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Abstract: This study is concerned with a fundamental issue of time series representation for modeling and prediction with Fuzzy
Cognitive Maps. We introduce two distinct time series representation schemes for Fuzzy Cognitive Map design. The first method is
based on the temporal relationships, namely time series amplitude, amplitude change, and change of amplitude change (dynamics
perspective). The second scheme is based on three consecutive historical observations: present value, past value and before past value
(history perspective, 2nd order relationships). Introduced procedures are experimentally verified and compared on several synthetic and
real-world time series of various characteristics. The history-oriented time series representation turned out to be more advantageous.
Quality of FCM-based time series models and one-step-aheadpredictions were measured in terms of Mean Squared Error. Wehave
shown that models designed with history-oriented time series representation generally require less FCM nodes to be of comparable
quality to models built on dynamics-oriented time series representation. As a result, with the history-oriented time series representation
scheme we are able to construct simpler and better models.
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1 Introduction

Fuzzy Cognitive Maps are an alternative modeling
framework for complex phenomena. Since their
introduction by B. Kosko in [2], Fuzzy Cognitive Maps
have been in the scope of interest of both theoretical and
applications-oriented researchers. Almost three decades
of intensive studies have resulted in efficient
methodologies for Fuzzy Cognitive Maps learning and
applications.

Time series modeling and prediction with Fuzzy
Cognitive Maps is a relatively new stream of studies. It
emerged around 2008, when Stach et al. published their
research in [9]. The original methodology for time series
modeling with Fuzzy Cognitive Maps laid the
groundwork for present studies in this area.

In brief, Stach et al. proposed a modeling method
based on time series amplitude and its change elevated by
fuzzification to concepts.

The material presented in this article refers to the
original approach of Stach et al. We present a research on
time series representation for modeling with Fuzzy
Cognitive Maps. Also, we introduce two new methods for
Fuzzy Cognitive Map design. We compare and test
proposed procedures in a series of experiments on both
synthetic and real-world time series.

The objectives of this article are to discuss and
compare two different time series representation schemes
for time series modeling and prediction with Fuzzy
Cognitive Maps. The first method exploits
a representation space formed by on time series
amplitude, amplitude change and change of amplitude
change. Hence, we use here the name ”dynamics”
perspective. The second is based on three successive
values of time series: time series present values
(amplitude), past values and before past values. Hence,
we have named it ”history” perspective.
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The paper is structured as follows. In Section2 we
introduce time series representations for modeling with
Fuzzy Cognitive Maps. Section3 covers discussion on
Fuzzy Cognitive Maps design and presents experiments’
schemes that we conducted to compare and illustrate
proposed approach. In Section4 we discuss the results of
the experiments. Section5 covers conclusion and
identifies future research directions.

2 Concepts

2.1 Cognitive Maps

Fuzzy Cognitive Map (FCM) is an abstract soft
computing model that can be described by a weighted
directed graph. It comprises of nodes and weights
connecting the nodes, c.f. [2]. Nodes represent concepts.
Relations between concepts in a cognitive map are
expressed through weighted edges between the nodes. An
example of a 3-node FCM is in Figure 3. In practical
applications, the nodes correspond to various concepts
present to describe a certain phenomenon, for example:
unemployment, skilled human resources, fuel prices, air
pollution, high concentration of hydrogen ions, and so on.

Fuzzy Cognitive Map is represented by a matrix of
weightsW =

[

wi j |wi j ∈ [−1,1], i, j = 1,2, ,n
]

, wheren is
the number of nodes. Each weightwi j corresponds to the
edge connecting the nodenodej to the nodenodei. FCM
exploration is based on activationX = [x1,x2, . . . ,xn]

T ,
which is presented to an FCM, i.e. every valuexi of an
activationX is presented to thenodei. The response of the
FCM Y = [y1,y2, . . . ,yn]

T is computed according to the
formula:

Y = f
(

W ·X
)

(1)

whereW ·X is matrix product andf is a sigmoid function,
i.e.,

f (x) =
1

1+e−τ·x (2)

endowed with given parameterτ. The sigmoid function
is applied separately to every element of matrix product.
More specifically we have:

yi = f
(

n

∑
j=1

wi j ·x j
)

(3)

The unknown and searched element is the
aforementioned weight matrix. It describes linkages
between concepts in the map. The essence of the design
of the FCM is to construct the weight matrix that modells
phenomena. The entries of the weight matrix could be
either given by experts or learned from data. In our
research we focus on the latter approach.

Let us assume that for FCM training we have:

–N activations, namely: X1,X2. . . . ,XN, where
Xi = [x1i ,x2i , . . . ,xni]

T for i = 1,2, . . . ,N,

–N corresponding goals (targets), namely:
G1,G2, . . . ,GN, where
Gi = [g1i,g2i , . . . ,gni]

T for i = 1,2, . . . ,N,
–N map responses corresponding to activations,
namely: Y1,Y2. . . . ,YN, where Yi = [y1i ,y2i , . . . ,yni]

T

for i = 1,2, . . . ,N,

The aim is to design (reconstruct) a Fuzzy Cognitive
Map. We use verb ”reconstruct” to highlight that the
assumption of modelling with FCMs is that given
phenomena could be perfectly represented with a map of
linked nodes-concepts and the training goal is to
reconstruct the strength of these linkages.

FCM reconstruction for given activations and goals is
based on adjustment of (usually randomized at the
beginning) weight matrixW in such a way that FCM
responses areas close as possibleto goals. The termas
close as possibleboils down to the minimization of a
mean square error:

MSE=
1

n ·N

N

∑
i=1

n

∑
j=1

(

y ji −g ji
)2

(4)

Naturally, we can consider other optimization criteria,
but this topic is out of the scope of the article. As for
technical aspects of FCM learning, in this study authors
took the benefit of Particle Swarm Optimization strategy,
which is one the viable optimization alternatives to be
engaged here. The value of parameterτ of the sigmoid
function was set to 5, based on literature review, [3,9],
and experimental studies carried out here.

The design of an FCM comprises of two fundamental
development steps, namely structure design and further
parametric optimization. In what follows, we focus on
representation issues of time series and then we elaborate
on key design facets of the overall process.

2.2 Time series and their representation

Representation of a time series, in terms of an
FCM-based model architecture, could be decomposed
into two essential design elements, namely a way to
capture the dynamics of the system and extract of
concepts - nodes in the map.

Concepts can be seen as aggregates of information,
whose specificity determines the accuracy of phenomena
description. In this light, FCMs align with the idea of
granular computing, c.f. [5], which is focused on
knowledge granules - abstract units of information. Nodes
are knowledge granules, in FCMs conventionally realized
with fuzzy sets.

The proposed approach is illustrated here using
several synthetic time series. We deliberately start with
synthetic time series, because of their better illustrative
properties of such example. The considered time series
are built involving two sets of numbers of cardinality 3
and 5:{2,5,8} and {1,3,5,7,9} and one time series is
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built on three numbers set{2,6,8}. A procedure for
synthesizing a time series is:

1.select base sequence, which is aimed to cover
different numbers of concepts in the dimensions of
values, values changes and changes of values changes.
This aim is gained by different order of base sequence
elements, compare Table4,

2.replicate base sequence so that the total length of
a time series is 3000,

3.add random distortion drawn from the normal
(Gaussian) probability distribution with mean equal to
0 and standard deviation equal to 0.7.

With this procedure we can obtain time series of varying
complexity, depending on the complexity of the base
sequence assumed in the first step. In this way, we capture
quantitative performance of a given FCM for different
configurations of in put time series. Such time series
exerts both regular, periodic, variations and random
variations, thanks to the Gaussian noise added at the end.

Figure 1 visualizes the idea behind the proposed
approach. Both plots concern one of the easiest time
series we addressed in this study. It was constructed based
on a sequence 2,6,8. As a result in this particular time
series we can clearly distinguish 3 one-dimensional
concepts that could ideally represent its amplitude. Visual
inspection of Figure1 confirms that even without any
knowledge about the specifics of the 3-step procedure
listed above the dataset is clearly based on 3 dense
clusters of data.

To enhance human-centric of an FCM model we
usually assign linguistic labels. In the case above we can
use Small to represent values centered around 2,
Moderately High to represent cluster related to 6 and
High to represent values close to 8. For convenience we
abbreviated the linguistic variables to S, MH and H,
respectively.

A dot-plot of amplitude in time (3000 time points) is
shown in upper part of Figure1, while the bottom plot
shows first 200 points at the amplitude axis with centers of
amplitude groups.

It is apparent that in real-world data it is much harder
to detect such regularities. Hence, among biggest
challenges in the domain of FCM-based modelling is to
propose, so to say, bulletproof method for concepts
extraction that will work even when data is highly
irregular. Please note, that concepts extraction, though at
the first sight it resembles clustering, is a domain-specific
task. Concepts in an FCM generalize knowledge. A basic
parameter of an FCM related to the number of its
concepts is its specificity. The larger the map the higher
its specificity. We expect specific maps to be numerically
more accurate than less specific maps. At the same time
very specific maps are much harder to interpret than less
specific maps.

Let us continue with the main course: time series
representation.

2.2.1 Dynamics based representation

Time series is a sequence of numbers, sayamplitudes. Let
us assume that we have a time series of lengthN+2

a−1,a0,a1,a2,a3, . . . ,aN

In order to capture dynamics of the system, we
propose switching to coordinatesamplitudes/amplitude
changes/changes of amplitude changefor consecutive
time points forming the following series of triples:

(a1,da1,dda1),(a2,da2,dda2), . . . ,(aN,daN,ddaN)

where for any triple(ai ,dai ,ddai) change of amplitude is
dai = ai − ai−1 and change of amplitude change is
ddai = dai − dai−1 = ai − 2 · ai−1 + ai−2 for
i = 1,2, . . . ,N.1 Note that the original time series are
padded with the preceding elementsa−1,a0 to allow
computing amplitude change and change of amplitude
change for all time pointsi = 1,2, . . . ,N.

An example of such series representation is in Table1.
It concerns already mentioned 2,6,8-based synthetic time
series.

In Table1 we display the values affecting the data by
some noise with random distortions. The first row refers
to consecutive time points, i.e. enumerated numbers. The
second row contains numerical amplitude values. Notice
that amplitudes are padded with the first values 6 and 8
(corresponding to time -1 and 0) in order to allow
computation of amplitude change and change of
amplitude change in time 1. The third and fourth rows
correspond to amplitude changes and changes of
amplitude change. Therefore, we have the following
triples in the dynamics based representation: (2,-6,-8),
(6,4,10), (8,2,-2), (2,-6,-8), (6,4,10), (8,2,-2), . . .

2.2.2 History based representation

Dynamics-based representation of time series obviously
is conceptually equivalent to the series of triples of
present/past/before pastamplitudes:

(a1,a0,a−1),(a2,a1,a0), . . . ,(aN,aN−1,aN−2)

This representation of the series based on the sequence 2,
6 and 8 is in Table2. By analogy, we have the following
triples in the history based representation:
(2,8,6), (6,2,8), (8,6,2), (2,8,6), (6,2,8), (8,6,2), . . .

Theoretically, both representations are equivalent as
long as they represent time span of the same length, i.e.:

–dynamics-based representation with (amplitudes,
amplitude changes) pairs is equivalent to (present,
past) pairs in history-based representation,

1 Note, this representation corresponds tofunction/first
derivative/second derivativein differential calculus.
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Fig. 1: The synthetic time series based on period 268 in time/amplitude coordinates (upper part) and first 200 elements on the amplitude
axis (bottom part)

Table 1: An example of time series dynamics based representation built on the sequence 268 (not distorted values)

time -1 0 1 2 3 4 5 6 7 8 . . . 2998 2999 3000

amplitudes 6 8 2 6 8 2 6 8 2 6 . . . 2 6 8
amplitude changes ∼ 2 -6 4 2 -6 4 2 -6 4 . . . -6 4 2

changes of amplitude change ∼ ∼ -8 10 -2 -8 10 -2 -8 10 . . . -8 10 -2

Table 2: An example of time series history based representation built on the sequence 268 (not distorted values)

time -1 0 1 2 3 4 5 6 7 8 9 . . . 2998 2999 3000

present amplitudes 6 8 2 6 8 2 6 8 2 6 8 . . . 2 6 8
past amplitudes ∼ ∼ 8 2 6 8 2 6 8 2 6 . . . 8 2 6

before past amplitudes ∼ ∼ 6 8 2 6 8 2 6 8 2 . . . 6 8 2

–dynamics-based representation with (amplitudes,
amplitude changes, changes of amplitude change)
triples is equivalent to (present, past, before
past)triples in history-based representation,

–and so on.

In this paper we elaborate on time series representation
capturing 3 data points.

Note that the longer the time span we capture, the
more complex the model gets. If the objective of
modelling is to build a model to be presented and
interpreted by a human being, time span of 3 data points
is among highest reasonable values. Representation based
on triples corresponds to a 3-dimensional space. It means,
that with such representation we are able to plot the time
series in a 3-dimensional coordinates system of either
(amplitudes, amplitude changes, changes of amplitude
change) coordinates system or in (present, past, before
past) coordinates system. 3-dimensional space is the
highest system a human being can immediately visualize.

We elaborate on time series and concepts
representation in such 3-dimensional spaces in the
following subsection.

Our past research (not a topic of this paper though)
showed that the higher dimension we use for time series
representation, the lower the numerical error of
prediction. At the same time, increasing dimensionality
entails important drawbacks: computational and
interpretational. Hence, we have decided to base this
research in 3-dimensional space as a reasonable
compromise between numerical accuracy and
interpretability.

2.3 Transforming time series into concepts
space

Let us now elaborate on granular/conceptual
representation of the time series given in Figure1. Let us
recall that for the considered example, first we have a
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scalar synthetic time series, which is expressed as a
sequence of numbers - amplitudes. For each amplitude in
a given time point we compute the corresponding
amplitude change and change of amplitude change.
Formally, amplitude and the corresponding dynamics
specify a point in the amplitude/amplitude change/change
of amplitude change system coordinates. For
one-dimensional knowledge granules on amplitudes,
amplitude changes and on changes of amplitude change
we separately perform Fuzzy C-Means clustering and we
obtain three, at this point separate, sets of granules. Next,
using Cartesian product we determine three-dimensional
concepts. Now, three-dimensional knowledge granules
describe each pair amplitude/amplitude change/change of
amplitude change. Finally, we attach linguistic variables
to enhance interpretability of extracted concepts.

As the clustering has been completed for the
individual variables (dimensions), it is very likely that
some of the Cartesian product prototypes might not have
any supportive experimental evidence and such
combinations (viz. the nodes of the map) could be easily
eliminated. Let us plot extracted concepts and the
underlying time series in Figure2. What strikes
immediately is that concepts are of significantly differing
quality.

Left plot is for dynamics-based representation. Hence,
coordinates system is (amplitudes, amplitude changes,
changes of amplitude change). Right plot concerns
history-based representation. See labels axes: (present,
past, before past).

Visual inspection confirms that synthesized time series
is highly regular - observe three dense clouds of points in
each plot. The aim is to find concepts to represent the data.
Naturally, in such case the task is much easier than if we
would have analyzed real data. Nevertheless, we continue
with this example for its superior illustrative abilities.

2.3.1 Dynamics based granulation

In Figure 2 the left plot shows granulation into 3
concepts/granules each of dynamics dimension:

–amplitudes: concepts S+, MH+, H+ with
corresponding granule centers 2, 6 and 8,

–amplitude changes: concepts MH–, S+ and MS+ with
corresponding granule centers -6, 2 and 4,

–changes of amplitude change: concepts H–, S– and
VH+ with corresponding granule centers -8, -2 and
10.

Note, abbreviations should be understood as follows: S+
- small positive, MH– - moderately high negative, VH+ -
very high positive etc.

Next, using Cartesian product we determine 27 three-
dimensional concepts:

{S+,MH+,H+}×{MH–,S+,MS+}×{H–,S–,H+}

= {(S+,MH–,H–),(S+,MH–,S–),(S+,MH–,H+), . . . ,

(H+,S–,H+),(H+,MS+,H+)}

Now, three-dimensional knowledge granules are used to
linguistically describe each triple amplitude/amplitude
change/change of amplitude change. Derived
three-dimensional granules/concepts perfectly match
clouds of the time series. Every granule in every
dimension corresponds to one cloud of points. Intuitively,
this granulation matches given time series. More exactly,
centers of 3 granules fall into clouds of time series points
while 24 other granules are not tied to this time series.
Three concepts matching the time series are
(S+,MH–,H–), (MH+,MS+,VH+), (H+,S+,S–) in
dynamic coordinates.

The right plot of this Figure shows matching
granulation for history-based representation: centers of3
granules fall into clouds of respective clouds of 3D point,
while 24 granules are not tied to this time series. Namely,
the following concepts match this time series:
(S+,MH+,H+), (MH+,S+,H+), (H+,MH+,S+) in
dynamics coordinates.

2.3.2 History based granulation

The right plot of Figure2 presents granular representation
based on three-steps history, i.e. based on present, past
and before past granular representation of time series. By
analogy to dynamics based representation, we get 27
three dimensional concepts:

{S+,MH+,H+}×{S+,MH+,H+}×{S+,MH+,H+}

= {(S+,S+,S+),(S+,S+,MH+),(S+,S+,H+), . . . ,

(H+,H+,MH+),(H+,H+,H+)}

Three concepts matching the time series are
(S+,H+,MH+), (MH+,S+,H+), (H+,MH+,S+) in history
coordinates.

2.4 Granular representation

Time series is a sequences of numbers, which we have to
elevate to terms of concepts. We form a collection of
descriptors of amplitude, change of amplitude and change
of amplitude change that are viewed formally as some
information granules, say fuzzy sets. More specifically,
we form a family (vocabulary) of fuzzy sets
A1,A2, . . . ,Ac1 expressed over the space of amplitude of
the time series, family of fuzzy setsdA1,dA2, . . . ,dAc2
over the space of amplitude change and another family of
fuzzy sets ddA1,ddA2, . . . ,ddAc3 over the space of
change of amplitude change. Then a time series
a1,a2, . . . ,aN (along with its amplitude changes
da1,da2, . . . ,daN and changes of amplitude changes
dda1,dda2, . . . ,ddaN) is seen as a series of degrees of
activation of the elements of the three vocabularies. More
specifically, ak, dak and ddak gives rise to the
membership values of the corresponding fuzzy sets of the

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


98 W. Homenda et al. : Fuzzy Cognitive Map Reconstruction:...

Fig. 2: The synthetic time series based on period 268 in two different coordinates systems: dynamics and history

vocabularies, c.f. Table1 for the time series built on the
sequence 2, 6 and 8.

Alike, we form a collection of descriptors of amplitude
A1,A2, . . . ,Ac1 and then apply them to present and former
amplitude values with given retrospective length. Namely,
for the backward length 3,ak, ak−1 andak−2 gives rise to
the membership values of the corresponding fuzzy sets of
the vocabulary. Unlike in the case of dynamics, we have
only one vocabulary, which is equally applied for present
and former amplitude values, compare Table2.

2.4.1 Building unknown granules

As we have noted before, for real-life problem we neither
know cluster centers’ coordinates, nor have any
knowledge about a number of clusters. In this subsection
we discuss, how to form granules of knowledge for any
given time series.

Let us recall, that the outcome of the proposed
concepts’ design methods is a set of three-dimensional
concepts. In the case of dynamics-based time series
representation each concept is rooted in the
amplitude/amplitude change/change of amplitude change
space. In the case of history-oriented perspective each
concept is in the present value/past value/before past
value coordinates system. This is a natural consequence
of the proposed concept design strategies and time series
representation models.

The procedure of concepts’ design is aided first with
Fuzzy C-Means, second with ternary Cartesian product.
Cartesian product elevates one-dimensional concepts to
the three-dimensional spaces of amplitude/amplitude
change/change of amplitude change or value/past
value/before past value. The corollary of the application
of the Cartesian product is that we obtainc1 × c2 × c3
concepts for the case of dynamics-oriented time series
representation andc × c× c concepts for the case of
history-oriented perspective.c1, c2, andc3 is the number
of 1-dimensional concepts on amplitude, amplitude

change, and change of amplitude change respectively,
while c is the number of 1-dimensional concepts on time
series values. We have already marked that not all of the
designed concepts have an empirical support in the form
of underlying data points from the time series. Let us
come back to Figure2. Concepts with empirical support
are the ones that truly generalize the underlying data.
These are concepts marked in circles.

Here comes a vital problem: how to propose enough
concepts to represent the data with required precision?
The task of building unknown granules is in fact a task of
finding a good balance between model’s complexity and
generality. It will be shown later that the number of
concepts directly corresponds to the number of nodes in
the FCM. With an increase of the number of nodes in the
map the number of arcs grows quadratically and the time
required to train such map grows exponentially. Apart
from practical premises, large models are very
inconvenient in use. Large FCMs are very difficult to
interpret and to apply.

In the case of real-world data, selection of proper
number and location of concepts is very difficult. Real
data is typically irregular, with many outlying data points.

To overcome this obstacle the proposed design scheme
at first extracts relatively large set of concepts from which
we choose the best few. The criterion for best concepts
selection is membership index defined as follows:

M(v j) =
N

∑
i=1

x ji (5)

WhereM(v j) is membership index forv j -th concept,
x ji is the level of membership to this j-th concept
calculated with the use of standard Fuzzy C-Means
objective function for an i-th data point:

xi j =
1

n

∑
k=1

( ||ai − v j ||

|| ai − vk||

)2/(m−1)
(6)

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 1, 93-105 (2016) /www.naturalspublishing.com/Journals.asp 99

wheren is the number of concepts,m is the fuzzification
coefficient(m> 1) and|| · || is the Euclidean distance,ai
is a triple ai = [ai ,dai,ddai ] in the case of
dynamics-oriented representation or a triple:
ai = [ai−2,ai−1,ai] in the case of history-oriented
representation.v j describes j-th concept’s coordinates in
a 3-dimensional space of amplitude/amplitude
change/change of amplitude change or
present/past/before past values of the time series.

Concepts with high membership index are better. We
selectn best concepts based on their membership index.n
could be determined by an inspection of a plot of concepts
ordered by their membership index on OX axis and their
respective membership index on OY axis. A knee-point in
such plot roughly separates bad and good concepts.

With the membership criterion, a very intuitive
measure of quality for the deign procedure that starts with
Fuzzy C-Means, we are able to select a subset of best
nodes and design a Fuzzy Cognitive Map based only on
selected concepts.

2.4.2 Fuzzy Cognitive Map design

The final step is Fuzzy Cognitive Map design. Fuzzy
Cognitive Maps operate on an abstract level of concepts -
nodes of the map, which are connected with weighted
arcs. Hence, we have to extract a set of concepts that
becomes a set of FCM’s nodes.

With the use of Formula6 we calculate activation
levels for each selected concept, we transpose it, and in
this way we obtainn×N activations matrixX. In other
words, activations are membership values, levels of
belongingness of time series observations to extracted
concepts.

Goals are equal to activations shifted by one element
forward. So that activations corresponding to an i+1-th
time point are set together with goals for an i-th time
point. Such representation is designed especially for time
series processing with FCMs.

At this point we have all the elements necessary to train
weight matrix for this time series.

3 Experiment

In this section we discuss evaluation and comparison
procedures of Fuzzy Cognitive Map design methods
based on the two time series representation schemes.

We have constructed 12 synthetic time series with
different characteristics to test quality and stability of
proposed approaches. As a quality measure we used
Mean Squared Error, compare formula4. We assess both
modeling and prediction quality. Predictions for the time
series are for one-step-ahead. The ratio of train/test datais
7:3. We use train data to learn the FCM, while test data is
only for prediction. As a learning procedure we have
chosen Particle Swarm Optimization. We have used an

implementation of PSO from package ”pso” in
R language with default parameters compliant with the
PSO 2007 implementation, detailed parameter list is
under [12].

First series of experiments was on the synthetic time
series. Second, on real-world time series. Real-world time
series were downloaded from publicly available
repositories under [13,14]. Time series can be identified
by their names. Selected data sets are of different
character: lack/different parameters of seasonality, trends,
etc. We did not conduct any preprocessing procedures.

Note, that the experiments are conducted on the level
of granules - aggregates of knowledge. Proposed
modeling technique operates on a high level of
abstraction, where instead of scalar values we operate on
concepts and linguistic terms. Such knowledge
representation and processing offers a compelling
human-centered interface. The focus is on granules of
knowledge that correspond to phenomena and relations
within these phenomena gathered in trained weights
matrix of FCMs. If we want to compare such model with
classic time series modeling techniques it is necessary to
perform a defuzzification procedure. Because such
comparison is not in the scope of interest of this paper, we
do not perform defuzzification.

For each time series, both synthetic and real-world,
we have extracted and trained FCMs based on
n = 27, 22, 17, 12, 10, 8, 6, 4 concepts. The
n = 33 = 27-nodes FCMs are full-architecture maps,
where no concepts were removed. Smaller maps are built
on n best concepts selected with the membership
criterion. We have trained FCMs both for
dynamics-oriented time series representation and for
history-oriented representation. With such selection of
FCMs we are able to thoroughly review and compare the
characteristics of our methods.

In the remainder of this section we introduce the
synthetic and real-world time series. The following
Section4 presents experiments results.

3.1 Synthetic Series

Proposed approach is illustrated with synthetic time
series. We deliberately used synthetic time series, because
of better illustrative properties of such examples. The
considered time series are built on two sets of numbers of
cardinality 3 and 5:{2,5,8} and{1,3,5,7,9}. One time
series is built on a set of three numbers:{2,6,8}. Each
time series is built on repeated sequence of numbers to
reach length 3000. Numbers are distorted by values of the
normal (Gaussian) probability distribution with mean
equal to 0 and standard deviation equal to 0.7. The
procedure for synthetic time series construction was
already mentioned in Section2.2.

For instance, the series built on the sequence
{2,5,8,5,8,2} with, of course, every value (amplitude)
altered by mentioned above random distortion is in the
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Table 3: Dynamics based representation of a series built on the sequence 258582

time -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 . . .

amplitude: 8 2 2 5 8 5 8 2 2 5 8 5 8 2 . . .
amplitude change: ∼ -6 0 3 3 -3 3 -6 0 3 3 -3 3 -6 . . .

chng. of ampl. chng.: ∼ ∼ 6 3 0 -6 6 -9 6 3 0 -6 6 -9 . . .

time . . . 2995 2996 2997 2998 2999 3000

amplitude: . . . 2 5 8 5 8 2
amplitude change: . . . 0 3 3 -3 3 -6

chng. of ampl. chng.: . . . 6 3 0 -6 6 -9

Table 4: Summary of synthetic time series constructions

number of concepts
time series period

amplitude ampl. chng chng. of chng.

258 3 3 2 3

268 3 3 3 3

258852 6 3 3 3

258582 6 3 4 5

225825558822885 15 3 5 7

268682826286286 15 3 6 9

15937 5 5 2 3

15739 5 5 5 5

1573993751 10 5 7 5

1573971593 10 5 6 9

153791377195395 15 5 9 9

157393975117359 15 5 8 11

first row of Table3. We present corresponding amplitude
changes and changes of amplitude change in the second
and in the third row of this Table. The∼ denotes missing
amplitude change and change of amplitude change for the
first values of amplitude. It is worth drawing attention that
there are 3 different amplitude concepts/granules,
4 different concepts/granules of amplitude change and
5 different concepts/granules of change of amplitude
change for this series. We summarize all processed
synthetic time series in Table4.

Figure 3 illustrates selected 2 synthetic time series
elevated to three-dimensional spaces of amplitude,
amplitude change and change of amplitude change. One
can observe distinct regularities in presented plots.

Analyzed time series represent a spectrum of different
structures, i.e. a variety of the following parameters: length
of the repeated period and numbers of concepts/granules in
dimensions of amplitudes, amplitude changes and changes
of amplitude change. Table4 outlines these parameters.

3.2 Real-world time series

To complement the experiments’ section of our research
on the two approaches to time series modeling with Fuzzy
Cognitive Maps we have selected 6 different real-world
time series, named Equiptemp, Kobe, Sunspots, Wave1,
Wave2, and Well.

Figure 3 illustrates selected synthetic and real-world
time series in three-dimensional spaces of amplitude,
amplitude change and change of amplitude change (left
column) and present, past, and before past values.
Observe that real data has substantially different
characteristics than synthetic. Points do not form regular
alike, dense clusters.

4 Results

The results of conducted experiments are gathered in the
form of figures. Plots follow a uniform convention. The
OY axis refers to the MSE. OX axis informs about FCM
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Fig. 3: Synthetic (upper two rows) and real-world (bottom three rows) time series elevated to spaces of amplitude, amplitude change
and change of amplitude change (left column) and present, past, and before past amplitudes (right column).
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architecture. Starting from the left side of each plot (the
intersection of OX and OY) we plot MSE for Fuzzy
Cognitive Maps of sizen = 4,6,8,10,12,17,22,27. In
each group we plot MSE for time series model and
one-step-ahead forecasts. Input data was partitioned into
train and test. Train data was used to learn the FCM.
Prediction data part is called test and it was not involved
in the learning procedure. Two first bars, in darker color,
refer to MSE for the model and prediction based on
history-oriented time series representation. Third and
fourth bar in each group (gray colors) refer to models
built on dynamics-oriented time series representation.

Figure 4 illustrates MSE for synthetic time series
models and predictions for FCMs designed according to
history and dynamics oriented schemes.

Plots convincingly illustrate the advantage of
history-oriented time series representation over
dynamics-oriented. In almost each case for FCMs of the
same size errors for models built on history are lower than
for models constructed on dynamics-based representation.

The superiority of history-based representation
scheme is especially clear for small maps. This is very
important notice, because smaller maps are more
convenient from practical points of view. Smaller maps
are less burdensome to train and much easier to interpret
and to apply in practice. With the growth of the number of
nodes in the map, the advantage of history-oriented time
series representation decreases, but still history-based
overperforms the dynamics-based models. For full maps,
with n= 27 nodes the quality of model and prediction are
almost comparable.

At the same time a good FCM design is a balance
between modeling quality (expressed as possibly low
errors) and simplicity of the map. In this light, the
question which map should be chosen to model given
time series depends on the modeling purpose. In practice,
small maps, for example withn = 6 nodes and 36 arcs,
are favorable, because of the ease of interpretation and
application of such model. The cost of simplicity in in
numerical precision. Observe in Figure4 that smaller
models have higher errors.

There is a common characteristics for FCM designed
on dynamics and on history-oriented time series
representation. The larger the map, the smaller the MSE.
The rate at which the error decreases with the increase of
the number of nodes in nonlinear. There is an inflection
point, which may be used as an indicator, stressing that
adding more concepts will not result in a substantial
improvement in modeling quality. This is even more clear
for the history-oriented models. The inflection point in
this case is close to the length of time series period. In
other words, FCM-based models stabilize faster if we use
history-oriented time series representation.

Figure5 illustrates experiments results for 6 real-world
time series.

The proposed modeling and prediction technique
performs very well on real-world data. The experiments
show that in several cases results on real data are even

better than for synthetic ones, see OY scale in Figure5.
Errors are low both for models and for one-step-ahead
predictions.

There is a clearly visible relation between complexity
of time series and modeling quality. Simpler time series
are much easier to learn and to predict. Refer to low bars
for synthetic time series with period of 3 points in
Figure4. A corollary of this observation is that when data
are irregular, like in case of real-world datasets, if formal
methods give us inconclusive decision about the number
of nodes, then typically we shall choose the highest
reasonable (interpretable) number.

Conclusions from a comparison of the two methods,
viz. oriented on dynamics and on history are analogical to
the conclusions produced for the synthetic data. History-
oriented models are better than dynamics-oriented. Even
for very small maps we were able to model time series. The
MSE decreased with the growth of the number of nodes in
the map. The proposed membership index help select the
most relevant concepts .

5 Conclusion

The article discusses and compares two time series
representation schemes that can be applied in Fuzzy
Cognitive Maps-based models. First method is oriented
on dynamics. It elevates given scalar time series into
a 3-dimensional space of amplitude, amplitude change
and change of amplitude change. Second method uses
unprocessed time series values and elevates scalar time
series representation into a 3-dimensional space of
present, past, and before past observations. Both
perspectives are a start point for Fuzzy Cognitive Map
design for time series modeling and prediction.

The experiments show that there exist some
commonalities between these two methods. First of all,
with the number of nodes in the map, we can more
precisely model the time series. There is only a little
difference in modeling quality for dynamics and
history-oriented time series representations.

At the same time, modeling on the concept level is not
oriented on accuracy, but on the interpretability of the
models. Hence, focusing on the interpretability of the
models, preference is given to a model that is relatively
small. Therefore, obtaining such model, we need to
extract relevant concepts and select only several best
ones. In the article we have used membership index to
extract best models. We have shown that for small maps,
history-oriented time series representation outperforms
the dynamics-based ones. We have illustrated that
history-oriented method allows to build more accurate
small models. There is a clear inflection point in the
characteristic of the history-oriented method that
indicates when adding more concepts stops substantial
improvement of model’s quality. Such an inflection point
is not that visible in dynamics-based maps.
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Fig. 4: Synthetic time series: performance of history and dynamicsbased representation
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Fig. 5: Real time series: performance of history and dynamics basedrepresentation

In the future it could be worth investigating other
selection criteria to choose relevant concepts. We also
plan to extend experiments to higher dimensional spaces
(higher order history-oriented temporal relationships),for
example: present value, past value, before past value,
before-before past value, etc.
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