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Abstract: In this paper, we prove the difference analogs of the comparison theorems for solutions of the Cauchy problem for a
nonlinear ordinary differential equation (ODE). These theorems are used to analyse blow-up solution of finite-difference schemes
(FDS) approximating the Neumann problem for a parabolic equation with a nonlinear source of power form. We also propose the
method for obtaining the two-sided estimates of solution. This method is based on implicit and explicit FDS.
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1 Introduction

The comparison theorems are often used to study the
properties of solution of partial differential equations [1,
2,3,4]. Differential inequalities were the first time
considered by S. A. Chaplygin in the first half of the
XXth century [2]. We know just some discrete analogs of
these inequalities. For example, there is discrete analog of
the Bihari lemma for explicit FDS [3]. Some
generalizations of this Lemma for the implicit FDS one
can find in [5,4,6,7].

In works [8,9,10,11] interval methods for obtaining
two-sided estimates of solution of the initial-value
problems for ordinary differential equation and partial
differential equation were considered. There is a growing
interest in methods to get two-sided estimates [12,13].
These methods allow to determine the interval which
contains exact solution and are consistent with the order
of accuracy of numerical method.

In this paper, we prove the difference analogs of the
comparison theorems for solutions of the Cauchy
problem for a nonlinear ordinary differential equation.
These theorems are based on the properties of implicit
and explicit FDS [14,15]. In problems of the parabolic
type whose solution develops a singularity [5], such

theorems are very important in studying of solution
behavior, stability in the context of the application for the
reconstruction of the maria of the Moon [16,17] and
blow-up time [18]. Here, the blow-up is phenomenon
when solution tends to infinity in finite time. We find a
blow-up condition for solution of the FDS approximating
these problems. We present numerical results for
nonlinear parabolic equation with Neumann boundary
condition, whose solution blows up in finite time. Note,
the blow-up time of implicit FDS converges to blow-up
time of differential problem when the mesh size tends to
zero.

Last section is devoted to the method for obtaining
two-sided estimates of solution of parabolic linear
equation. The disadvantage of this method is the
requirement of a constant sign of the input data
derivatives. However, using FDS with variable weights
[19], we may be able to generalize the proposed method
to the case of functions of alternating can signs.
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2 The Cauchy problem for ODE

2.1 Statement of the problem and FDS

We assume the existence of a classical solution
u(t) ∈C1(0,T ]∩C[0,T ] of the problem

du
dt

= f (t,u), 0< t ≤ T, u(0) = u0.

Let α(t), β (t) be lower and upper solutions [20]
satisfying the following inequalities

dα
dt

≤ f (t,α(t)), 0< t ≤ T, α(0) = u0, (1)

dβ
dt

≥ f (t,β (t)), 0< t ≤ T, β (0) = u0. (2)

Then
α(t)≤ u(t)≤ β (t), (3)

for all t belonging to the whole interval of existence [2,
20]. Let us introduce the range of the exact solutionsDu =
{u(t) : u1 ≤ u(t)≤ u2,0≤ t ≤ T} and its neighbourhood,
Dε(u) = {ũ : |ũ−u|< ε}, which can be sufficiently small.

Now let us consider the case when the functionf (t,v)
satisfies the condition given by the inequalities

f2(t)g2(v)≤ f (t,v) ≤ f1(t)g1(v),

where fk(t),gk(v),k = 1,2, are continuous and
monotonically growing functions for all
t ∈ [0,T ],v ∈ Dε(u). According to Corollary 4.2 in
Chapter III [20], in this case functionu(t) is a lower and
upper solution of the following differential problem

dv1

dt
= f1(t)g1(v1),

dv2

dt
= f2(t)g2(v2),

vk(0) = u0, k = 1,2,
(4)

i.e.
v1(t)≤ u(t)≤ v2(t). (5)

Let us introduce a nonuniform grid̄ωτ = ωτ ∪ {0},
ωτ = {tn+1 = tn + τn,τn > 0,n = 0,1, ...,N0 − 1, t0 =
0, tN0 = T} on the interval [0,T ]. We approximate
problems(1)-(4) using the following schemes

vn+1
k − vn

k

τn
= ϕk(tn+1)qk(v

n+1
k ), v0

k = u0, k = 1,2, (6)

αn+1
τ −αn

τ
τn

≤ f1(tn)g1(αn
τ ), α0

τ = u0, (7)

and

β n+1
τ −β n

τ
τn

≥ f2(tn+1)g2(β n+1
τ ), β 0

τ = u0, (8)

where

ϕk(tn+1) =
1
τn

tn+1
∫

tn

fk(t)dt,

qk(v
n+1
k ) =







1

vn+1
k − vn

k

vn+1
k
∫

vn
k

dv
gk(v)







−1

are chosen from the condition of exact FDS [21], and
αn

τ ,β n
τ are lower and upper approximate solutions of the

Cauchy problem, satisfying differential inequalities
(1)-(2). It is worth mentioning that the corresponding
discrete analogs of the lower estimationα ≤ v1 and the
upper estimationβ ≥ v2 can be obtained with use of the
explicit and implicit approximation, respectively. Note
that the nonuniform grids̄ωτ in each of problems (6)-(8)
can be different and the nodestn do not coincide.

Lemma 1. For any yk,yn ∈ Dε(u)(yn > yk) and
tk, tn ∈ ωτ(tn > tk) the following estimates

f1(tk)g1(y
k)≤ 1

tn − tk

tn
∫

tk

f1(t)dt







1
yn − yk

yn
∫

yk

du
g1(u)







−1

and

f2(tn)g2(y
n)≥ 1

tn − tk

tn
∫

tk

f2(t)dt







1
yn − yk

yn
∫

yk

du
g2(u)







−1

hold.
The proof follows directly from the mean value

theorem.

Lemma 2. For the solution of problem (6) the following
equality takes place

Fk(vk(tn)) = Φk(tn), k = 1,2, tn ∈ ωτ ,

where

Fk(v
n
k) =

vn
k
∫

u0

dv
gk(v)

, Φk(tn) =

tn
∫

0

fk(t)dt.

Proof. Formula (6) with n = m can be rewritten as

vm+1
k
∫

vm
k

dv
gk(v)

=

tm+1
∫

tm

fk(t)dt.

Summation of the last equalities by indices
m = 0,1, ...,n − 1, yields the required relations. The
lemma is proved.
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Theorem 1. Let the classic solution of the Cauchy problem
(4) exists withk = 1 and inequalities (7) hold with αn

τ ∈
Dε(u),n = 0,1, ...,N0. Then

αm
τ ≤ vm

1 , m = 0,1, ...,N0. (9)

Proof. For m = 0 we haveα0
τ = v0

1. Assume inequality (9)
be true for allm = 1,2, ...,n. We show that it holds for
m = n+1 as well. In fact, using (7), Lemma 1 and the
assumption of mathematical induction we get the
estimation

αn+1
τ ≤ αn

τ + τn f1(tn)g1(αn
τ )≤ vn

1+ τn f1(tn)g1(v
n
1)≤

≤ vn
1+ τnϕ1(tn+1)q1(v

n+1
1 ) = vn+1

1 .

Theorem is proved.

Remark 1. In [3,22] one can find the proof of Theorem 1
for f1(t) = 1 in more complicated way.

Theorem 2. Let the classic solution of the Cauchy problem
(4) exist withk = 2 and the grid functionβ n

τ ∈ Dε(u),n =
0,1, ...,N0 satisfies inequality (8). Then

β m
τ ≥ vm

2 , m = 0,1, ...,N0. (10)

Proof. For m = 0 we haveβ 0
τ = v0

2. Let condition (10) be
satisfied for allm = 1,2, ...,n. We prove that it is true for
m = n+1. Then, using Lemmas 1 and 2 and (8) we obtain
the following inequalities

β n+1
τ
∫

β n
τ

dv
g2(v)

≥
tn+1
∫

tn

f2(t)dt,

β n+1
τ
∫

u0

dv
g2(v)

≥
tn+1
∫

0

f2(t)dt = Φ2(tn+1),

vn+1
2
∫

u0

dv
g2(v)

+

β n+1
τ
∫

vn+1
2

dv
g2(v)

≥
tn+1
∫

0

f2(t)dt,

β n+1
τ
∫

vn+1
2

dv
g2(v)

≥ 0, β n+1
τ ≥ vn+1

2 .

Theorem 2 is therefore proved.

Corollary 1. Let for the FDS

yαt = f1(tn)g1(y
n
α), yβ t = f2(tn+1)g2(y

n+1
β ),

y0
α = y0

β = u0,

solutionsyα ,yβ ∈ Dε(u) exist and unique and inequalities
(7), (8) be satisfied. Then for alltn ∈ ω̄τ the following
relations

αn
τ ≤ yn

α ≤ vn
1, β n

τ ≥ yn
β ≥ vn

2, m = 0,1, ...,N0, (11)

hold.

Example 1. Let f (t,u) = trup, r > 0, p > 1, u0 > 0. Then
in (11) we have

vn
1 = v2 = u(tn) =

u0
(

1− p−1
r+1 up−1

0 tr+1
n

)1/(p−1)
.

Consider important corollaries of the discrete analogues of
Theorem 1 and 2. First from inequalities (9), (11) it follows
the boundedness of the difference solution on the arbitrary
segment[0, t1]

t1 < Tblow−up, Tblow−up =

(

r+1

(p−1)up−1
0

) 1
r+1

.

The occurance of blow-up phenomena in the case of (9) is
only possible. From the second estimate

yn
β ≥ u0

(

1− p−1
r+1 up−1

0 tr+1
n

) 1
p−1

,

it follows that global solution of the FDS exists [25].

2.2 Solvability of the implicit FDS for ODE

In this Section, we prove the existence and the uniqueness
of the solution of implicit FDS

β n+1
τ −β n

τ
τn

= f1(tn+1) f2(β n+1
τ ), β 0

τ = u0, (12)

approximating the solution of the Cauchy problem

du
dt

= f1(t) f2(u), 0≤ t ≤ T, u(0) = u0, (13)

f2(u) ∈C1(Dε (u)).

Here, we use known results for proving existence and
uniqueness conditions. We present this proof only for
obtaining bound ofτn under which solution of implicit
scheme exists and is unique.

According to (12) let us consider the nonlinear
equation of the form

x−β n
τ

τn
= f1(tn+1) f2(x). (14)

Here the question about the existence of rootx = β n+1
τ

in the setR arises. For the clarity of presentation let us
rewrite the equation (14) as

x = Φ(x), (15)

where
Φ(x) = β n

τ + τn f1(tn+1) f2(x).
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Let us introduce the segment

Ur(a) = {x : |x− a| ≤ r} ⊂ Dε(u). (16)

Note thatΦ(x)∈C1(Dε(u)). Below we use the result from
[23].

Lemma 3. If the following condition is satisfied

|Φ ′
(x)| ≤ q < 1, |Φ(a)− a| ≤ (1− q)r, (17)

then equation (15) has a unique solutionx∗ in the interval
Ur(a) and the simple iteration method

xk+1 = Φ(xk), k = 0,1, ... (18)

converges tox∗ for an arbitrary initial pointx0 ∈ Ur(a).
Moreover, the following estimation

|xk − x∗| ≤ qk|x0− x∗|, k = 0,1,2....

holds.

We will show that the conditions of the lemma are
fulfilled when

Θ(τn) = f1(tn + τn)τn <
1

| f2(β n
τ )|

r + max
x∈Ur(β n

τ )
| f ′2(x)|

. (19)

From (12) we haveβ 0
τ = u0 ∈ R. Note thatΦ ′

(x) =
τn f1(tn+1) f

′
2(x). Then inequalities (17) are fulfilled if

τn| f1(tn+1)| ≤
q

max
x∈Ur(a)

| f ′2(x)|
, q < 1,

|β n
τ + τn f1(tn+1) f2(a)− a|< r(1− q).

(20)

Hence, according to Lemma 3 the unique root of (17)
exists in Ur(a). One can show thata = β n

τ and
q = max

x∈Ur(β n
τ )
|Φ ′

(x)|. Then (20) can be written as

τn| f1(tn+1)| ≤
1

max
x∈Ur(β n

τ )
| f ′2(x)|

,

τn| f1(tn+1)| ≤
1

| f2(β n
τ )|

r + max
x∈Ur(β n

τ )
| f ′2(x)|

.
(21)

Inequality (19) follows from (21).

2.3 Numerical experiment

Below we give the results of the numerical experiments.
The explicit and implicit FDS are used for obtaining
two-sided estimates of exact solution. To get more

accurate results the schemes with weightsσ = 0.5± ε are
used.

Let f2(y) = y2 f1(t) ≡ 1, α0 = β0 = 1. Explicit and
implicit FDS have a forms

αn+1−αn

τn
= (αn)2, n = 0, ...,N0, α0 = 1

and

β n+1−β n

τ ′
n

= (β n+1)2, n = 0, ...,N
′
0, β 0 = 1,

respectively.
Using (19) we get the constraint for the stepτ ′

n <
1

5β n

with r = β n.
The solution of the differential equation (13) with

F(t,u) = u2 andu(0) = 1 is given by the formula

u(t) =
1

1− t
.

Then, according to Theorems 2, 3 the estimates

αn ≤ u(tn), tn = tn−1+ τn, n = 1,2, ...,N0,

and

β n ≥ u(t
′
n), t

′
n = t

′
n−1+ τ

′
n, n = 1,2, ...,N

′
0

hold.
The results of numerical computations are given in

Fig.1.
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Fig. 1: Approximate solution given by explicit and implicit FDS.

In our experiment the steps were set asτn = (10αn)−1

andτ ′
n = (10β n)−1.
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3 The Neumann problem for a parabolic
equation with a nonlinear source of power
form

In this section the discrete analogues of Chaplygin and
Hartman comparison theorems [2,20] are used for the
analysis of boundary problems for PDE. The
corresponding statement of IBVP (Initial Boundary Value
Problem) in the one-dimensional case has the form [18]

∂u
∂ t

=
∂
∂x

(

k(u)
∂u
∂x

)

+ f (u), (x, t) ∈ QT , (22)

where

u(x,0) = u0(x)≥ 0,

k(u)
∂u
∂x

∣

∣

∣

x=0
= k(u)

∂u
∂x

∣

∣

∣

x=l
= 0,

(23)

Q̄T = {(x, t) : 0≤ x ≤ l,0≤ t ≤ T}.
The coefficient k(u) is assumed to satisfy the

conditions of uniform parabolicity [24]:
0 < k1 ≤ k(u) ≤ k2,u ∈ D̄u,(x, t) ∈ Q̄T . Further, we use
the Jensen inequality for the convex functions in the
continuous and discrete case, respectively.

Let the function f (u) be convex on the arbitrary
intervalχ andq0,q1, ...,qN > 0 andq0+q1+ ...+qN = 1.
Then for arbitraryu0,u1, ...,uN ∈ χ and for an arbitrary
functionu(t) integrable onχ the inequalities

f





∫

χ

u(x)dx



≤ 1
mes(χ)

∫

χ

f (mes(χ)u(x))dx, (24)

and

f

(

N

∑
i=0

qiui

)

≤
N

∑
i=0

qi f (ui) (25)

are satisfied.
According to [18], we integrate equation (22) with

respect tox ∈ [0, l]. Then using (24),we get the following
estimate

dv
dt

≥ f (v), v(0) = v0, v(t) =
1
l

l
∫

0

u(x, t)dx.

For the continuous functionf (x) the estimate

l
∫

0

f (x)dx ≤ max
x∈[0,l]

| f (x)|l = l|| f ||∞

is valid. Hence, on the basis of Theorem 2 we have the
following relation

||u(t)||L∞ ≥ v(t)≥ w(t), (26)

wherew(t) is the solution of Cauchy problem

dw
dt

= f (w), w(0) = v0.

Let us introduce the gridωτ = {tn+1 = tn + τn, τn > 0,
n = 0,1, ...,N0 − 1, t0 = 0, tN0 = T}
ωh = {xi = ih,h = l/N,n = 0,1, ...,N}. Now consider the
FDS

yt =(ayx̄)
(σ)
x + f (ŷ), (x, t)∈ω , ω =ωh×ωτ , (27)

where

y(x,0) = u0(x), ai = 0.5(k(yi−1)+ k(yi)), (28)

(a1yx,0)
(σ)− h

2
(yt,0+ f (ŷ0)) =

= (aNyx̄,N)
(σ)+

h
2
(yt,N + f (ŷN)) = 0,

(29)

which approximates problem of (22)-(23) with an order
O(h2+ τ).

Multiplying the difference equation (27) by h and
summing the result over the internal nodesωh, we obtain

N−1

∑
i=1

hyt = (aNyx̄,N)
(σ)− (a1yx,0)

(σ)+
N−1

∑
i=1

h f (ŷi).

Using the homogeneous boundary conditions (29) we
rewrite the last expression as

1
l

(

h
2

yt,0+
N−1

∑
i=1

hyt +
h
2

yt,N

)

=

=
1
l

(

h
2

f (ŷ0)+
N−1

∑
i=1

h f (ŷi)+
h
2

f (ŷN)

)

.

Since the sum of the coefficients of the functionf is
equal to 1 we can apply the discrete analogue Jensen’s
inequality (25). The following estimate

1
l

(

h
2

y0+ h
N−1

∑
i=1

yi +
h
2

yN

)

t

≥ f

(

h
2

ŷ0+ h
N−1

∑
i=1

ŷi +
h
2

ŷN

)

,

is valid. Forvh =
1
l

(

h
2y0+

N−1
∑

i=1
hyi+

h
2yN

)

, the last estimate

can be rewritten in the form of

vht ≥ f (v̂h). (30)

Using the Theorem 1 we arrive at the estimate

vn
h ≥ w(tn), (31)

where w(t) is the solution of the following Cauchy
problem

dw
dt

= f (w), w(0) = v0
h. (32)
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Consider the following initial-boundary value problem

∂u
∂ t

=
∂
∂x

(

u
∂u
∂x

)

+ u2, −Ls

2
< x <

Ls

2
, 0< t < T0,

u(x,0) = u0(x),
(

k(u)
∂u
∂x

)(

−Ls

2
, t

)

=

(

k(u)
∂u
∂x

)(

Ls

2
, t

)

= 0,

which has solution [18]

u(x, t) = (T0− t)−1u0(x), T0 = Tblow−up = 1,

u0(x) =
{ 4

3 cos2 πx
Ls
, |x|< Ls/2;

0, |x| ≥ Ls/2.

whereLs = 2
√

2π .
When T is finite and the solutionu develops a

singularity in a finite time, namely

lim
t→T

||u(t)||∞ = ∞,

then we say that solutionu blows up in a finite time and
timeT is called the blow-up time of the solutionu.

Similarly, if

||yn||∞,h = max
x∈ω̄h

|yn| ≥ ω(tn), lim
t→Th

ω(t) = ∞,

then we say thatyn
i blows-up for finite timeTh ≤ T .

The theoretical study of blow-up of differential and
numerical solutions for quasilinear parabolic equations
has been the subject of investigation of many authors [25,
24,26,27,28].

According to (31), (32), solution of the FDS (27)-(29)
satisfies

max
(x,t)∈ω̄τ

|y(x, t)| ≥ vn
h ≥ ω(tn) =

v0
h

1− v0
ht
, v0

h =
2
3
. (33)

Inequality (33) implies that solution blows up in finite
time.

In our numerical experiment, we use the conservative
FDS (27)-(29) with σ = 0.5. The time steps are set asτn =
0.03/||yn||∞,h. Computing is stopped whenyN > 10150.

Numerical result for scheme with the explicit
approximation of source with weightσ = 0,5 is also
presented. It is widely known that blow-up time of
implicit FDS is less than the blow-up time of differential
problemT0 = 1 and vice versa for explicit FDS.

Numerical results are presented in Table 1.

Table 1: Numerical results.
Approximation of sources h N τN yN tN

Explicit 0.27 46211 1.01·10−152 1.00·10150 1.017597
Implicit 0.27 45516 1.00·10−152 1.01·10150 0.976533

Here, we can see that solution of implicit FDS very
rapidly tends to infinity and blow-up time is less thanT1

in accordance with (33). For the implicit FDS the blow-
up time is less thanT1 and this corresponds to the above
estimate (31). Sincev0

h = v0, blow-up time of differential
problemT0 is less thanT1 that follows from (26).

4 Maximum principle for continuous and
discrete cases

Here, we will need the maximum principle [29,30,31].
Let T > 0, ST = [0,T ] × ∂Ω , GT = ST ∪ Ω ,

QT = (0,T )×Ω . We consider the equation

L(u) = f , (34)

where

L(u) =
n

∑
i, j=1

ai j
∂ 2u

∂xi∂x j
+

n

∑
i=1

bi
∂u
∂xi

+ cu− ∂u
∂ t

,

andai, j,bi,c are real and finite functions independent oft
andx.

We assume hereafterai j = a ji and

n

∑
i, j=1

ai j(t,x)ξiξ j > 0 ∀(t,x) ∈ Q̄T/GT ,

are valid for all nonzeroξ ∈ Rn.

Theorem 3. [29] Suppose that functionu is continuous in
Q̄T , derivatives ofu in operatorL are continuous in̄QT/GT
and

L(u(t,x))≤ 0, (t,x) ∈ Q̄T/GT ,

u(t,x)≥ m2 ≥ 0, (t,x) ∈ GT

are valid.
Let the coefficientc in operatorL is bounded above by

constantm1(c(t,x)< m1),∀(t,x) ∈ Q̄T ). Then

u(t,x)≥ m2, (t,x) ∈ Q̄T .

Theorem 4. Suppose that functionu(t,x) is continuous in
Q̄T , satisfies equation (34) in Q̄T/GT and|u(t,x)|GT ≤ q.
Let the functionf is bounded and the coefficientc is not
positive

| f (t,x)| ≤ p, c(t,x)≤ 0, ∀(x, t) ∈ Q̄T .

Then insideQ̄T the following inequality

|u(t,x)| ≤ pt + q

is valid.
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Let Ωgrid is grid, S(x) is stencil (any subset ofΩgrid),
S
′
(x) = S(x)/x. Define grid operatorLgrid :

Lgridy(x) = A(x)y(x)− ∑
ξ∈S′ (x)

B(x,ξ )y(ξ ),

and denote

D(x) = A(x)− ∑
ξ∈S′ (x)

B(x,ξ ).

We shall say that at pointx ∈ Ωgrid the conditions of
positiveness of coefficients holds, if

A(x)> 0, B(x,ξ )> 0 ∀ξ ∈ S
′
(x), D(x)≥ 0. (35)

Theorem 5. [32] Let grid Ωgrid and its subsetω are
connected, andω̄ ⊆ Ωgrid . Suppose the condition of
positiveness of coefficients (35) holds for for ω . If
functiony(x), defined onΩgrid , is not constant inω̄ and
Lgridy(x)≤ 0 for all x ∈ ω (or Lgridy(x)≥ 0 for all x ∈ ω),
then y(x) does not take the largest positive (or smallest
negative) value inω for all its values onω̄ .

5 Two-sided estimates of solutions for IBVP
for parabolic equations

Consider the simplest problem

∂u
∂ t

=
∂ 2u
∂x2 , (x, t) ∈ QT (36)

where

u(x,0) = u0(x), x ∈ [0, l],

u(0, t) = µ1(t), u(l, t) = µ2(t)≥ 0, t ∈ [0,T ].
(37)

Define uniform gridω̄ = ω̄τ × ω̄h with a constant step
h in space andτ in time. The differential problem (36),
(37) is approximated by explicit FDS

y1t = y1xx̄, (x, t) ∈ ω , (38)

where

y1(x,0) = u0(x), x ∈ ω̄h,

y1(0, t̂) = µ1(t̂), y1(l, t̂) = µ2(t̂), t̂ ∈ ωτ .
(39)

The error of the scheme takes the form

z1 = y1− u. (40)

Then the error problem is written as

z1t = z1xx̄ +ψ1, (x, t) ∈ ω , (41)

z1(x,0) = 0, x ∈ ωh, z1(0, t̂) = z1(l, t̂) = 0. (42)

Using the Taylor expansion and equation (36) we get
truncation errorψ1 for FDS (38), (39)

ψ1 =−ut + uxx̄ =−τ
2

∂ 3u
∂ t∂x2 (xi, tn,n+1)

+
h2

24

(

∂ 3u
∂ t∂x2 (xi,i+1, tn)+

∂ 3u
∂ t∂x2 (xi−1,i, tn)

)

,

(43)

tn,n+1 ∈ (tn, tn+1), xi,i+1 ∈ (xi,xi+1), xi−1,i ∈ (xi−1,xi).

To use the discrete maximum principle we need to know
the sign of the truncation error. For these purposes, we
shall use the results given in Section 4. For function

w(x, t) =
∂ 3u

∂ 2x∂ t
, (44)

using equation (36) we obtain the following initial
boundary value problem

∂w
∂ t

=
∂ 2w
∂x2 , (x, t) ∈ QT , (45)

where

w(x,0) = u(4)0 (x), x ∈ [0,L],

u(0, t) = µ
′′
1(t), u(L, t) = µ

′′
2(t), t ∈ [0,T ].

(46)

We assume that the right-hand sides of equalities in
(46) are positive or

w|ST ≥ m2 > 0. (47)

Then by Theorem 3 we obtain the estimate for the
functionw in domainQ̄T

w(x, t)≥ m2 > 0. (48)

Using the properties of input data of the problem, we
learn behaviour of solution derivatives in domainQT .

Based on (43), (48), from inequality

τ ≥ h2

12

∂ 3u
∂ t∂x2 (xi,i+1, tn)+ ∂ 3u

∂ t∂x2 (xi−1,i, tn)
∂ 3u

∂ t∂x2 (xi, tn,n+1)
, (49)

it follows that truncation error of explicit FDS is a non-
negative function

ψ1i ≤ 0. (50)

Using grid maximum principle (Theorem 5) we get
that for all grid nodeszn

i ≤ 0 or

un
i ≥ yn

1i. (51)

Now we consider the implicit FDS

y2t = ŷ2xx̄, (x, t) ∈ ω , (52)
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Table 2: Numerical results forT = 1 andh = π
8 ,τ = 1

25.

Nodes Exact solutionu Approximated solution ¯y Error estimate1
2 |yn

1i −yn
2i|

x0 0.2180 0.2180 0.0000
x1 0.3615 0.3625 0.0015
x2 0.4738 0.4753 0.0023
x3 0.5452 0.5473 0.0031
x4 0.5698 0.5718 0.0032
x5 0.5452 0.5473 0.0031
x6 0.4738 0.4753 0.0023
x7 0.3615 0.3625 0.0015
x8 0.2180 0.2180 0.0000

Table 3: Numerical results forT = 1 andh = π
16,τ = 1

100.

Nodes Exact solutionu Approximated solution ¯y Error estimate1
2 |yn

1i −yn
2i|

x0 0.2180 0.2180 0.0000
x2 0.3615 0.3617 0.0003
x4 0.4738 0.4741 0.0006
x6 0.5452 0.5457 0.0007
x8 0.5698 0.5703 0.0008
x10 0.5452 0.5457 0.0007
x12 0.4738 0.4741 0.0006
x14 0.3615 0.3617 0.0003
x16 0.2180 0.2180 0.0000

where

y2(x,0) = u0(x), x ∈ ω̄h,

y2(0, t̂) = µ1(t̂), y2(L, t̂) = µ2(t̂), t̂ ∈ ωτ .
(53)

The problem for errorz2 = y2 − u has the following
form

z2t = ẑ2xx̄ +ψ2, x ∈ ω , (54)

z2(x,0) = 0, x ∈ ωh, z2(0, t̂) = z2(L, t̂) = 0. (55)

Then truncation errorψ2 can be written in the following
form

ψ2 =−ut + ûxx̄ =
τ
2

∂ 3u
∂ t∂x2 (xi, tn,n+1)+

+
h2

24

(

∂ 3u
∂ t∂x2 (xi,i+1, tn+1)+

∂ 3u
∂ t∂x2 (xi−1,i, tn+1)

)

.

Note that for anyτ andh functionψ2 is non-negative,
i.e.

ψ2 ≥ 0, (x, t) ∈ ω̄ . (56)

Using the grid maximum principle we obtain that for all
i = 0,N,n = 0,N0,

un
i ≤ yn

2i. (57)

From inequalities (51) and (57) the desired result follows

yn
1i ≤ un

i ≤ yn
2i. (58)

Inequality (58) is valid if stability condition for explicit
FDS and inequality (49) are fulfilled

min
i,n

h2

6
Mn

i

mn
i
≤ τ ≤ h2

2
, (59)

whereMn
i andmn

i is minimum and maximum of function
w in rectangleGn

i = {(x, t) : xi−1 ≤ x ≤ xi+1, tn ≤ tn+1},
respectively.

If input data (45), (46) are negative, similar result can
be obtained

w|ST ≤ m2 < 0.

In this case, under the condition

τ ≤ min

{

h2

2
,min

i,n

h2

6
Mn

i

mn
i

}

,

we get two-sided estimate

yn
2i ≤ un

i ≤ yn
1i, i = 0,N, n = 0,N0.

We can also approximate the solution by the half-sum
of the solutions of explicit and implicit FDS ¯yn

i =
1
2(y

n
1i +

yn
2i), i = 0,N,n = 0,N0. The error estimate follows from

the inequality

max
i,n

|ȳn
i − un

i | ≤
1
2

max
i,n

|yn
1i − yn

2i|.
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5.1 Numerical experiment

In Table 2, we present numerical results for problem (36),
(37), which has the exact solution

u(x, t) = e−
9
16tcos(−π

2
+

3
4

x).

Reducing time stepτ four times and spaceh step two
times we established that the error estimate was reduced
four time. These results can be found in Table 3.
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