes-concepts and the training goal is to
. reconstruct the strength of these linkages.
2.1 Cognitive Maps FCM reconstruction for given activations and goals is

based on adjustment of (usually randomized at the

Fuzzy Cognitve Map (FCM) is an abstract soft peginning) weight matrixV in such a way that FCM
computing model that can be described by a weightedesponses aras close as possibl® goals. The ternas
directed graph. It comprises of nodes and weightsclose as possibldoils down to the minimization of a
connecting the nodes, c.2][ Nodes represent concepts. mean square error:
Relations between concepts in a cognitive map are
expressed through weighted edges between the nodes. An 1
example of a 3-node FCM is in Figure 3. In practical MSE= nN.
applications, the nodes correspond to various concepts !
present to describe a certain phenomenon, for example:
unemployment, skilled human resources, fuel prices, airbut
pollution, high concentration of hydrogen ions, and so on.

Fuzzy Cognitive Map is represented by a matrix of
weightsW = [wij|wij € [-1,1],i,] = 1,2,,n], wheren is

=}

(vi —9ji)° (4)
1

|__|\/|z

=1]

Naturally, we can consider other optimization criteria,
this topic is out of the scope of the article. As for
technical aspects of FCM learning, in this study authors
took the benefit of Particle Swarm Optimization strategy,

; which is one the viable optimization alternatives to be
the number of nodes. Each weight§ corresponds to the engaged here. The value of paramatenf the sigmoid

edge co_nnegtmg the nodmdg to.the nodenode. FCL\/I function was set to 5, based on literature reviesy9],
exploration is based on activatioh = [x1,Xz,..., X", and experimental studies carried out here.

which is presented to an FCM, i.e. every valyeof an The design of an FCM comprises of two fundamental
activationX is presented to theode. The response of the  jeyelopment steps, namely structure design and further

— T i i . A
FCM'Y = [y1,y2,...,yn]" is computed according to the parametric optimization. In what follows, we focus on

formula: representation issues of time series and then we elaborate
Y=f (W : X) 1) on key design facets of the overall process.
whereW - X is matrix product and is a sigmoid function,
ie.,
fix) = L 5 2.2 Time series and their representation
(x) = 1re1x (2)

endowed with given parameter The sigmoid function ~Répresentation of a time series, in terms of an
is applied separately to every element of matrix product CM-based model architecture, could be decomposed
More specifically we have: into two essential design elements, namely a way to

capture the dynamics of the system and extract of
n concepts - nodes in the map.
yi=1(Y wij-x) ) Concepts can be seen as aggregates of information,
=1 whose specificity determines the accuracy of phenomena
description. In this light, FCMs align with the idea of
granular computing, c.f. 5], which is focused on

krpowledge granules - abstract units of information. Nodes

between concepts in the map. The essence of the desigare knowledge granules, in FCMs conventionally realized
of the FCM is to construct the weight matrix that modells with fuzzy se%s 9 ' y

phenomena. The entries of the weight matrix could be The proposed approach is illustrated here using

either given by experts or learned from data. In our S . . .
esearch e focus on e aerapproach soter Smielc e series, We delberate sar wih
Letus assume that for FCM training we have: properties of such example. The considered time series
—N activations, namely: X;,X,....,Xn, Where  are built involving two sets of numbers of cardinality 3
Xi = [Xai, Xai, - - -, Xni] " fori=1,2,...,N, and 5:{2,5,8} and {1,3,5,7,9} and one time series is

The wunknown and searched element is the
aforementioned weight matrix. It describes linkages
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built on three numbers sef2,6,8}. A procedure for 2.2.1 Dynamics based representation
synthesizing a time series is:
Time series is a sequence of numbers,aaplitudesLet

1.select base sequence, which is aimed to cove[s assume that we have a time series of lehgth2
different numbers of concepts in the dimensions of

values, values changes and changes of values changes. a_1,a0,a1,a2,a3,...,aN

This aim is gained by different order of base sequence

elements, compare Table In order to capture dynamics of the system, we
2.replicate base sequence so that the total length ofropose switching to coordinatesnplitudes/amplitude

a time series is 3000, changes/changes of amplitude chanfge consecutive
3.add random distortion drawn from the normal time points forming the following series of triples:

(Gaussian) probability distribution with mean equal to

0 and standard deviation equal to 0.7. (a1,day,dda), (ap,dap,dd&),. .., (an,day,dday)

With this procedure we can obtain time series of varyingwhere for any triplga;,da,dda) change of amplitude is
complexity, depending on the complexity of the baseda = a — a_1 and change of amplitude change is
sequence assumed in the first step. In this way, we captur@da = da — da_1 = a — 2 - a_1 + a_p for
quantitative performance of a given FCM for different j = 1.2, ... N.I Note that the original time series are
configurations of in put time series. Such time SerieSpadded with the preceding elemerds;,ap to allow
exerts both regular, periodic, variations and randomcomputing amplitude change and change of amplitude
variations, thanks to the Gaussian noise added at the endghange for all time points= 1,2, ...,N.

Figure 1 visualizes the idea behind the proposed  Anexample of such series representation is in Table
approach. Both plots concern one of the easiest timét concerns already mentioned 2,6,8-based synthetic time
series we addressed in this study. It was constructed basegries.
on a sequence 2,6,8. As a result in this particular time  |n Table1 we display the values affecting the data by
series we can clearly distinguish 3 one-dimensionalsome noise with random distortions. The first row refers
concepts that could ideally represent its amplitude. \fisuato consecutive time points, i.e. enumerated numbers. The
inspection of Figurel confirms that even without any second row contains numerical amplitude values. Notice
knowledge about the specifics of the 3-step procedurehat amplitudes are padded with the first values 6 and 8
listed above the dataset is clearly based on 3 densgcorresponding to time -1 and 0) in order to allow
clusters of data. computation of amplitude change and change of

To enhance human-centric of an FCM model we amplitude change in time 1. The third and fourth rows
usually assign linguistic labels. In the case above we cartorrespond to amplitude changes and changes of
use Small to represent values centered around Z2amplitude change. Therefore, we have the following
Moderately High to represent cluster related to 6 andtriples in the dynamics based representation: (2,-6,-8),
High to represent values close to 8. For convenience wg6,4,10), (8,2,-2), (2,-6,-8), (6,4,10), (8,2,-2), ...
abbreviated the linguistic variables to S, MH and H,
respectively.

A dot-plot of amplitude in time (3000 time points) is 2.2.2 History based representation
shown in upper part of Figur&, while the bottom plot
shows first 200 points at the amplitude axis with centers ofDynamics-based representation of time series obviously
amplitude groups. is conceptually equivalent to the series of triples of

It is apparent that in real-world data it is much harder present/past/before paamplitudes:
to detect such regularities. Hence, among biggest
challenges in the domain of FCM-based modelling is to (a1,a0,2 1), (a2,a1,80),-- -, (&N, aN-1,aN-2)
propose, so to say, bulletproof method for concepts ) }
extraction that will work even when data is highly This representation of the series based on the sequence 2,
irregular. Please note, that concepts extraction, thotigh & and 8 is in Table2. By analogy, we have the following
the first sight it resembles clustering, is a domain-specifictfiples in the history based representation:
task. Concepts in an FCM generalize knowledge. A basid2.8.6), (6,2,8), (8,6,2), (2,8,6), (6,2,8), (8,6,2), ...
parameter of an FCM related to the number of its ~ Theoretically, both representations are equivalent as
concepts is its specificity. The larger the map the higherong as they represent time span of the same length, i.e.:
its specificity. We expect specifi_c maps to be numericallly _dynamics-based representation with (amplitudes,
more accurate than less specific maps. At the same time amplitude changes) pairs is equivalent to (present,
very _s_pecmc maps are much harder to interpret than less past) pairs in history-based representation,
specific maps.

Let us continue with the main course: time series 1 Note, this representation corresponds fonction/first
representation. derivative/second derivativia differential calculus.
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Fig. 1: The synthetic time series based on period 268 in time/anga@itoordinates (upper part) and first 200 elements on thétade
axis (bottom part)

Table 1: An example of time series dynamics based representatidtolouhe sequence 268 (not distorted values)

time -1 0 1 2 3 4 5 6 7 8 ... 2998 2999 3000
amplitudes 6 8 2 6 8 2 6 8 2 6 .. 2 6 8
amplitude changes ~ 2 -6 4 2 6 4 2 -6 4 ... -6 4 2
~ -8 10 -2 -8 10 -2 -8 10 ... -8 10 -2

changes of amplitude chang ~

Table 2: An example of time series history based representation diithe sequence 268 (not distorted values)

time -1 0 1 2 3 4 5 6 7 8 9 ... 2998 2999 3000
present amplitudes| 6 8 2 6 8 2 6 8 2 6 8 2 6 8
past amplitudes ~ o~ 8 2 6 8 2 6 8 2 6 8 2 6
before past amplitude ~ o~ 6 8 2 6 8 2 6 8 2 6 8 2

—dynamics-based representation with (amplitudes, We elaborate on time series and concepts
amplitude changes, changes of amplitude changejepresentation in such 3-dimensional spaces in the
triples is equivalent to (present, past, beforefollowing subsection.
past)triples in history-based representation, Our past research (not a topic of this paper though)

—and so on. showed that the higher dimension we use for time series

representation, the Ilower the numerical error of

In this paper we elaborate on time series representatioRred.'Ct'on.' At the same time, |n.creasmg dmensmnahty

capturing 3 data points, gntalls important drawbacks: computatlonal anq

] interpretational. Hence, we have decided to base this

Note that the longer the time span we capture, theresearch in 3-dimensional space as a reasonable

more complex the model gets. If the objective of compromise between numerical accuracy and
modelling is to build a model to be presented andinterpretability.

interpreted by a human being, time span of 3 data points
is among highest reasonable values. Representation based
on triples corresponds to a 3-dimensional space. It mean; 3T f ina ti ies int t

that with such representation we are able to plot the time~ ranstorming time series into concepts
series in a 3-dimensional coordinates system of eitheSpace
(amplitudes, amplitude changes, changes of amplitude
change) coordinates system or in (present, past, beforeet us now elaborate on granular/conceptual
past) coordinates system. 3-dimensional space is theepresentation of the time series given in Figliréet us
highest system a human being can immediately visualizerecall that for the considered example, first we have a
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scalar synthetic time series, which is expressed as &low, three-dimensional knowledge granules are used to
sequence of numbers - amplitudes. For each amplitude ifinguistically describe each triple amplitude/amplitude
a given time point we compute the correspondingchange/change of amplitude change. Derived
amplitude change and change of amplitude changethree-dimensional granules/concepts perfectly match
Formally, amplitude and the corresponding dynamicsclouds of the time series. Every granule in every
specify a point in the amplitude/amplitude change/changalimension corresponds to one cloud of points. Intuitively,
of amplitude change system coordinates. Forthis granulation matches given time series. More exactly,
one-dimensional knowledge granules on amplitudesgenters of 3 granules fall into clouds of time series points
amplitude changes and on changes of amplitude changehile 24 other granules are not tied to this time series.
we separately perform Fuzzy C-Means clustering and weThree  concepts matching the time series are
obtain three, at this point separate, sets of granules,, Nex{S+,MH—,H-), (MH+,MS+,VH+), (H+S+S-) in
using Cartesian product we determine three-dimensionallynamic coordinates.
concepts. Now, three-dimensional knowledge granules The right plot of this Figure shows matching
describe each pair amplitude/amplitude change/change ajranulation for history-based representation: center3 of
amplitude change. Finally, we attach linguistic variablesgranules fall into clouds of respective clouds of 3D point,
to enhance interpretability of extracted concepts. while 24 granules are not tied to this time series. Namely,
As the clustering has been completed for thethe following concepts match this time series:
individual variables (dimensions), it is very likely that (S+ MH+H+), (MH+,S+H+), (H+MH+S+) in
some of the Cartesian product prototypes might not havelynamics coordinates.
any supportive experimental evidence and such
combinations (viz. the nodes of the map) could be easily
eliminated. Let us plot extracted concepts and the2.3.2 History based granulation
underlying time series in Figure2. What strikes

immediately is that concepts are of significantly differing The right plot of Figure2 presents granular representation
quality. . ) ) based on three-steps history, i.e. based on present, past
Left plot is for dynamics-based representation. Hence and before past granular representation of time series. By

coordinates system is (amplitudes, amplitude changesanalogy to dynamics based representation, we get 27
changes of amplitude change). Right plot concernshree dimensional concepts:

history-based representation. See labels axes: (present,
past, before past). {S+,MH+,H+} x {S+,MH+,H+} x {S+,MH+,H+
Visual inspection confirms that synthesized time series  _ ((S+,5+,5+),(S+,S+MH+),(S+S+H+)

is highly regular - observe three dense clouds of points in A, LT
each plot. The aim is to find concepts to represent the data. (H+,H+,MH+),(H+H+,H+)
Naturally, in such case the task is much easier than if w
would have analyzed real data. Nevertheless, we contin;g
with this example for its superior illustrative abilities.

hree concepts matching the time series are
S+,H+,MH+), (MH+,S+,H+), (H+,MH+,S+) in history
coordinates.

2.3.1 Dynamics based granulation

In Figure 2 the left plot shows granulation into 3 2.4 Granular representation

concepts/granules each of dynamics dimension:
—amplitudes: concepts S+, MH+, H+ with
corresponding granule centers 2, 6 and 8,

Time series is a sequences of numbers, which we have to
elevate to terms of concepts. We form a collection of
: } ... descriptors of amplitude, change of amplitude and change
fg;?;';u%igi?]angrii'u?gré(éi?éfyg_z' :; da:d MS+ W'thof amplitude change that are viewed formally as some
—Changgs of agmgplitude change: c’oncepts,H— s anRi}l(\]formation granules, say fuzzy sets. More specifically,
i . . o e form a family (vocabulary) of fuzzy sets
\1/(|)-I+ with corresponding granule centers -8, -2 and A1, A, ..., A expressed over the space of amplitude of
) o . the time series, family of fuzzy setdA,dAy, ..., dA;
Note, abbrgylatlons should be understood as.follows. SHver the space of amplitude change and another family of
- small positive, MH— - moderately high negative, VH+ - fuzzy sets ddA,ddA,...,ddAg over the space of

very high positive etc. _ change of amplitude change. Then a time series
Next, using Cartesian product we determine 27 three'al,az,...,aN (along with its amplitude changes

dimensional concepts: day,dap,...,day and changes of amplitude changes
{S+,MH+,H+} x {MH—-,S+MS4 x {H-,S— H+# dda;,dda,...,dday) is seen as a series of degrees of
— {(S+,MH=,H-),(S+,MH=,S-),(S+,MH—,H+) activation of the elements of the three vocabularies. More
o ' o A e specifically, a,, dak and dda gives rise to the

(H+,S—H+),(H+,MS+,H+) membership values of the corresponding fuzzy sets of the
@© 2016 NSP
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Fig. 2: The synthetic time series based on period 268 in two diftereardinates systems: dynamics and history

vocabularies, c.f. Tablé for the time series built on the change, and change of amplitude change respectively,
sequence 2, 6 and 8. while ¢ is the number of 1-dimensional concepts on time
Alike, we form a collection of descriptors of amplitude series values. We have already marked that not all of the
A1,A2,...,Aq and then apply them to present and former designed concepts have an empirical support in the form
amplitude values with given retrospective length. Namely,of underlying data points from the time series. Let us
for the backward length 3y, ax_1 andax_» givesrise to  come back to Figur@. Concepts with empirical support
the membership values of the corresponding fuzzy sets ofire the ones that truly generalize the underlying data.
the vocabulary. Unlike in the case of dynamics, we haveThese are concepts marked in circles.
only one vocabulary, which is equally applied for present  Here comes a vital problem: how to propose enough
and former amplitude values, compare Tahle concepts to represent the data with required precision?
The task of building unknown granules is in fact a task of
finding a good balance between model's complexity and
2.4.1 Building unknown granules generality. It will be shown later that the number of
) i concepts directly corresponds to the number of nodes in
As we have noted before, for real-life problem we neitheryne FCM. With an increase of the number of nodes in the
know cluster centers’ coordinates, nor have anymap the number of arcs grows quadratically and the time
knowledge about a number of clusters. In this subsectlor}equired to train such map grows exponentially. Apart
we discuss, how to form granules of knowledge for anyf,om practical premises, large models are very

given time series. inconvenient in use. Large FCMs are very difficult to
Let us recall, that the outcome of the proposedinterpret and to apply.

concepts’ design methods is a set of three-dimensional |, the case of real-world data. selection of proper

concepts. In the case of dynamics-based time serief,mper and location of concepts is very difficult. Real
representation ~each concept is rooted in theyaia s typically irregular, with many outlying data points
amplitude/amplitude Chaf.‘ge/Char.‘ge of amphtudg change 14 overcome this obstacle the proposed design scheme
space. In the case of history-oriented perspective eacl firqt exiracts relatively large set of concepts from which

concept is in the present value/past value/before pasje cnoose the best few. The criterion for best concepts
value coordinates system. This is a natural consequenc&,jaction is membership index defined as follows:
of the proposed concept design strategies and time series '

representation models. N
The procedure of concepts’ design is aided first with M(vj) = Zin (5)
Fuzzy C-Means, second with ternary Cartesian product. i=

Cartesian product elevates one-dimensional concepts to . o
the three-dimensional spaces of amplitude/amplitude WhereM(vj) is membership index fovj-th concept,
change/change of amplitude change or value/pastii IS the level of membership to this j-th concept
value/before past value. The corollary of the applicationc@lculated with the use of standard Fuzzy C-Means
of the Cartesian product is that we obtainx c, x ¢ °biective function for an i-th data point:

concepts for the case of dynamics-oriented time series

representation and x ¢ x ¢ concepts for the case of Xij = 1 (6)
history-oriented perspectivey, ¢, andcs is the number 3 ( llai —vil| )2/('“*1)
of 1-dimensional concepts on amplitude, amplitude S| A — |
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wheren is the number of concepts) is the fuzzification implementation of PSO from package “pso” in
coefficient(m > 1) and|| - || is the Euclidean distance; R language with default parameters compliant with the
is a triple a = [a,dg,dda] in the case of PSO 2007 implementation, detailed parameter list is
dynamics-oriented  representation or a triple: under fL2].
a = [a_2,8-1,8] In the case of history-oriented First series of experiments was on the synthetic time
representatiorv; describes j-th concept's coordinates in series. Second, on real-world time series. Real-world time
a 3-dimensional space of amplitude/amplitudeseries were downloaded from publicly available
change/change of amplitude change or repositories underlf3,14]. Time series can be identified
present/past/before past values of the time series. by their names. Selected data sets are of different
Concepts with high membership index are better. Wecharacter: lack/different parameters of seasonalitpdse
selectn best concepts based on their membership index. etc. We did not conduct any preprocessing procedures.
could be determined by an inspection of a plot of concepts  Note, that the experiments are conducted on the level
ordered by their membership index on OX axis and theirof granules - aggregates of knowledge. Proposed
respective membership index on OY axis. A knee-pointinmodeling technique operates on a high level of
such plot roughly separates bad and good concepts. abstraction, where instead of scalar values we operate on
With the membership criterion, a very intuitive concepts and linguistic terms. Such knowledge
measure of quality for the deign procedure that starts withrepresentation and processing offers a compelling
Fuzzy C-Means, we are able to select a subset of bedtuman-centered interface. The focus is on granules of
nodes and design a Fuzzy Cognitive Map based only orknowledge that correspond to phenomena and relations
selected concepts. within these phenomena gathered in trained weights
matrix of FCMs. If we want to compare such model with
classic time series modeling techniques it is necessary to
2.4.2 Fuzzy Cognitive Map design perform a defuzzification procedure. Because such
comparison is not in the scope of interest of this paper, we
The final step is Fuzzy Cognitive Map design. Fuzzy do not perform defuzzification.
Cognitive Maps operate on an abstract level of concepts -  For each time series, both synthetic and real-world,
nodes of the map, which are connected with weightedye have extracted and trained FCMs based on
arcs. Hence, we have to extract a set of concepts that = 27,22 17,12 10,8,6, 4 concepts. The
becomes a set of FCM's nodes. n = 3 = 27-nodes FCMs are full-architecture maps,
With the use of Formulé we calculate activation where no concepts were removed. Smaller maps are built
levels for each selected concept, we transpose it, and ien n best concepts selected with the membership
this way we obtaim x N activations matrixX. In other  criterion. We have trained FCMs both for
words, activations are membership values, levels ofdynamics-oriented time series representation and for
belongingness of time series observations to extracte@istory-oriented representation. With such selection of
concepts. FCMs we are able to thoroughly review and compare the
Goals are equal to activations shifted by one elementharacteristics of our methods.
forward. So that activations corresponding to an i+1-th  |n the remainder of this section we introduce the
time point are set together with goals for an i-th time synthetic and real-world time series. The following
point. Such representation is designed especially for timeSection4 presents experiments results.
series processing with FCMs.
At this point we have all the elements necessary to train

weight matrix for this time series. 3.1 Synthetic Series

Proposed approach is illustrated with synthetic time
3 Experiment series. We deliberately used synthetic time series, becaus

of better illustrative properties of such examples. The
In this section we discuss evaluation and comparisorconsidered time series are built on two sets of numbers of
procedures of Fuzzy Cognitive Map design methodscardinality 3 and 5{2,5,8} and{1,3,5,7,9}. One time
based on the two time series representation schemes.  series is built on a set of three numbe{g;6,8}. Each

We have constructed 12 synthetic time series withtime series is built on repeated sequence of numbers to

different characteristics to test quality and stability of reach length 3000. Numbers are distorted by values of the
proposed approaches. As a quality measure we usedormal (Gaussian) probability distribution with mean
Mean Squared Error, compare formdlaWe assess both equal to 0 and standard deviation equal to 0.7. The
modeling and prediction quality. Predictions for the time procedure for synthetic time series construction was
series are for one-step-ahead. The ratio of train/testislata already mentioned in Sectiéh2
7:3. We use train data to learn the FCM, while test datais For instance, the series built on the sequence
only for prediction. As a learning procedure we have {2,5,8,5,8,2} with, of course, every value (amplitude)
chosen Particle Swarm Optimization. We have used araltered by mentioned above random distortion is in the
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Table 3: Dynamics based representation of a series built on the seq58582

tme (-2 -1 0 1 2 3 4 5 6 7 8 9 10 11

amplitude: 8 2 2 5 8 5 8 2 2 5 8 b5 8 2
amplitude change:| ~ 6 0 3 3 -3 3 6 0 3 3 -3 3 -6
chng. ofampl. chng.: | ~ ~ 6 3 0 6 6 -9 6 3 0 -6 6 -9

time | ... 2995 2996 2997 2998 2999 3000
amplitude: | ... 2 5 8 5 8 2
amplitude change: | ... 0 3 3 -3 3 -6
chng. of ampl. chng.: | ... 6 3 0 -6 6 -9

Table 4: Summary of synthetic time series constructions

number of concepts
time series period amplitude ampl. chng | chng. of chng.

258 3 3 2 3
268 3 3 3 3
258852 6 3 3 3
258582 6 3 4 5
225825558822885 15 3 5 7
268682826286286 15 3 6 9
15937 5 5 2 3
15739 5 5 5 5
1573993751 10 5 7 5
1573971593 10 5 6 9
153791377195395 15 5 9 9

157393975117359 15 5 8 11

first row of Table3. We present corresponding amplitude 3.2 Real-world time series

changes and changes of amplitude change in the second

and in the third row of this Table. The denotes missing To complement the experiments’ section of our research

amplitude change and change of amplitude change for then the two approaches to time series modeling with Fuzzy

first values of amplitude. It is worth drawing attention that Cognitive Maps we have selected 6 different real-world

there are 3 different amplitude concepts/granulestime series, named Equiptemp, Kobe, Sunspots, Wavel,

4 different concepts/granules of amplitude change andVave2, and Well.

5 different concepts/granules of change of amplitude Figure 3 illustrates selected synthetic and real-world

change for this series. We summarize all processedime series in three-dimensional spaces of amplitude,

synthetic time series in Table amplitude change and change of amplitude change (left

column) and present, past, and before past values.

Figure 3 illustrates selected 2 synthetic time series Observe that real data has substantially different

elevated to three-dimensional spaces of amplitudecharacteristics than synthetic. Points do not form regular

amplitude change and change of amplitude change. Onalike, dense clusters.

can observe distinct regularities in presented plots.

Analyzed time series represent a spectrum of differend Results
structures, i.e. a variety of the following parametersgtén
of the repeated period and numbers of concepts/granules ifhe results of conducted experiments are gathered in the
dimensions of amplitudes, amplitude changes and changderm of figures. Plots follow a uniform convention. The
of amplitude change. Tabkoutlines these parameters.  OY axis refers to the MSE. OX axis informs about FCM
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architecture. Starting from the left side of each plot (thebetter than for synthetic ones, see QY scale in Fidure
intersection of OX and OY) we plot MSE for Fuzzy Errors are low both for models and for one-step-ahead
Cognitive Maps of sizen = 4,6,8,10,12,17,22, 27. In predictions.

each group we plot MSE for time series model and  There is a clearly visible relation between complexity
one-step-ahead forecasts. Input data was partitioned intof time series and modeling quality. Simpler time series
train and test. Train data was used to learn the FCMare much easier to learn and to predict. Refer to low bars
Prediction data part is called test and it was not involvedfor synthetic time series with period of 3 points in
in the learning procedure. Two first bars, in darker color, Figure4. A corollary of this observation is that when data
refer to MSE for the model and prediction based onare irregular, like in case of real-world datasets, if forma
history-oriented time series representation. Third andmethods give us inconclusive decision about the number
fourth bar in each group (gray colors) refer to modelsof nodes, then typically we shall choose the highest
built on dynamics-oriented time series representation.  reasonable (interpretable) number.

Figure 4 illustrates MSE for synthetic time series Conclusions from a comparison of the two methods,
models and predictions for FCMs designed according toviz. oriented on dynamics and on history are analogical to
history and dynamics oriented schemes. the conclusions produced for the synthetic data. History-

Plots convincingly illustrate the advantage of oriented models are better than dynamics-oriented. Even
history-oriented time series representation overfor very small maps we were able to model time series. The
dynamics-oriented. In almost each case for FCMs of theMSE decreased with the growth of the number of nodes in
same size errors for models built on history are lower thanthe map. The proposed membership index help select the
for models constructed on dynamics-based representatiomost relevant concepts .

The superiority of history-based representation
scheme is especially clear for small maps. This is very
important notice, because smaller maps are more5 o usi
convenient from practical points of view. Smaller maps onclusion
are less burdensome to train and much easier to interpret
and to apply in practice. With the growth of the number of The article discusses and compares two time series
nodes in the map, the advantage of history-oriented timgepresentation schemes that can be applied in Fuzzy
series representation decreases, but still history-base@ognitive Maps-based models. First method is oriented
overperforms the dynamics-based models. For full mapspn dynamics. It elevates given scalar time series into
with n = 27 nodes the quality of model and prediction are @ 3-dimensional space of amplitude, amplitude change
almost comparable. and change of amplitude change. Second method uses

At the same time a good FCM design is a balanceunprocessed time series values and elevates scalar time
between modeling quality (expressed as possibly lowseries representation into a 3-dimensional space of
errors) and simplicity of the map. In this light, the present, past, and before past observations. Both
question which map should be chosen to model giverperspectives are a start point for Fuzzy Cognitive Map
time series depends on the modeling purpose. In practicglesign for time series modeling and prediction.
small maps, for example with = 6 nodes and 36 arcs, The experiments show that there exist some
are favorable, because of the ease of interpretation andommonalities between these two methods. First of all,
application of such model. The cost of simplicity in in with the number of nodes in the map, we can more
numerical precision. Observe in Figudethat smaller precisely model the time series. There is only a little
models have higher errors. difference in modeling quality for dynamics and

There is a common characteristics for FCM designedhistory-oriented time series representations.
on dynamics and on history-oriented time series Atthe same time, modeling on the conceptlevel is not
representation. The larger the map, the smaller the MSEoriented on accuracy, but on the interpretability of the
The rate at which the error decreases with the increase ahodels. Hence, focusing on the interpretability of the
the number of nodes in nonlinear. There is an inflectionmodels, preference is given to a model that is relatively
point, which may be used as an indicator, stressing thasmall. Therefore, obtaining such model, we need to
adding more concepts will not result in a substantialextract relevant concepts and select only several best
improvement in modeling quality. This is even more clearones. In the article we have used membership index to
for the history-oriented models. The inflection point in extract best models. We have shown that for small maps,
this case is close to the length of time series period. Inhistory-oriented time series representation outperforms
other words, FCM-based models stabilize faster if we use¢he dynamics-based ones. We have illustrated that

history-oriented time series representation. history-oriented method allows to build more accurate
Figurebillustrates experiments results for 6 real-world small models. There is a clear inflection point in the
time series. characteristic of the history-oriented method that

The proposed modeling and prediction techniqueindicates when adding more concepts stops substantial
performs very well on real-world data. The experimentsimprovement of model's quality. Such an inflection point
show that in several cases results on real data are evdn not that visible in dynamics-based maps.
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Fig. 4: Synthetic time series: performance of history and dynatmésed representation
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Fig. 5: Real time series: performance of history and dynamics beg@ésentation
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