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Abstract: In this paper, we prove the difference analogs of the commpartheorems for solutions of the Cauchy problem for a
nonlinear ordinary differential equation (ODE). Theseatteens are used to analyse blow-up solution of finite-difieeeschemes
(FDS) approximating the Neumann problem for a parabolicagqo with a nonlinear source of power form. We also propbee t
method for obtaining the two-sided estimates of solutidnis Tmethod is based on implicit and explicit FDS.
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1 Introduction theorems are very important in studying of solution
behavior, stability in the context of the application foeth

The comparison theorems are often used to study the&econstruction of the maria of the Moorig17] and
properties of solution of partial differential equatioris [ blow-up time [L8]. Here, the blow-up is phenomenon
2,3,4]. Differential inequalities were the first time when solution tends to infinity in finite time. We find a
considered by S. A. Chaplygin in the first half of the blow-up condition for solution of the FDS approximating
XXth century P]. We know just some discrete analogs of these problems. We present numerical results for
these inequalities. For example, there is discrete andlog cnonlinear parabolic equation with Neumann boundary
the Bihari lemma for explicit FDS 3. Some condition, whose solution blows up in finite time. Note,
generalizations of this Lemma for the implicit FDS one the blow-up time of implicit FDS converges to blow-up
can find in p,4,6,7]. time of differential problem when the mesh size tends to

In works [8,9,10,11] interval methods for obtaining zero.
two-sided estimates of solution of the initial-value Last section is devoted to the method for obtaining
problems for ordinary differential equation and partial two-sided estimates of solution of parabolic linear
differential equation were considered. There is a growingequation. The disadvantage of this method is the
interest in methods to get two-sided estimat&g, 13)]. requirement of a constant sign of the input data
These methods allow to determine the interval whichderivatives. However, using FDS with variable weights
contains exact solution and are consistent with the ordef19], we may be able to generalize the proposed method
of accuracy of numerical method. to the case of functions of alternating can signs.

In this paper, we prove the difference analogs of the
comparison theorems for solutions of the Cauchy
problem for a nonlinear ordinary differential equation.
These theorems are based on the properties of implicit
and explicit FDS 14,15]. In problems of the parabolic
type whose solution develops a singularity], [ such
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2 The Cauchy problem for ODE where t
1 n+1
2.1 Statement of the problemand FDS Petnin) = / fi(t)dt,
t
We assume the existence of a classical solution - 1

u(t) € C1(0,T] NC[0, T] of the problem

du

a = f(tau)a

0<t<T, u(0)=uo.
Let a(t), B(t) be lower and upper solution2q]
satisfying the following inequalities

c;—?<f(t at)), 0<t<T, a(0)=uy, (1)
%Zf(t,ﬁ(t)), 0<t<T, B(0)= 2)

Then
a(t) <u(t) < B(t), ©)

for all t belonging to the whole interval of existenc® [
20]. Let us introduce the range of the exact solutibps=

{u(t) 1 ug < u(t) <up,0<t < T} and its neighbourhood,

D¢(u) ={G: |G—u| < €}, which can be sufficiently small.
Now let us consider the case when the functi¢nv)
satisfies the condition given by the inequalities

fa(t)ga(v) < f(t,v) < fi(t)gr(v),

where fi(t),ok(v).k = 1,2,
monotonically growing functions for all
t € [0,T],v € D¢(u). According to Corollary 4.2 in
Chapter Ill 0], in this case function(t) is a lower and
upper solution of the following differential problem

are continuous and

dVl

‘ dv
W) = /
are chosen from the condition of exact FD&]| and
al, B! are lower and upper approximate solutions of the
Cauchy problem, satisfying differential inequalities
(2)-(2). It is worth mentioning that the corresponding
discrete analogs of the lower estimatian< v; and the
upper estimatior8 > v, can be obtained with use of the
explicit and implicit approximation, respectively. Note
that the nonuniform gridsy; in each of problemsg)-(8)
can be different and the nodgsdo not coincide.

Lemma 1. For any y¥y" € Dg(u)(y" > y¥) and
ty, th € wr (tn > t) the following estimates

- - -1

1 z du

f1(t) g (¥ r— / fbdt | F—x y{ 1 (u)
and

- 1-1
y

1 du

fa(tn)G2(y") > +— / f2(t) Wy{ 9 (u)
hold.

The proof follows directly from the mean value
theorem.

Lemma 2. For the solution of problem6]j the following

dV2
o = o), o= = f2(t)e(v2), (4)  eduality takes place
w(0) =up, k=1,2,
i.e. Fk(Vk(tn)) = (Dk(tn)a k= 17 27 th € wr,
vi(t) S u(t) < va(t). ®  where
Let us introduce a nonuniform gridy = w; U {0}, »
wWr = {tn+l = tn + Tn, Tn > Oan = 0717"'7N0 - 17t0 = K dV tn
O,tn, = T} on the interval [0,T]. We approximate ROV = | ——. ®(ta) = [ fi(t)dt
problems{)-(4) using the following schemes i Gk (V) 5
+
Vi = Pt (VI), VW=u, k=1,2, (6) Proof. Formula 6) with n = mcan be rewritten as
n
vm+1 tmea
an+1 an
% < fitn)ai(ay), a7 =uo, ) / / fi(t)
n tm
and
Summation of the last equalities by indices
n+l_gn el 0 m = 0,1,....n — 1, yields the required relations. The
T > fa(thi1)2(Br ™), Br =W, (8)  |emmais proved.
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Theorem 1. Let the classic solution of the Cauchy problem hold.
(4) exists withk = 1 and inequalities?) hold with a7 € Example 1. Let f(t,u) =t'uP,r >0, p>1,up > 0. Then

De(u),n=0,1,...,No. Then in (11) we have
al<v], m=0,1,...,No. (9) U
_ 0_ inequal Vi =Vo = u(ty) = o0
Proof. Form= 0 we havea? = 9. Assume inequalityd) (1_ p-1, tr”) p
be true for allm=1,2,....n. We show that it holds for 1Y

m=n+1 as well. In fact, using7), Lemma 1 and the

assumption of mathematical induction we get theCon3|der|mportantcorollarlesofthedlscreteanalogrlfleso

Theorem 1 and 2. First from inequalitie® ((11) it follows

estimation the boundedness of the difference solution on the arbitrary
aftt <af+ mfi(ty)gu(af) < vn + Tnf1(tn)ga(V]) < segmenfO, t;
Vi + Tnfa(thia)on (Vi) = )
i r+1 o
Theorem is proved. . t1 < Toiow_up  Thlow_up = . .
Remark 1. In [3,22] one can find the proof of Theorem 1 (P—1)uy

for f1(t) = 1 in more complicated way.

Theorem 2. Let the classic solution of the Cauchy problem

(4) exist withk = 2 and the grid functiofs] € D¢(u),n

0,1,...,Np satisfies inequalityg). Then ¥
B

The occurance of blow-up phenomena in the cas@)dk(
only possible. From the second estimate

Uo

>

1
1, 1
B >vy, m=0,1,..,No. (10) (1 $+1 tr+1) P

Proof. Form= 0 we haveB? = \3. Let condition (0) be it follows that global solution of the FDS exista4].
satisfied for allm= 1,2,...,n. We prove that it is true for
m=n+ 1. Then, using Lemmas 1 and 2 ai®)l e obtain

the following inequalities 2.2 Solvability of the implicit FDSfor ODE
) In this Section, we prove the existence and the uniqueness
T dv thi1 of the solution of implicit FDS
| o= [ R
G2(V) Bt —gr n1 0
pr tn - = ftnr) f2(B7 ), Br=uo, (12)
L thyt "
/ dv > [ fo(t)dt = (tns) approximating the solution of the Cauchy problem
Ga(v) ~ ’
du
e ot - q = Of(w), 0<t<T. u0)=u, (13)
[ A T )
[ gt [ @z [ on (0) € CHDLW)
1
o B 0 Here, we use known results for proving existence and
prt uniqueness conditions. We present this proof only for
/ dv >0, BMl>\itt obtaining bound oft, under which solution of implicit
go(v) = 2 scheme exists and is unique.
vt According to (2 let us consider the nonlinear

equation of the form
Theorem 2 is therefore proved. a

Corollary 1. Let for the FDS xX— B

Tn
Yat = fi(tn)91(¥a), Ve = faltnra)G2(y3™), . .
Here the question about the existence of rosetBf !
yg - y% = Lo, in the setR arises. For the clarity of presentation let us

. ) ) . rewrite the equationl@) as
solutionsyq,yp € D¢ (u) exist and unique and inequalities

= fi(thr1) f2(x). (14)

(7), (8) be satisfied. Then for ath € w; the following X = ®(x) (15)
relations 7
where
al’ < yg = lv BT > y?? 23 m= Oa 1a a3} NOv (11) ®(X) = Blr']+ Tn fl(tn-‘rl) fZ(X).
(@© 2016 NSP
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Let us introduce the segment accurate results the schemes with weights 0.5+ € are
used.
Ur(a) = {x: |x—a| <r} C Dg(u). (16) Let fo(y) =y? fi(t) =1, ag = Bo = 1. Explicit and

implicit FDS h f
Note that®(x) € C1(D; (u)). Below we use the resultfrom ' P ave atorms

[23]' antl_gn
T :(an)27 n:O,...,NO, 00:1
Lemma 3. If the following condition is satisfied q "
an

(X <q<l |P@-a<(@l-qr, 17 n+l_ gn ,

PWi<asi (e@-asi-an 0D BRI gap 4g N god
then equationX5) has a unique solutiox, in the interval "
U;(a) and the simple iteration method respectively. /

Using (19) we get the constraint for the step < %n
Xk+1 = CD(Xk)a k = Oa 17 (18) W|th r= Bn.

The solution of the differential equatiorl3) with

converges tok. for an arbitrary initial pointxy € U, (a). F(t,u) = u andu(0) = 1 is given by the formula

Moreover, the following estimation

K 1
X — X < O%0— x|, k=0,1,2.... U(t)zm-
holds. Then, according to Theorems 2, 3 the estimates
We will show that the conditions of the lemma are a"<u(ty), th=th1+T, n=12 . No,
fulfilled when
L and
O(tn) = fa(ta + T)Tn < Tz i (19) B >u(t), ti=t ,+T, n=12...Ny
4 max | fy(x )|
xeUr (Br') hold.
) The results of numerical computations are given in
From (12) we havep? = up € R Note that®' (x) =  Fig.1.
Tnf1(thia) fé(x). Then inequalities1(7) are fulfilled if
q
Tl fi(thi1)| € ————, a<1,
max |f,(X
err(a)| 2( )| (20) u ‘ ‘ ‘ ‘ ‘ ‘ ‘ L ‘ F
IBf + Taf1(thi1) f2(a) —a] < r(1-q). 1o . A
Hence, according to Lemma 3 the unique root1f)( o . . *]
exists in Uy ( a). One can show thata = B' and oL *
g= max |®'(x)|. Then QO) can be written as o expiit * *
XEUr (ET T ig:\gf:oluuon * * |
Tl ftnsn)] € ——— 1
n|11\th+1)| > max |fé(x)|7
xeUr (Br)
L (21)
Tn|fa(thia)] < :
T RGN L max (1)
xeUr (Br)

Inequality (9) follows from (21).

2.3 Numerical experiment _ _ o N S
Fig. 1: Approximate solution given by explicit and implicit FDS.

Below we give the results of the numerical experiments. _ L
The explicit and implicit FDS are used for obtaining In our experiment the steps were setras= (100")~
two-sided estimates of exact solution. To get moreandr, = (108")"1
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3 The Neumann problem for a parabolic
equation with a nonlinear source of power
form

In this section the discrete analogues of Chaplygin and

Hartman comparison theoremg,20] are used for the
analysis of boundary problems for

wherew(t) is the solution of Cauchy problem

dw
—=f 0) = vo.
= [, w0) =
Let us introduce the gridy = {tn; 1 =th+ Tn, Tn > O,
n = 01L..N — 1tp = Otn, = T}

PDE. The Wh={X=ih,h=1/N,n=0,1,...,N}. Now consider the

corresponding statement of IBVP (Initial Boundary Value FDS

Problem) in the one-dimensional case has the fdréh [

0 7] 7]
a_ltJ - a—x(k(u)a—)‘j)H(U), x)eQr, (22
where
u(x,0) = up(x) > 0,
du Ju (23)
k(u)& x=0 - k(u)& x=I -

Qr={(xt):0<x<1,0<t<T}.

a

Vi = (ayz)§< >+ f(y), (xXt)ew, w=whxw, (27)
where
y(%,0) =uo(x), & =0.5(k(yi-1) +k(yi)), (28)
h .
(aryx0)'@) — i(yno +f(Yo)) =
(29)

h i
= (anyn) @ + 5 (n + F(9n)) =0,

The coefficient k(u) is assumed to satisfy the Which approximates problem o2®)-(23) with an order

conditions of uniform parabolicity 2[4
0 < ki < k(u) < kg,u € Dy, (x,t) € Qr. Further, we use

o(h?+1).
Multiplying the difference equation2f) by h and

the Jensen inequality for the convex functions in thesumming the result over the internal nodas we obtain

continuous and discrete case, respectively.

Let the function f(u) be convex on the arbitrary

interval x anddp,qs,...,an > 0 andgo+ a1+ ... +gn = 1.
Then for arbitraryup, us,...,uny € X and for an arbitrary
functionu(t) integrable ory the inequalities

1
f (/u(x)dx) < mx/f(mes(x)u(x))dx, (24)

X

and

(25)

f (iqw) < :%qif(w)

are satisfied.

According to [L8], we integrate equation2@) with
respect tax € [0,1]. Then using 24),we get the following
estimate

dv v(0)=Vo, V(t) = |_1

[
/ u(x,t)dx.
0

For the continuous functiof(x) the estimate

|
/f(x)dxg max | f )]l =1/ f[|e
5 xe[0,1]

N-1 N-1

> = (ayien)? — (@o) )+ 3 0F().

Using the homogeneous boundary conditia?@) (ve
rewrite the last expression as

1

h N-1 h
T sYto+ hyt + SN | =
I\2 i; 2

1(h, N1 ~— h
=1 <§f(yo)+ i; hf(y|)+§f(ym)> :

Since the sum of the coefficients of the functibris
equal to 1 we can apply the discrete analogue Jensen’s
inequality @5). The following estimate

1(h NI oh h N
= 5Yo+th>y vitoyw | >f| SYo+h) Y+,
| (2 i; ‘2 )t <2 i; ‘T2

N—1
is valid. Forv,, = %(%yoJr > hyi+§yN),theIast estimate
i=1

can be rewritten in the form of

Vit > f(Vh). (30)
Using the Theorem 1 we arrive at the estimate

is valid. Hence, on the basis of Theorem 2 we have thewvhere w(t) is the solution of the following Cauchy

following relation

[u(t)]|L. = v(t) = w(t), (26)

problem

‘3—‘;" =f(w), w(0)=W. (32)

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

88

P. Matus et al. : Discrete analogs of the comparison theorem.

Consider the following initial-boundary value problem

u_9 (W0 e ey b
ot dx \ odx ’ 2 2’
u(x,0) = uo(X),

) (459 (o) (5) -

which has solution18§]

O<t<To,

Ls
2 )

U(X,t) = (TO —t)flUO(X), To= Tblowfup =1,
4 TIX .
_f3co8 &, X < Ls/2;
o) ={ g b X > Ls/2.

wherels = 2V/21T.
When T is finite and the solutionu develops a
singularity in a finite time, namely

lim )]]e =
Jim [[ut) o = oo,

then we say that solution blows up in a finite time and
timeT is called the blow-up time of the solutian
Similarly, if
[1Y"l|eop = max|y”| = oo(tn),
XE Wh

LYOS

then we say that blows-up for finite timeT, < T.
The theoretical study of blow-up of differential and

in accordance with33). For the implicit FDS the blow-
up time is less thai; and this corresponds to the above
estimate 81). Sincevﬂ = Vp, blow-up time of differential
problemTy is less tham; that follows from @6).

4 Maximum principle for continuous and
discrete cases

Here, we will need the maximum principl29, 30,31].

Let T >0, St = [0,T] x 0Q, Gr = STUQ,
Qr = (0,T) x Q. We consider the equation
L(u)=f, (34)
where

0u Jdu

anda j,b;j,c are real and finite functions independent of
andx.
We assume hereaftaj; = aji and

numerical solutions for quasilinear parabolic equations ij=1

has been the subject of investigation of many auth@ss [
24,26,27,28].

According to 81), (32), solution of the FDSZ7)-(29)
satisfies

2
w=2
h—3

max [y(x,t)]
(xt)ewr

>\>

w(tn) = (33)

1—vot’

Inequality 83) implies that solution blows up in finite
time.

In our numerical experiment, we use the conservative

FDS 27)-(29) with 0 = 0.5. The time steps are setas=
0.03/[y"||o.n. Computing is stopped wheft > 100,
Numerical result for scheme with the explicit
approximation of source with weightr = 0,5 is also
presented. It is widely known that blow-up time of
implicit FDS is less than the blow-up time of differential
problemTy = 1 and vice versa for explicit FDS.
Numerical results are presented in Table 1.

Table 1: Numerical results.

Approximation of sourceg h N ™ YN tN
Explicit 0.27 | 46211 1.01-10 ™7 | 1.00-10™" | 1.017597
Implicit 0.27 | 45516 | 1.00-10 2 | 1.01-10™ | 0.976533

Here, we can see that solution of implicit FDS very
rapidly tends to infinity and blow-up time is less th@én

are valid for all nonzer@ € R".

Theorem 3. [29] Suppose that function is continuous in
Qr, derivatives ofiin operatot are continuous i@t /Gt
and

(t,X) € Qr/Gr,
(t,x) € Gr

L(u(t

X))
u(t,x)

)) <0,
>mp >0,
are valid.

Let the coefficient in operatolL is bounded above by
constantm (c(t,x) < mp),¥(t,x) € Qr). Then

u(t,x) >mp, (t,x) € Qr.

Theorem 4. Suppose that function(t, x) is continuous in
Qr, satisfies equatior8@) in Qr /Gt and|u(t,X)|c; <.
Let the functionf is bounded and the coefficieats not
positive

c(t,x) <0, V(xt)eQr.

[Tt x)] < p,
Then insideQr the following inequality
lu(t,x)| < pt+q

is valid.

(@© 2016 NSP
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Let Qgiq is grid, S(x) is stencil (any subset dRyiq),
S(x) = S(x)/x. Define grid operatokgiq :

Lgriay(X) = A(X)y(X) — B(X,§)y(&),
§esS(x)

and denote

B(x,§).
£eS(x)

We shall say that at point € Qgig the conditions of
positiveness of coefficients holds, if

AX)>0, B(x&)>0 VEeS(x), D(x)>0. (35)

Theorem 5. [32] Let grid Qgiq and its subsetw are

connected, andv C Qqig- Suppose the condition of

positiveness of coefficients3g) holds for for w. If
functiony(x), defined onQgiq , is Not constant irw and
Lgrigy(x) < 0 forallx € w (or Lgrigy(x) > 0 for all x € w),

theny(x) does not take the largest positive (or smallest

negative) value irw for all its values orw.

5 Two-sided estimates of solutionsfor I1BVP
for parabolic equations

Consider the simplest problem

du  9%u

e (x,t) € Qr (36)

where
u(x,0) = up(x), xe€I0,l],
u0,t) = pa(t), u(l,t) = pa(t) =0,
Define uniform gridw = w; x w, with a constant step

h in space and in time. The differential problem3),
(37) is approximated by explicit FDS

te[0,T]. (37)

Using the Taylor expansion and equati@®e)(we get
truncation errowp; for FDS 38), (39)

LT 0%
2 0tox?
h? / d%u d%u

+ Y <W(X4,|+1,tn) + W(N—Llﬂn)) )

Pr=—U+Ug= (Xi atn,n+1)

(43)

thnet € (thothet),  Xiip1 € (X, Xie1),  Xi—1i € (Xi—1,Xi).

To use the discrete maximum principle we need to know
the sign of the truncation error. For these purposes, we
shall use the results given in Section 4. For function

3
wixt) = 21

©9%xot’ (44)

using equation 36) we obtain the following initial
boundary value problem

ow  d%w
Y (x,t) € Qr, (45)
where
w(x,0) = us’(x), xelo,L,
0 (46)

u(0,t) =y (1), u(Lt) =po(t), te[0,T]

We assume that the right-hand sides of equalities in
(46) are positive or
W|s, > mp > 0. (47)
Then by Theorem 3 we obtain the estimate for the
functionw in domainQr

w(x,t) > mp > 0. (48)

Using the properties of input data of the problem, we
learn behaviour of solution derivatives in dom&.
Based on43), (48), from inequality

Yit = Yixx (Xat) € W, (38)
3 3
where P oz (%i41:tn) + 350 (-1, tn) (49)
Yi(x.0) = Uo(X). X € @, (39) R ootz (4t 1) |
y1(0,1) = pu(t), ya(l,t) = (1), tear. . . . .
it follows that truncation error of explicit FDS is a non-
The error of the scheme takes the form negative function
Y <0. (50)
zZ=y1—u (40) : : . o
Using grid maximum principle (Theorem 5) we get
Then the error problem is written as that for all grid nodes’ <0 or
21t = Zixx + wla (th) € W, (41) uin > y?i' (51)
Now we consider the implicit FDS
Z]_(X, 0) = 07 X E G, Zl(ovf) = Zl(l 7f) =0. (42) Yo = )72)06 (th) € w, (52)
(@© 2016 NSP
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Table 2: Numerical results fol =1 andh= §,7= 25
Nodes | Exact solutioru | Approximated solutiory | Error estlmat%\yfl1 -5

X0 0.2180 0.2180 0.0000

X1 0.3615 0.3625 0.0015
X2 0.4738 0.4753 0.0023
X3 0.5452 0.5473 0.0031
X4 0.5698 0.5718 0.0032
X5 0.5452 0.5473 0.0031
X6 0.4738 0.4753 0.0023
X7 0.3615 0.3625 0.0015
Xg 0.2180 0.2180 0.0000

Table 3: Numerical results fof = 1 andh= 7%, 7 = 15
Nodes | Exact solutioru | Approximated solutiory T Error estimate|y]; —y3 |

X0 0.2180 0.2180 0.0000

X2 0.3615 0.3617 0.0003
X4 0.4738 0.4741 0.0006
X6 0.5452 0.5457 0.0007
Xg 0.5698 0.5703 0.0008
X10 0.5452 0.5457 0.0007
X12 0.4738 0.4741 0.0006
X14 0.3615 0.3617 0.0003
X16 0.2180 0.2180 0.0000

where Inequality 68) is valid if stability condition for explicit
_ FDS and inequality49) are fulfilled
¥2(%,0) = Up(X), X € an, (53)
y2(0.6) = tu(f), y2(L,O) = pa(f), tear h2 MP h2
mn——- <1< — (59)
iin 6 r‘rgn

The problem for erroz, =y, — u has the following
form
X € w,

Zot = Zoxg+ Yo, (54)

ZZ(Xa O) =0, X€ wn, ZZ(Oaf) = ZZ(Laf) =0. (55)

Then truncation errogy, can be written in the following
form

+h—2 55 (Xt 1t )+‘7_3“(X. o)
24\ gtaxe L It T g gye Vi L it 1) ]
Note that for anyr andh function (s, is non-negative,

ie.
>0, (xt)ew (56)

Using the grid maximum principle we obtain that for all
i=0,N,n=0,No,

u' <y (57)
From inequalities§1) and 67) the desired result follows
Vi S <3 (58)

whereM" andm is minimum and maximum of function
win rectangleG] = {(xt) : X1 < X < X+ 1.tn < tny1},
respectively.

If input data @5), (46) are negative, similar result can
be obtained

W|5T§m2<0.

In this case, under the condition
h? h? M
T< min{ ,min— }

i, ,n 6 n}n
we get two-sided estimate

yIZ]iSuinSer].ia [

We can also approximate the solution by the half-sum
of the solutions of explicit and implicit FDg' = 3 (v} +
y3),i = 0,N,n = 0,No. The error estimate follows from
the inequality

O,N, n=0,

1
max|y" — ul'| < = max|y}:
x|y — | < 5 maxly)

— Y3l
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5.1 Numerical experiment

In Table 2, we present numerical results for probl&®) (
(37), which has the exact solution

uxt)=e" 1%tcos(—z + ZX)'

Reducing time step four times and spadi step two

times we established that the error estimate was reduceﬁ5

four time. These results can be found in Table 3.
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