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Abstract: The paper describes a simplified representation of a body structure and a GMM based method for inferring from the motion
capture data based on a functional relationship between thepoints. The proposed representation can be efficiently usedfor marker-wise
processing of the data. The parent-child and sibling relationships are inferred on a coherence of movement and constancy of distances.
For creating groups representing specific body parts we propose an incremental multicriterial clustering algorithm employing Gaussian
mixture models. To infer body parts hierarchy we propose utilizing a consensus method.
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1 Introduction

Optical motion capture (MoCap) [13] registered data
consists of recorded spatial coordinates (trajectories) of
tracking points (usually markers) over time. In the
initialization stage markers are organized into some
object model [15] for further processing needs. It is
common for motion processing algorithms [16] to use
arbitrary human model - manually pre-edited skeletal
structure (with limb lengths and joint locations) tightly
[19] connected to the predefined marker locations (mesh).

Prior to the obtaining smooth skeletal animation it is
usually necessary to process the markers recorded
positions. In this stage, incorporating such filters as
denoising and reconstruction, there are preocessed
markers either independently (e.g. [5]) or there is required
reference to the estimated skeleton [1]. Skeleton free
processing, utilizing rigid-body mesh is also possible, but
in a pipeline of a typical commercial software the
arbitrary (human) model is simply assigned to the
markers or tuned to the markers [4], [19]. To create of a
new subject model in the software it is required to do
manual work, although there is some assistance. Such
templates are stored in external files.

The proposal of a body representation - afunctional
body mesh(FBM) stems from the fact that marker-wise
processing of movement data still remains an area open

for improvements, alas most of current body meshes
which can be found in software are defined arbitrarily so
even simple change of marker locations or adding an item
to an actor can result in skeleton template modification
(not to mention of modelling different species),
meanwhile the proposed solution is intended to be a
model-free representation of the subject’s kinematic
structure.

The principal goal of the work was to propose a
representation of the subject’s kinematic structure almost
free of prior assumptions on the body structure and thus
allowing to adopt easily to virtually any vertebrate. Such
a representation should form a framework for further
marker-wise signal processing. The secondary goal was
that the representation should be easy to obtain with as
little a user interaction as possible in the automated or
semi-automated processes.

The proposed body structure representation can be
considered as an intermediate between skeletal and
marker form. It comprises a tree of partial submeshes
reflecting the body structure, where the submeshes
represent specific body parts and the tree represents their
interconnections and hierarchy. Such an approach would
allow to process the MoCap data using all the information
stored in raw xyz marker trajectories (without aggregating
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it into skeletal animation) whereas it would also allow to
benefit from the knowledge of the body hierarchy.

The FBM representation can be employed in two
basic ways: straightforward in current software as a
simple visualization method (see p.4.2) for a new kinds
of subjects and as a preliminary step for further
marker-wise processing like motion prediction,
classification, filtering and skeleton inferring where the
resulting mesh model should be consistent analytically
and morphologically with the body structure.

The inference method for an articulated body
structure we propose is intended for the basic and most
common area - optical motion capture with sparse tracked
markers (features), attached to the body. It is based on the
movement and distance relationships of marker points
which stem from the corollaries of a rigid body
assumption. We perform an analysis of inter-marker
relationships (parent-child and sibling) and provide a
machine learning based method utilizing clustering and
statistical modelling for automated generation of a
subjects body structure.

Our algorithm proposal is able to adapt to the most
vertebrate subjects, such as animals which movements are
recorded. The proposed approach can be also adapted to
marker-less MoCap systems based on tracking numerous
features (such as SIFT or SURF [3,9]) which could be
affected by the fact that these features are randomly
located and noise prone. Therefore, such a method like
our proposal seems appropriate due to its ability to adopt
to random feature configuration and due to its statistical
nature to overcome the noise and gaps.

In p. 5, as a proof-of-concept, we provide an
exemplary application of the functional mesh in the
marker smoothing filter; next we demonstrate its
correspondence to the skeletal structure and we discuss
possible extension.

2 Related work

The most of current body movement analysis methods
focus on parameterizing of the skeletal structure inferred
on the body motion (e.g. [17,22,18,12,6],), some of
which, employing alocal scheme, share the stage of
marker segmentation on the basis of rigid body principle
with our approach [18,6,12].

A similar approach to our proposal, although less
formalized, a concept of hierarchized groups of correlated
markers to represent subjects topology was employed to
detect and fill missing markers (gaps )in MoCap
recordings [14]. The other approach was presented in [23]
where authors propose automatic marker labeling
(assignment to known segments) using segmentation with
a rigid body assumption, they also demonstrated usability
of their model to recover gaps in MoCap recordings.

Other similar topics which allow for the variability of
subjects models are - adaptation to the variability of
marker locations to drive a known skeleton was proposed

in [11], another interesting idea of semantic rigid segment
matching to represent body structure was proposed in
[20]. A hybrid model of a skeleton-mesh intended to the
animation of semi-rigid models was proposed in [7].

3 The inference method

Our solution results in forming tree structure of marker
points on the rigid body assumption. It is based on two
criteria - coherence of movement and constancy of
distance. The method is based on following rationales:

–Siblings are located on common body parts:
1.they move together so their movements (gradients)

are similar,
2.they are located on rigid parts so their relative

distance is constant.
–Each sibling group has a single parent that:

1.is located in another group,
2.cannot be located in a child node (no loops),
3.is a closest and constant distant single point to the

group,
4.the sibling and parent body parts are connected so

distances cannot vary very much.

A planar example of two body parts, parent (AB) and
child (CD) anchored to B, is shown in Fig.1. There are
depicted body rotations (two) which plus translation of
base are sufficient to describe motion of the human body.
As one can see gradient angles vary very little within a
single body part meanwhile they differ much more
between markers inside and outside body part. Such a
difference is even stronger for unconnected body parts
which can move independently or in opposite directions
like legs during walking. Similar observation can be made
for the distance between connected markers for siblings
and partially for parent-child - distances should only
differ due to noise, meanwhile they can vary for body
parts not directly connected - see the distance between
base and remote markers in the example.

The method comprises three basic steps:

1.sorting markers in special order
top-down/center-boundary (TDCB) to achieve
meaningful body hierarchy in next step

2.clustering of siblings into groups representing body
part

3.hierarchy recovery by selection of a parent for each of
marker groups.

In further paragraphs of the article we will explain how
we described above points using mathematical terms. For
the siblings grouping task, since classical clustering
algorithms [2] require quite complicated modifications to
use more than one criterion, we propose using of
incremental clustering which can simply check all the
criteria in each iteration.
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The key problem in the proposed algorithm was to
determine the inter marker relationship prior to the
clustering - we need to decide whether they fulfill the
criteria of coherent movement and constant distance or
not. To solve the problem we employed the Gaussian
Mixture Models (GMM) [10] which appeared to fit the
experimental data very well and have good rationale
based motivation. GMM classified each pair of markers
into one of the predefined classes describing the degree of
motion coherence or constancy of distances.

Fig. 1: Example of moving two groups (AB, CD) - with
gradients, distances and angles

The sketch in Fig.1 illustrates also a problem which
results from the fact that group membership of markers
located on joints is ambiguous. Please note the marker B
which is located on joint might be sometimes considered
as a part of group of a BCD markers meanwhile the
desired group partitioning is an AB-CD. Joints are
considered as parts of body segments (bones) located
higher in the hierarchy - e.g. the elbow is considered as a
part of the arm rather than the forearm. Thus prior to the
clustering stage, it was necessary to use special
top-down/center-boundary (TDCB) marker processing
order in clustering algorithm to achieve this feature.
Moreover, proper sorting of markers would provide also a
meaningful structure of connections, with the head as a
root, and with limbs connected to the torso (not
otherwise).

3.1 Distance functions

For the measurement of a distance we used Euclidean
distance. Constant distance over the whole sequence was
verified for each pair of markers statistically as a range of
values. To filter out noise existing in records we used the
inter-quantile distance between Lower (L=0.5th) and
upper (U=99.5th) percentile (P) of the wholeN frame
sequence:

DE
A,B(n) =

√

(xA−xB)2+(yA−yB)2+(zA−zB)2 (1a)

RE
AB= PU

{

DE
A,B(1..N)

}

−PL

{

DE
A,B(1..N)

}

(1b)

where: xA,yA,zA, xB,yB,zB - coordinates of respective
pointsA,B for nth frame.

The movement of thekth marker is well described with
gradient:

∆k(n) = [∆x,∆y,∆z] =

= [xn− xn−1,yn− yn−1,zn− zn−1]
(2)

where:n,n−1 - number of successive frames;xn,xn−1,. . .
- marker coordinates in two successive frames;∆x, ∆y, ∆z
- differences of respective coordinates for two successive
frames. Angular coherence of gradients was measured
using weighted cosine distance:

Dc
∆A,∆B

(n) = w(1−cos(∆A∆B) =

= w(1−
(∆Ax∆Bx+∆Ay∆By+∆Ax∆Bz)

√

∆ 2
Ax+∆ 2

Ay+∆ 2
Az

√

∆ 2
Bx+∆ 2

By+∆ 2
Bz

) . (3)

As the value of weighting functionw we used averaged
length of gradients:

w= w(∆A,∆B,n) =
1
2
(LA(n)+LB(n)) (4)

whereLk is distance of a movement ofk marker is:

Lk(n) = |∆k|=

=
√

(xn− xn−1)2+(yn− yn−1)2+(zn− zn−1)2
(5)

where:n,n−1 number of two successive frames.
Cosine distance provides useful information about vectors
conformance - it results in zero value when they are the
same, 1 when orthogonal and 2 when opponent. In case of
an ideal rigid body, pure cosine distance would be
satisfactory for our needs, but during tests, it appeared
necessary to incorporate weighting by length of gradient.
The cosine distance does not consider the length of the
movement, meanwhile markers placed on the same body
part could have small non-consistent (opponent)
movements due to deformation (see Fig.2) caused by
elasticity of the human body. To overcome this problem
and suppress the influence of small deformations we
decided to use weighting as it is described above.

Fig. 2: Deformation scheme of the foot under load of a body.
Frontal view with three gradients of virtual markers A,B,C

Finally, the coherence of gradients of a markers in the
whole sequence was calculated for each pair of markers
as a range of values. Again, to filter out noise existing in
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records we used the interquantile distance between lower
(L=1st) and upper (U=99th) percentile of the whole
sequence:

Rc
AB= PU

{

Dc
∆A,∆B

(1..N)
}

−PL

{

Dc
∆A,∆B

(1..N)
}

. (6)

Please note that the proposed values for percentiles in
both range measures appeared to be crucial for proper
results of the rigid body - they were tuned using the
experimental data. The proposed distance functions for
each pair of markers can be collected in the distance
matrix. When markers are arranged in the order reflecting
human anatomy (TDCB) then one can observe (Fig.3)
desired existence of small distances (’dark squares’ along
the diagonal) for groups of markers placed on common
body parts. Generally, both measures conform each other
but they also provide some supplementary information. In
Fig. 3a internal structure of a hands is easily visible while
Fig. 3b exhibits parts of legs better.

3.2 Determining inter-marker relationship

Inter-marker relationship is determined by assigning of
their pairs into classes according to the rationales
mentioned in p.3. One can intuitively assign each pair
into one ofC - four different classes: peer (c1), close (c2),
independent (c3) and opponent (c4). The distance
functions described in previous subsection should reflect
these classes so one should consider a multimodal
probability distribution function (PDF) for both distance
functions. The Gaussian mixture models [10] appeared to
fit the data very well as it is demonstrated in Fig.4a. The
GMM is a mixture model summing two or more Gaussian
probability distributions (gi):

G=
C

∑
i=1

gi =
C

∑
i=1

wi N(µi ,σi) , (7)

where:C number of components (in our casec1..c4), wi -
weight,N(µi ,σi) normal probability distribution of aµi ,

mean value andσi std deviation. These parameters are
estimated in the process ofexpectation maximization[8].
Classification using GMM is a selection of a class with
the highest mode value for the given object (x):

c(x) = argmax
i=1..C

{wi N(µi ,σi)(x)} . (8)

The Fig. 4b demonstrates classification of marker pairs
according to the model visible in Fig.4a. for theRc

AB data
shown in Fig.3a. The same satisfactory behaviour was
observed for both the GMM for theRE

AB measure and for
classification - not included in a figure. Alas, during the
experimentation, it appeared that pure GMM classifiers
were too loose as they would connect also a remote
markers. It appeared to be necessary to recompute the
threshold values on a basis of the GMM results - the

Fig. 4: Determining inter marker relationships for subject IM: a)
GMM model forRc

AB, b) resulting classification

proposed rescaling scheme is piecewise linear given with
Eq. (9).

In further experiments we heuristically identified
simple GMM classification to be sufficient for only well
recordedrange-of-motion(ROM) sequences (see p.4.1).
We decided to leave the threshold level for both measures
as a tuning parameter for the end user with the value
corresponding to the pure GMM classification set as
default. The threshold valueT is scaled along the GMM
results according to the tuning parameters. For negatives
the threshold is scaled as a fraction of range between 0
andµ1; for positives betweenµ1 and the value where the
first and second mode intersectso(g1,g2) - see the
annotations in Fig.4a. The threshold value is computed
as:

T =







if s< 0, µ1− s·µ1
if s= 0, µ1
if s> 0, µ1+ s· (o(g1,g2)− µ1)







, (9)

where:s is the tuning parameter with default value 1 for
pure GMM. The typical values used during
experimentation appeared to be 1-1.5.
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Fig. 3: Exemplary distance matrices for subject IM: a) Range of weighted cosine distanceRc
AB, b) Range of Euclidean distance

percentilesRE
AB

3.3 Top-down/center-boundary sorting

The special order of processing is crucial for proper
clustering process that would preserve the body hierarchy.
It is achieved by bicriterial top-down/center-boundary
(TDCB) sorting. We sorted the data using the most steady
frame in sequence (smallest sum of gradients) which
allowed us to identify the T-pose or just relaxed standing
in the dog. Markers are processed from the highest one
(top of the head) to the bottom (feet) and from the main
axis of the body (spine) to the most distant parts (hands).
Main body axis is identified with PCA (principal
component analysis) which is performed on markers
coordinates in the most steady frame. The PCA does its
task by diagonalizing the covariance matrix (C) into a
matrix (Λ ) of eigenvalues (λi) and produces the new
orthogonal base vectors (PC - eigenvectors) which points
out the direction of data variability stored as columns in
change of basis matrix (E).

C= EΛET
. (10)

Eigenvalues (and corresponding eigenvectors - PCs) are
sorted in descending order, thus the first principal
component (PC1 = [px1, py1, pz1]) identifies the direction
of the largest elongation of the body. The first PC with a
peak marker (P0) located on the top of a head identify the
main body axis (A) which roughly conforms the spine in
vertebrates.

Bicriterial sorting is performed with respect to the
main axis. The first criterion (top-down) is the i-th marker
position (Pi) along the main axis (A) - we measure it as
the distance between the given marker projection onto A
and the peak marker P0 , calculated as:

DTD
i =

PC1 ·P0Pi

|PC1|
. (11)

The second one was the Euclidean distance of a marker Pi

from A:

DCB
i =

|PC1×P0Pi |

|PC1|
. (12)

We applied a combined approach for sorting. For the first
criterion we employed bucket sorting with 10 equally
spaced buckets. The number was chosen empirically
using various subjects. Within each bucket all the markers
were sorted withqsort according to the second criterion.
The TDCB order can be noted as:

Pi ≺ Pj ⇔

{

if DTD
i . DTD

j , or
if DTD

i ≈ DTD
j ∧DCB

i 6 DCB
j

}

. (13)

This way of sorting results in meaningful hierarchies
even if the subject would be lying on the floor in the most
steady frame, although, there might be exceptions. For
example coiled snake would not exhibit main body axis,
also for some humans like yoga performers who are able
to stand still in extraordinary positions the identification
of steady frame can be improper thus body main axis can
be far from spine location.

3.4 Clustering of siblings

The clustering of sibling markers requires checking for
the two conditions: coherence of movements and
constancy of distances. These requirements are well
described with the membership to the proper classes of a
respective GMM. The clustering algorithm is a simple
incremental iterative process of scanning markers in
TDCB order and attaching to the cluster currently
processed marker if it fulfills both criteria with respect to
the initial marker (no linkage updating) of the cluster.
When all the possible to attach markers are assigned to
cluster we take next nonclustered (free) marker as initial
one for a new cluster and again join free markers to new
cluster. The process can be described using the following
pseudocode:
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Fig. 5: Location of main body axis in: a) human, b) sitting dog

const sG, sR; // tuning parameters
int n; //number of markers
double R(n,n); //dist matrix range measure
double Dc(n,n);//dist matrix weight cosine
type marker :={double x,y,z};
marker M(n); //nonassigned marker list
C(.,.) := []; //empty 2D cluster-marker list
TDc:=evalthreshold(Dc, sG);
TR:=evalthreshold(DR, sR); // see eq.(9)
M:=sortTDCB(M);
for all i in M(1..n)

ind_i++;
ind_j:=1;
C(ind_i,ind_j):=i; //init new cluster
M:=M-M(i); // remove ith marker from list
for all j in M(i+1..n)
if R(i,j)<=TR & Dc(i,j)<=TDc

ind_j++;
C(ind_i,ind_j):=j; //add to cluster
M:=M-M(j); // remove j-th marker

end if
end for

end for

The results for the above algorithm are demonstrated
in Figs.7, 8 where each group is wrapped or with convex
hull either marked with bold line.

3.5 Identification of a parent

According to the rationales a single group of siblings can
have one common parent. For the identification of a
parent we propose a consensus approach. In the first step
each marker in the group identifies, using constancy of
distance, a candidate marker being a member of the
proposed parent; next, the parent is chosen as the group
having the most of the candidates. The candidate marker
is the one having the smallestRE

AB distance to the
proposing one (presumably located at the joint) with the
limitation that it is neither the member of the current

group nor any other located in the subtree below the
current group.

Base element results from the organization of
markers. The overall tree building process runs upwards
from the bottom elements - last in the list. Therefore the
root of a tree will be identified as a group consisting of
markers from the beginning of the list. It is a common
organization of the data where the initial markers are
located on the head of a subject and the last ones are
located on the legs. A simple improvement for the basic
voting step is to allow each marker to propose more than
one candidate for a parent to solve when voting for a
single parent is nonconclusive (e.g. equal result).

int l; //number of clusters
int m; //length of cluster
int n; //number of markers
int f; //number of candidates per marker
int C(l,m); // matrix of clusters
double R(n,n); // R distance matrix
int CParent(l)=0; //
for i = l..1
M=length(i);//num. or mrkrs in ith clust
mrkrs = C(i,1..M); //get current markers
tmpR = R(1..n, mrkrs); //dists for i clust
children = getchildren(Cparent, C);

//recursively get markers of children
tmpR({mrkrs, childern},1..M) = infinity;

//exclude self and children markers
if isallinf(tmpR)

break; // the root found
end
inds = sort(tmpR); // get sorted dists
candidates = inds(1..f,1..M);
//get proposals for each of M markers
votes = getclustnumber(candidatetes);
winner = max( count(votes));
CParent(i) = winner;

end for
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Fig. 6: Proper parent-child relationship for subject IM annotated
with marker numbers (for parameters= 1) and two candidate
markers for each member of a cluster

4 Testing

4.1 The data

The most of test data were recorded in PJIIT HML lab
using Vicon MX a MoCap system equipped with 10 T40
Vicon NIR cameras and Vicon Blade software for the
general purpose recordings and Vicon Nexus for medical
sequences. The data were collected for both medical and
animation needs, none of them were prepared especially
for the needs of this algorithm. They are ordinary,
commonly used calibrating sequences - a ROM (range of
movement) sequence [19] which is described as a human
subject moves all limbs and does exercising all rotation
extremes for every joint. Additionally, we used a
sequence of a face spelling alphabet which was recorded
in our lab and a sequence of a dog MoCap available in a
public repository [24].

4.2 Results

Due to lack of a ’ground truth’ for the resulting model the
best we could do was to examine the results visually. We
tested a set of various MoCap sequences, among others
these include:

1.proper calibration ROM sequence according to Vicon
manual (Fig.7a,b)

2.other species (dog) non-calibrating, but representative
sequence (Fig.7c)

3.improper calibration sequence (Fig.8b)
4.ROM of a person with movement disabilities (hip

endoprosthesis and after a stroke incident) - captured
for medical purposes (Fig.8a)

5.non rigid body (face) - an inadequate case for the
algorithm (Fig.8c)

The results demonstrated in Figs.7 and 8 were
obtained by an experienced operator who tuneds
parameter with respect to the data. The results in the
figure are demonstrating the subjects pose in the most
stable frame (T-pose usually) so the body hierarchy is
visible. The visual representation of a movement is
depicted in Fig.9, where a few frames form a walk
sequence starting with T-pose just after the ROM
recording are shown.

Table 1: Thresholds set up for the exemplary sequences
Recording sR sG

HJ 0.9 1.1
IM 0.5 1
dog 2.5 2.5
JB 1 1
AR 0.9 0.9
face 2 2

4.3 Disussion of results

When a subject performed carefully whole the ROM
sequence, then it appeared that the default value (pure
GMM classifier) worked properly (Fig.7b). In case when
a subject did not perform the whole ROM sequence well
then it was necessary to increase the thresholds. The dog
sequence, although it was not a calibration sequence, did
quite well as it contained a representative set of moves for
most of the joints.

In cases when the sequence was incomplete as shown
in Fig. 8b it was impossible to specify proper thresholds.
The other, interesting, observation (Fig.8a) we made for
medical recording of an aged person with limited
movement abilities who performed ROM sequence as it
was possible for him - in such a situation a model
appeared to exhibit the stiffness of joints observed in the
person. The face experiment showed the method to be
irrelevant to the non-rigid body - we were unable to use
the method effectively.

For the testing purposes, we also verified operating of
the algorithm against ROMs from other data sets. One of
them was the well known CMU repository [25] - using 41
markers (instead of 53 set used in our lab). We noted
proper functioning of proposed method but mainly for the
later ROM records - early ones were not representative
enough.
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Fig. 7: Exemplary satisfactory results for: a) human subject HJ (male), b) human subject IM (female), c) an animal (dog)

5 Applications and extensions

The obvious application of the proposed representation is
to organize and visualize the structure of a body of a new
subject type. Visual interpretation of submeshes can be
various depending on the data provided. For sparse points
as in p. 4.2 the convex hull provides visually efficient
representation. Alternatively, for relatively dense point
clouds (like in [9]), the solid representing body part could
approximate the real body surface. Therefore, a surface
mesh spanned (triangulated) on the points cloud could be
an effective representation.

Aside of the simple visualization of a kinematic
structure, the resulting meshes can be used for other tasks,
these are: structure aware signal filtering, recontruction,
artifact detection and prediction. We have already
prototyped all these, but since they are out of scope of this
paper, as a proof-of-concept we demonstrate: that FBM
can be easily used to estimate skeleton and that using it as
a framework for structure aware marker smoothing.
Finally, we discuss optional extension of the basic scheme
(with multiple parents per segment).

5.1 Skeleton inferring

Skeleton inferring is an obvious application of the mesh
resulting from our proposal (see Fig.10). We employed
an approach based on the classical local method [18]. In
this case one can consider inferring of a functional mesh
as a rigid body partitioning stage of classical algorithm
with additional information about body part connections.
The joint locations were estimated for the parent-child
connected groups of markers. We calculated them as
rotation centers for trajectories of markers in child group
using local (relative) coordinate system which was
established according to the position and rotation of the
parent body part.

5.2 Marker-wise filtering

Another proposed exemplary application is to control
processing of the raw marker data at the cleaning stage.
One of such techniques is a low pass Butterworth IIR
filter [21] which is used to eliminate a motion jitter. We
employed the results of movement analysis within the
body mesh to control cutoff frequency. Standard deviation
of euclidean distance between all markers within group
was used - one can consider it as a marker’s deviation
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Fig. 8: Exemplary non-satisfactory results for: a) aged and impaired subject JB (male), b) incomplete ROM sequence for subjectAR
(male), c) non-rigid body (face - markers are placed on the muscles)

Fig. 9: A walk sequence for HJ subject
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Fig. 10: A skeleton on the corresponding source functional mesh
for IM subject

from rigid body model. For each marker in a group we
calculated deviation to all other sibling markers - the
larger resulting value the proportionally lower cutoff
frequency (stronger filtration) is assumed for the second
order Butterworth filter. criterion:

Vi =
1

|M|−1 ∑
m∈M,m6=i

σi,m, (14)

where:|M| is a number of markers in a groupM, σi,m is a
variance of the distance betweeni and m markers, the
additional condition ofm 6= i is due toσi,i , 0. Next, the
averaged variance is remapped usinggfunction which
adoptsVi to the cut-off frequencyC f . In our case is
simple linear scaling between arbitrary minimal and
maximal limits.

C fi = g(Vi) (15)

Demonstrative results are demonstrated in the Fig.
11a, where one can see examples of the filtration for
minimal, average and maximal value of theVi within a
body part. The corresponding amplitude spectra, depicted
in Fig. 11b, show that cut-offs (C f) arenot simply related
to the amplitude of high frequencies.

5.3 Mesh extensions

The rigid body model assumed in previous paragraph
suggests that an extended version of a basic functional
mesh can be useful - each separate rigid segment (cluster)
could also point more parent markers from the parent

a)

b)

Fig. 11: Rigid body controlled Butterworth low pass filtering
of trajectories: a) original and filtered for 3 exemplary markers
(min, avg and max deviation from the rigid body model), b) their
Fourier amplitude with cut-off frequencies annotated

segment for which the rigid body requirements
(thresholds) are fulfilled - usually these markers would be
located by the joints. Resulting mesh hierarchy would be
slightly redundant - hierarchical graph, instead of tree -
but including these points into convex hulls representing
rigid body model parts could make visual results even
more realistic. This step can be performed very easily by
taking the results of the voting stage (p.3.5) and
including the candidate markers from the parent cluster
into the current one if they fulfill the thresholds from the
clustering stage (p.3.4).

6 Summary and future work

The inferring method provides results as it was expected -
it is a realistic mesh of connections between markers. It
allows for semi-automatic inferring of a body structure
without prior knowledge about the subject model and
requires minimal operator interaction.

The other methods of structure inference, which are
based on other clusterization techniques and using
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additionally proximity of markers, are also under
consideration - we are currently working on artificial
neural networks to ensure fully automatic inference
process - the results are very promising requiring no user
interaction and small number of errors. The inference
method for non-rigid subjects - human faces specifically -
is at this moment at conceptual stage.

Use of FBM structure made implementing of an
exemplary signal processing aware of kinematic structure
very easy - we can easily process multivariate signals
simply referring between values of the explicitly given (as
parents and siblings) variables.

Both the inference method and the proposed
representation can be easily adopted into the already
existing motion editing software. We successfully applied
the proposed representation for the artifact detection,
signal reconstruction and denoising of the MoCap
sequences such as in the example mentioned in p.5.2.
These results will be brought to the wider audience in
prospective papers.
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