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Abstract: We study the quality of piecewise-quadratic Lagrange interpolation for nonparametric data based onε-uniform sampling
and different forms of exponential parameterization. Surprisingly, it turns out that there is a sharp discontinuity inthe quality of
interpolation: exponential parameterization performs nobetter than a blind uniform guess, except for the case of scaled cumulative
chord, which matches parametric interpolation.
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1 Introduction

A list of m+ 1 pointsQm = (q0,q1, . . . ,qm) in Euclidean
n-spaceEn is obtained by sampling an unknown but
sufficiently smooth and regular curveγ : [0,1] → En at
0 = t0 < t1 < t2 < .. . < tm = 1, wheret1, t2, . . . , tm−1 are
also unknown. Hereqi = γ(ti) for 0≤ i ≤ m, and we have
a problem ofnonparametric interpolation(see e.g. [1]).
More precisely, the task is to estimate the unknown curve
γ by a curveγ̂ : [0,1] → Em such thatγ̂(t̂i) = qi for all
i = 0,1, . . . ,m, where γ̂ and the t̂i are computed from
q0,q1, . . . ,qm. To emphasize that the{ti}m

i=0 are not given,
we call {qi}m

i=0 the nonparametric data. Applications of
nonparametric data interpolation in computer vision,
computer graphics, engineering or physics can be found
in e.g. [2], [3], [4] or [5].

By contrast, when both{ti}m
i=0 and {qi}m

i=0 are
known, the curveγ can be estimated using standard
methods forparametric interpolation, such as piecewise
r-degree Lagrange interpolation. So our task can be
performed by a parametric interpolant using estimatest̂i
of the ti . For this to be useful, we also need to prove
results about the quality of the corresponding estimateγ̂
of the unknown curveγ. Such results will depend on the
{ti}m

i=0. For instance in the trivial case, when the{ti}m
i=0

are chosen uniformly along[0,1] (or otherwise actually
known), then γ̂ is just a parametric interpolant whose

properties are known from classical results. Indeed, for
{ti}m

i=0 satisfying theadmissibility condition:

lim
m→∞

δm = 0, where δm = max
0≤i≤m−1

(ti+1− ti), (1)

there is the well-known result [6]:

Theorem 1.Let γ : [0,1]→ En beCr+1, wherer ≥ 0 and
beregular in the sense thaṫγ is nowhere0. Then piecewise
r-degree Lagrange interpolation yields a sharp estimate:

γ̂(t) = γ(t)+O(δ r+1
m ) (2)

uniformly in t ∈ [0,1]. ⊓⊔
The asymptotic estimate in(2) is sharp, i.e. there exist
γ ∈ Cr+1 and admissible sampling{ti}m

i=0, for which the
convergence order established in(2) cannot be improved.

Remark 1. Recall that, for a familyFδm : [0,T] → En

with 0< T < ∞ (e.g. forFδm = γ̃r − γ andT = 1; hereγ̃r
depends on δm) we write Fδm = O(δ α

m) when
‖Fδm‖∞ = O(δ α

m), where‖Fδm‖∞ = supt∈[0,T] ‖Fδm(t)‖ and
‖ · ‖ denotes the Euclidean norm. The latter holds if there
exists constantK > 0 such that for somēδ > 0 we have
‖Fδm‖ ≤ Kδ α

m, for all δm ∈ (0, δ̄ ) and allt ∈ [0,T]. HereK
depends onγ and on each sampling{ti}m

i=0. Evidently as
interval [0,T] is compact onceFδm is continuous we have
‖Fδm‖∞ = maxt∈[0,T ] ‖Fδm(t)‖. ⊓⊔
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In our situation, where less information is available
about the distribution of the{ti}m

i=0, it is natural thatγ̂
should be a lower-quality estimate ofγ.

Definition 1. We say that the{ti}m
i=0 is sampledmore-or-

less uniformly(see e.g. [3], [ 7] or [ 8]) when, for someβ ∈
(0,1], and all sufficiently large m and all i= 1,2, . . . ,m, we
have:

β δm ≤ ti − ti−1 ≤ δm. (3)

Equivalently
β0

m
≤ ti − ti−1 ≤

β1

m
, (4)

for some 0 < β0 ≤ β1, sufficiently large m and all
i = 1,2, . . . ,m. Necessarilyβ1 ≥ 1, by summing the
inequalities. ⊓⊔

Definition 2. Givenε > 0, we say that{ti}m
i=0 is sampled

ε-uniformly (see e.g. [9]) when, for some C∞

diffeomorphismφ : [0,1]→ [0,1], sufficiently large m and
all 0≤ i ≤ m,

ti = φ(
i
m
)+O(

1
m1+ε ). (5)

This is more restrictive than the condition enforcing
{ti}m

i=0 to be distributed more-or-less uniformly. Since by
(1), mδm ≥ 1 and thus the second term in(5) reads as
O(δ 1+ε

m ). ⊓⊔

Again both φ and the O(δ 1+ε
m ) term depend on the

ε-uniform sampling. The most common method to
estimate the unknown knots{ti}m

i=0 from the
nonparametric data is to use some form ofexponential
parametrization(see e.g. [4]) in the following sense:

Definition 3. Chooseλ ∈ [0,1] and sett̂0 = 0. Then,
inductively, for1≤ i ≤ m, set

t̂i = t̂i−1+ ‖qi −qi−1‖λ . (6)

Finally, set normalized̃ti = t̂i/t̂m, for 0≤ t ≤ m. In order
to ensurẽti < t̃i+1 (and also that̂ti < t̂i+1) we assume that
qi 6= qi+1. ⊓⊔

The choiceλ = 0 yields t̂i = i, corresponding to a
blind uniform guess, taking no account of the spread of
interpolation points{qi}m

i=0 (see [9]).

Theorem 2. Let γ beC3 and let the unknown{ti}m
i=0 be

sampledε-uniformly, whereε > 0. If γ̂ is constructed
using piecewise-quadratic Lagrange interpolation based
on λ = 0 (blind uniform guess) then, for piecewise-C∞

reparameterizationψ : [0,1]→ [0,1] (computed from data
Qm), we have sharp asymptotic estimate over[0,1]:

(γ̂ ◦ψ)(t) = γ(t)+O(δ min{3,1+2ε}
m ),

for the trajectory approximation.⊓⊔

Note that in case of reduced dataQm for Fδm (see
Remark1) we substituteFδm = γ̂2 ◦ψ − γ.

At the other extreme we have a more informative
estimate of the{ti}m

i=0, namely the scaledcumulative
chord parameterization given by exponential
parameterization withλ = 1. Indeed, we have the
following (see [10]):

Theorem 3. Let γ be C3 and let the unknownti be
sampledε-uniformly, whereε > 0. If γ̂ is constructed
using piecewise-quadratic Lagrange interpolation based
on λ = 1 (scaled cumulative chord) then, for
piecewise-C∞ reparameterizationψ : [0,1] → [0,1]
(computed from dataQm), the sharp asymptotic estimate:

(γ̂ ◦ψ)(t) = γ(t)+O(δ 3
m) (7)

follows for t ∈ [0,1]. In fact (7) holds also for arbitrary
admissible samplings(1). ⊓⊔

So scaled cumulative chord parametrization performs
as well as the parametric interpolant obtained by taking
r = 2 in Th.1, at least in terms of asymptotic and modulo
the reparameterizationψ . On the other hand, the
asymptotics for the blind uniform guess of Th.2 are not
nearly so good for small values ofε. Between these
extremes, one might expect a steady increase in the
exponent ofδm (or of 1/m) as λ increases from 0 to 1.
Surprisingly this does not happen, as shown in Th.4
below, whichis the main result of this paper:

Theorem 4. Let γ be C4 and let the unknownti be
sampledε-uniformly where ε > 0. If γ̂ is constructed
using piecewise-quadratic Lagrange interpolation based
on λ ∈ (0,1) then, for some piecewise-quadratic-C∞

reparameterizationψ : [0,1]→ [0,1] (computed from data
Qm):

(γ̂ ◦ψ)(t) = γ(t)+O(δ min{3,1+2ε}
m ) (8)

holds fort ∈ [0,1]. ⊓⊔

A similar phenomenon is discovered in [11] for
more-or-less uniform samplings, where
(γ̂ ◦ ψ)(t) = γ(t) + O(δm), for λ ∈ [0,1) and
(γ̂ ◦ψ)(t) = γ(t)+O(δ 3

m), for eitherλ = 1, or a uniform
sampling andλ ∈ [0,1).

This paper proves Th.4 and its sharpness in Ex.2.
The general framework used here, has some similarities
to [11] which applies only to such more-or-less uniformly
sampled curves for whichψ : [0,1] → [0,1] is a
reparameterization. Our proof forε-uniform samplings is
different and also ensures thatψ̇ > 0 holds for curves
γ ∈ C3. Also, for the more restrictive case of samplings
(5) we achieved a better trajectory approximation than for
the general class of more-our-less uniform samplings
established in [11]. As well as the analysis of the Ex.2
the numerical tests confirm the sharpness of the
asymptotics from Th.4.
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2 Exponential parameterization for
ε-uniform samplings

The following example is used later in proving Th.4.

Example 1. a)An inspection reveals that eachε-uniform
sampling is also more-or-less uniform. Indeed by Taylor’s
Th. and(5) we have:

ti+1− ti = φ̇(
iT
m
)
T
m
+O(

1
m1+ε )+O(

1
m2)

= φ̇(
iT
m
)
T
m
+O(

1

mmin{2,1+ε} ). (9)

Since ε > 0 we havem−min{2,1+ε} < m−1 and thus by
boundedness of continuouṡφ over compact[0,1], there
exist constants 0< Kl < Ku such that:

Kl

m
≤ ti+1− ti ≤

Ku

m
.

Soε-uniformity implies more-or-less uniformity (however
not conversely).

b) By (5) and Taylor’s expansion (applied toφ at t =
i/m) we have for eachε > 0 the following (with j = 0,1):

ti+ j+1− ti+ j = φ̇
(

i
m

)

1
m
+O

(

1

mmin{2,1+ε}

)

. (10)

Combining(10) with 0< 1/m≤ δm (as∑m
i=0(ti+1− ti) = 1

and thusmδm ≥ 1) gives:

ti+2− ti+1 = ti+1− ti +O(δ min{2,1+ε}
m ). (11)

For uniform sampling{ti}m
i=0 we haveti+2− ti+1 = ti+1−

ti = δ = 1/m. ⊓⊔

We pass now to the proof of Th.4.

Proof. As we see later in Remark5 it is sufficient to prove
the asymptotics(8) for both unnormalized knots{t̂i}m

i=0
(see(6)) and shifted according tôt − t̂i . For simplicity the
knots in (6) and (12) use the same notation. Let
ψi : Ii = [ti , ti+2] → Îi = [t̂i , t̂i+2] be the quadratic
polynomial satisfying interpolation conditions
ψi(ti+ j) = t̂i+ j , with j = 0,1,2, where

t̂i = 0, t̂i+1 = ‖qi+1−qi‖λ ,

t̂i+2 = t̂i+1+ ‖qi+2−qi+1‖λ . (12)

The track-sum of{ψi}m−2
i=0 (for i = 0,2,4, . . . ,m− 2)

defines a continuous piecewise-C∞ mapping
ψ : [0,1]→ [0, T̂], whereT̂ = t̂m.

The proof of Th.4 is divided into five steps:

2.1 Step 1: proof thatψ is a reparameterization

We show first that ψi is asymptotically a
reparameterization ofIi into Îi , for arbitrary ε > 0 and
λ ∈ [0,1]. This is proved here under the weaker
assumption thatγ ∈ C3([0,1]) - recall that by [11], for
eitherλ = 1 and{ti}m

i=0 merely admissible(1) or {ti}m
i=0

uniform and λ ∈ [0,1), the quadraticψi yields also
asymptotically a reparameterization. This is not always
true for arbitrary more-or-less uniform samplings(3) and
λ ∈ [0,1) as both shown also in [11].

Newton’s Interpolation Formula for divided
differencesψi [·], ψi [·, ·] andψi [·, ·, ·] (see [6]) gives over
eachIi:

ψi(t) = ψi [ti ]+ψi[ti , ti+1](t − ti)

+ψi[ti , ti+1, ti+2](t − ti)(t − ti+1),

ψ(1)
i (t) = ψi [ti , ti+1]+ (2t− ti+1− ti)ψi [ti , ti+1, ti+2],

ψ(2)
i (t) = 2ψi[ti , ti+1, ti+2]. (13)

For ψi to be a reparameterization it suffices to show that

ψ(1)
i > 0 over Ii. For the latter, asψ(1)

i (t) is linear, it is

sufficient to demonstrate that bothψ(1)
i (ti) > 0 and

ψ(1)
i (ti+2) > 0 hold asymptotically. In doing so, by(13) a

simple inspection reveals:

ψ(1)
i (ti) = ψi [ti , ti+1]+ (ti − ti+1)ψi [ti , ti+1, ti+2],

ψ(1)
i (ti+2) = ψi [ti , ti+1]

+((ti+2− ti+1)+ (ti+2− ti))ψi [ti , ti+1, ti+2].
(14)

To show inequalityψ(1)
i (ti) > 0, recall (see [11]) that

γ ∈C3([0,T]) with formula(1) leads to:

ψi [ti , ti+1] = (ti+1− ti)
−1+λ +O((ti+1− ti)

1+λ )

= (ti+1− ti)
−1+λ +O(δ 1+λ

m ),

ψi [ti+1, ti+2] = (ti+2− ti+1)
−1+λ +O((ti+2− ti+1)

1+λ )

= (ti+2− ti+1)
−1+λ +O(δ 1+λ

m ),

ψi [ti , ti+1, ti+2] =
(ti+2− ti+1)

−1+λ − (ti+1− ti)−1+λ

ti+2− ti

+O(δ λ
m). (15)

We examine now the asymptotics of the second term of

ψ(1)
i (ti) in (14) (denoted below asJi) by using the

definition of the second divided differences
ψi [ti , ti+1, ti+2]:

Ji = −(ti+1− ti)ψi [ti , ti+1, ti+2]

= − ti+1− ti
ti+2− ti

(ψi [ti+1, ti+2]−ψi[ti , ti+1]) . (16)
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Combining(16)with 0< (ti+1−ti)(ti+2−ti)−1 < 1 (a term
of orderO(1) with non vanishing asymptotic constant) and
with (15) and finally coupling it with(5) (thus yielding
(11)) leads to:

Ji = O(1)[(ti+2− ti+1)
−1+λ − (ti+1− ti)

−1+λ +O(δ 1+λ
m )]

= O(1)[((ti+1− ti)+O(δ min{2,1+ε}
m ))−1+λ

−(ti+1− ti)
−1+λ +O(δ 1+λ

m )]

= O(1)

·[(ti+1− ti)
−1+λ (1+(ti+1− ti)

−1O(δ min{2,1+ε}
m ))−1+λ

−(ti+1− ti)
−1+λ +O(δ 1+λ

m )].

As anyε-uniform sampling is also more-or-less uniform
(see Ex.1) the following holds(ti+1− ti)−1 = O(δ−1

m ) and
hence:

Ji = O(1)[(ti+1− ti)
−1+λ (1+O(δ min{1,ε}

m ))−1+λ

−(ti+1− ti)
−1+λ +O(δ 1+λ

m )]. (17)

By Taylor’s expansion we obtain that
(1+ x)−1+λ = 1+(−1+λ )(1+ ξ )−(2−λ )x, where

|ξ | ≤ |x|. Settingx= O(δ min{1,ε}
m ) and taking into account

that 2− λ > 0, we have(1+ ξ )−2+λ = O(1) (as ξ is
asymptotically separated from−1). Consequently,

(1+O(δ min{1,ε}
m ))−1+λ = 1+O(δ min{1,ε}

m ), which in turn
coupled with (17) gives (with the termO(1) having
non-vanishing asymptotic constant):

Ji = O(1)[(ti+1− ti)
−1+λ (1+O(δ min{1,ε}

m ))

−(ti+1− ti)
−1+λ +O(δ 1+λ

m )]

= O(1)[O(δ min{λ ,−1+λ+ε}
m ))+O(δ 1+λ

m )]

= O(δ min{λ ,−1+λ+ε,1+λ}
m )

= O(δ min{λ ,−1+λ+ε}
m )

=

{

O(δ−1+λ+ε
m ), for 0< ε ≤ 1;

O(δ λ
m), for ε > 1.

(18)

Combining(18)with (14), (15), (16) andλ ∈ [0,1) results
in:

ψ(1)
i (ti)

= (ti+1− ti)
−1+λ +O(δ 1+λ

m )+O(δ min{λ ,−1+λ+ε}
m )

= (ti+1− ti)
−1+λ +O(δ min{λ ,−1+λ+ε}

m )> 0 (19)

asymptotically (as−1+ λ < min{λ ,−1+ λ + ε}, for
ε > 0 and 1+ λ > min{λ ,−1+ λ + ε}). By (14) as
0 < [(ti+2 − ti) + (ti+2 − ti+1)](ti+2 − ti)−1 < 2 the above

argument analogously justifies the second inequality

ψ(1)
i (ti+2)> 0. Hence, asymptotically the mappingψi is a

reparametrization ofIi into Îi . Thus the discussion ofStep
1 is completed.

2.2 Step 2: difference between interpolantγ̂2
and curveγ

In order to accelerate the linear convergence rates for
trajectory estimation from [11] established for
more-or-less uniform samplings(3), λ ∈ [0,1) and any
regular curveγ ∈ C3([0,1]) we assume from now on that
γ ∈C4([0,1]).

Let the interpolant̂γ2(t̂i) = qi be defined as a track-
sum of quadraticŝγ2,i : [t̂i , t̂i+2]→En satisfyingγ̂2,i(t̂i+ j) =
qi+ j , for j =0,1,2 andi = 2k, wherek=0,1, . . . ,m/2. The
difference between the interpolantγ̂ = γ̂2 and the unknown
curveγ over eachIi (and thus over[0,1] since mappingψi
is a reparameterization - seeStep 1) reads as:

fi(t) = (γ̂2,i ◦ψi)(t)− γ(t). (20)

Thus asγ̂2,i(t̂i+ j) = (γ̂2,i ◦ ψ)(ti+ j) (for j = 0,1,2) we
arrive at:

fi(ti+ j) = 0. (21)

Recall now Hadamard’s Lemma (see [12]; Part 1, Lemma
2.1):

Lemma 1. Let f : [a,b]→ En be of classCl , wherel ≥ 1
and assume thatf (t0) = 0, for somet0 ∈ (a,b). Then there
exists aCl−1 function g : [a,b] → En for which we have
f (t) = (t − t0)g(t). In additiong(t) = O(d f

dt ). ⊓⊔

In order to construct the functionh(t) it suffices to note
that f (t) = F(1)−F(0), whereF(u) = f (tu+(1−u)t0).
Thus by the Fundamental Th. of Calculus we obtain the
following:
f (t) =

∫ 1
0 F ′

u(u)du= (t − t0)
∫ 1

0 f ′(tu+(1−u)t0)du.
An inspection of the proof of Lemma1 leads to its

generalization withf having multiple zerost0 < t1 < · · ·<
tk. Indeed uponk+1 applications of Lemma1 we obtain:

f (t) = (t − t0)(t − t1) . . . (t − tk)h(t), (22)

whereh is of classCl−(k+1) andh= O(dk+1 f
dtk+1 ).

Consequently, by Hadamard’s Lemma, for eacht ∈ Ii
we have:

fi(t) = (t − ti)(t − ti+1)(t − ti+2)gi(t), (23)

wheregi(t) = O( f (3)i (t)), uniformly overIi . Furthermore

fi(t) = O(δ 3
m) ·O

(

(γ̂2,i ◦ψi)
(3)(t)− γ(3)(t)

)

. (24)
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Using the chain rule for the composition of two quadratics
γ̂2,i ◦ψi combined withγ ∈C4([0,1]), (24) gives1:

fi(t) = O(δ 3
m)

·
(

O(γ̂ ′′2,i(t̂)) ·O(ψ(1)
i (t)) ·O(ψ(2)

i (t))+O(1)
)

, (25)

for t ∈ Ii and t̂ ∈ Îi , where γ̂ ′′2,i denotes the second

derivative ofγ̂2,i with respect tôt = ψi(t) ∈ Îi . In order to
examine the asymptotics of(25) it suffices to analyze
now the asymptotics of three involved terms, namely

O(γ̂ ′′2,i(t̂)), O(ψ(1)
i (t)) and O(ψ(2)

i (t)). As to be shown,
the respective asymptotic orders of the above three terms
are independent fromIi .

2.3 Step 3: asymptotic orders ofψ(k)(t), k= 1,2

First we discuss the asymptotics ofO(ψ(1)
i (t)) and

O(ψ(2)
i (t)), given λ ∈ [0,1) and (5). In doing so it

suffices to analyze asymptotic orders of two divided
differencesψi [ti , ti+1] andψi [ti , ti+1, ti+2], respectively.

By Taylor’s Th. andγ ∈ C4([0,T]), for eacht ∈ Ii we
have:

γ(t) =
3

∑
k=0

γ(k)(ti)
k!

(t − ti)
k+O

(

(t − ti)
4) . (26)

Furthermore by(12) the following holds:

ψi [ti , ti+1] =
ψi(ti+1)−ψi(ti)

ti+1− ti
=

(

‖γ(ti+1)− γ(ti)‖2
)λ/2

ti+1− ti
.

(27)
Sinceγ is regular (i.e.̇γ 6= 0), it can be reparameterized to
the arc-length parameterization with‖γ(1)(t)‖ ≡ 1 over
[0,1] (see e.g. [14]). Such reparameterization does not
influence the asymptotics in question. Therefore as
h(t) = 〈γ(1)(t)|γ(1)(t)〉 ≡ 1 over t ∈ [0,1], (here 〈·|·〉
denotes a standard dot product inEn) upon differentiating
a constant functionh(t) one arrives to:

0= 〈γ(1)(t)|γ(1)(t)〉(1) = 2〈γ(1)(t)|γ(2)(t)〉, (28)

which in turn results inγ(1) and γ(2) being mutually
orthogonal. Taking the derivative of(28) yields:

〈γ(1)(t)|γ(3)(t)〉=−〈γ(2)(t)|γ(2)(t)〉=−κ2(t), (29)

where κ(t) is the curvature ofγ at t. Combining
‖γ(1)(t)‖ = 1, (26) (evaluated att = ti+1), (28), (29) we
obtain‖γ(ti+1)− γ(ti)‖2/(ti+1− ti)2

= ‖
3

∑
k=1

γ(k)(ti)
k!

(ti+1− ti)
k−1+O((ti+1− ti)

3)‖2

1 Derivatives overt̂ are denoted by apostrophes, whereas
calculated overt use superscript notation.

= 〈
3

∑
k=1

γ(k)(ti)
k!

(ti+1− ti)
k−1+O((ti+1− ti)

3)
∣

∣

3

∑
k=1

γ(k)(ti)
k!

(ti+1− ti)
k−1+O((ti+1− ti)

3)〉

= 1+
(ti+1− ti)2

4
κ2(ti)−

(ti+1− ti)2

3
κ2(ti)

+O((ti+1− ti)
3)

= 1− (ti+1− ti)2

12
κ2(ti)+O((ti+1− ti)

3). (30)

Consequently, coupling(27) with (30) leads to:

ψi [ti , ti+1] = (ti+1− ti)
−1+λ

·
(

1− (ti+1− ti)2

12
κ2(ti)+O

(

(ti+1− ti)
3)
)

λ
2

.

By Taylor’s expansion:

(1+ x)
λ
2 = 1+

λx
2

+
λ (λ −2)

4
√

(1+ ξ )4−λ
x2,

for |ξ | ≤ |x|, which satisfies 1+ λ x
2 + O(x2) (for

x > −1 + ρ , where ρ > 0). The latter used with
x = −((ti+1 − ti)2/12)κ2(ti) + O((ti+1 − ti)3) (here
x>−1+ρ holds asymptotically) results inψi [ti , ti+1]

= (ti+1− ti)
−1+λ

·
(

1− λ (ti+1− ti)2

24
κ2(ti)+O

(

(ti+1− ti)
3)
)

= (ti+1− ti)
−1+λ

·
(

1− λ (ti+1− ti)2

24
κ2(ti)

)

+O
(

(ti+1− ti)
2+λ
)

.

(31)

Note that, since 2+λ > 0 (hereλ ∈ [0,1)) and 0< ti+1−
ti ≤ δm the last expressionO((ti+1− ti)2+λ ) from (31) can
also be substituted byO(δ 2+λ

m ). Similarly, forψi [ti+1, ti+2]

= (ti+2− ti+1)
−1+λ

(

1− λ (ti+2− ti+1)
2

24
κ2(ti+1)

)

+O
(

(ti+2− ti+1)
2+λ
)

.

The latter combined withk2(ti+1) = k2(ti) +O(ti+1 − ti)
yieldsψi [ti+1, ti+2]

= (ti+2− ti+1)
−1+λ

·
[

1− λ (ti+2− ti+1)
2

24
κ2(ti)+O

(

(ti+2− ti+1)
2(ti+1− ti)

)

]

+O
(

(ti+2− ti+1)
2+λ
)

= (ti+2− ti+1)
−1+λ

(

1− λ (ti+2− ti+1)
2

24
κ2(ti)

)
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+O
(

(ti+2− ti+1)
1+λ (ti+1− ti)

)

+O
(

(ti+2− ti+1)
2+λ
)

.

(32)

Combining(31), (32) and|(ti+ j+1− ti+ j)/(ti+2− ti)| < 1
(for j = 0,1) rendersψi [ti , ti+1, ti+2]

=
ψi [ti+1, ti+2]−ψi[ti , ti+1]

ti+2− ti

=
(ti+2− ti+1)

−1+λ
(

1− λ (ti+2−ti+1)
2

24 κ2(ti)
)

ti+2− ti

−
(ti+1− ti)−1+λ

(

1− λ (ti+1−ti )2

24 κ2(ti)
)

ti+2− ti

+O
(

(ti+2− ti+1)
1+λ
)

+O
(

(ti+2− ti+1)
1+λ
)

. (33)

Again, sinceλ + 1 ≥ 0 the last two terms are of order
O(δ 1+λ

m ).
The argument applied so-far inStep 3does not exploit

(5). We invoke nowε-uniformity (5). Indeed, recall that
from Ex.1, ε-uniformity implies more-or-less uniformity.
By (11), (33) and |(ti+1+ j − ti+ j)(ti+2 − ti))−1| ≤ 1 (for
j = 0,1) we haveψi [ti , ti+1, ti+2]

=
(ti+2− ti+1)

−1+λ
(

1− λ (ti+2−ti+1)
2

24 κ2(ti)
)

ti+2− ti

−
(ti+1− ti)−1+λ

(

1− λ (ti+1−ti)2

24 κ2(ti)
)

ti+2− ti
+O(δ 1+λ

m )

=
(ti+2− ti+1)

−1+λ − (ti+1− ti)−1+λ

ti+2− ti

−λ κ2(ti)
24

(

(ti+2− ti+1)
1+λ − (ti+1− ti)1+λ)

ti+2− ti
+O(δ 1+λ

m )

=

(

(ti+1− ti)+O(δ min{2,1+ε}
m )

)−1+λ
− (ti+1− ti)−1+λ

ti+2− ti

−λ κ2(ti)
24

·

(

(ti+1− ti)+O(δ min{2,1+ε}
m )

)1+λ
− (ti+1− ti)1+λ

ti+2− ti
+O(δ 1+λ

m ),

(34)

which by (3) (as any ε-uniform sampling is also
more-or-less uniform and thusti+1− ti = O(δ−1

m )) and by
Taylor’s expansion of either (1 + x)−1+λ

= 1 + (−1 + λ )(1 + ξ )−2+λ x = 1 + O(x) or of
(1+ x)1+λ = 1+(1+λ )(1+ ξ )λ x (applied atx0 = 0 and

for x = O(δ min{1,ε}
m ) separated from−1 for ε > 0, here

|ξ |= O(x)) yieldsψi [ti , ti+1, ti+2]

=

(ti+1− ti)−1+λ
[

(

1+O(δ min{1,ε}
m )

)−1+λ
−1

]

ti+2− ti

−λ κ2(ti)
24

(ti+1− ti)1+λ
[

(

1+O(δ min{1,ε}
m )

)1+λ
−1

]

ti+2− ti

+O(δ 1+λ
m )

=
(ti+1− ti)−1+λ (λ −1)O(δ min{1,ε}

m )

ti+2− ti
+O(δ 1+λ

m )

−λ (1+λ )κ2(ti)
24

(ti+1− ti)1+λ O(δ min{1,ε}
m )

ti+2− ti
)

= (λ −1)O(δ min{−1+λ ,−2+λ+ε}
m )+O(δ min{1+λ ,λ+ε}

m )

+O(δ 1+λ
m ),

and thus by the latter, as−1+ λ < 1+ λ , we have

(ψ(2)
i (t)/2) = ψi [ti , ti+1, ti+2]

= (λ −1)O(δ min{−1+λ ,−2+λ+ε}
m )+O(δ min{1+λ ,λ+ε}

m )

=











O(δ min{−1+λ ,−2+λ+ε}
m ), for λ ∈ [0,1);

O(δ min{2,1+ε}
m ), for λ = 1;

O(δ 1+λ
m ), for ti = i

m,

(35)

as again−1+ λ < 1+ λ and−2+ λ + ε ≤ λ + ε. The
O(δ 1+λ

m ) asymptotics derived for{ti}m
i=0 uniform in (35),

comes from the vanishing termO(δ min{2,1+ε}
m ) in (34) (see

(11)). Indeed forti = (i/m) we haveδm = 1/m, φ = id
andO(δ 1+ε

m ) ≡ 0 in (5) andti+2− ti+1 = ti+1− ti = 1/m.
Hence, by(13), we finally obtain fort ∈ [ti , ti+2] and for
λ ∈ [0,1] the formula(35).

Remark 2. A simple verification shows that formula(33)
within the class of merely more-or-less uniform samplings
(3) yields fort ∈ [ti , ti+2]:

ψ(2)
i (t) = O(δ−2+λ

m ). (36)

The asymptotics(36) is independently shown in [11] for
(3) under weaker assumption admittingγ ∈ C3([0,1])
instead ofγ ∈ C4([0,1]). Visibly, comparison between
(35) and (36) gives, for ε-uniform samplings and
λ ∈ [0,1), an acceleration of order min{1,ε} in

asymptotics ofO(ψ(2)
i (t)). In addition, for eitherλ = 1

and samplings(3) or {ti}m
i=0 uniform, formula(33) yields

overIi:

ψ(2)
i (t) = O(δm) or ψ(2)

i (t) = O(δ λ
m), (37)

respectively. The first result for this special case in(37) is
already proved in [11] for γ ∈ C3([0,1]). Similarly, upon
comparing(35) with (37) (for λ = 1) we obtain an extra

speed-up of order min{1,ε} in asymptotics ofO(ψ(2)
i (t)).

On the other hand, onceuniformsampling is admitted, the
last formula from(35) yields faster convergence order
O(δ 1+λ

m ) thanO(δ λ
m) from (37) as shown also by [11], for

γ ∈C3([0,1]). ⊓⊔

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 1, 33-48 (2016) /www.naturalspublishing.com/Journals.asp 39

The asymptotics of O(ψ(1)
i (t)) for ε-uniform

samplings(5) by (13), (31) and (35), over Ii reads with

ψ(1)
i (t)

= (ti+2− ti+1)
−1+λ

(

1− λ (ti+2− ti+1)
2

24
κ2(ti+1)

)

+O((ti+2− ti+1)
2+λ )

+((t − ti)+ (t− ti+1))

·











O(δ min{−1+λ ,−2+λ+ε}
m ), for λ ∈ [0,1);

O(δ min{2,1+ε}
m ), for λ = 1;

O(δ 1+λ
m ), for ti = i

m;

=







O(δ−1+λ
m ), for λ ∈ [0,1);

1+O(δ 2
m), for λ = 1;

δ−1+λ
m +O(δ 1+λ

m ), for ti = i
m;

+











O(δm)O(δ min{−1+λ ,−2+λ+ε}
m ), for λ ∈ [0,1);

O(δm)O(δ min{2,1+ε}
m ), for λ = 1;

O(δm)O(δ 1+λ
m ), for ti = i

m;

=











O(δ−1+λ
m )+O(δ min{λ ,−1+λ+ε}

m ), for λ ∈ [0,1);

1+O(δ 2
m)+O(δ min{3,2+ε}

m ), for λ = 1;
δ−1+λ

m +O(δ 1+λ
m )+O(δ 2+λ

m ), for ti = i
m;

=







O(δ−1+λ
m ), for λ ∈ [0,1);

1+O(δ 2
m), for λ = 1;

δ−1+λ
m +O(δ 1+λ

m ), for ti = i
m;

=

{

O(δ−1+λ
m ), for λ ∈ [0,1);

δ−1+λ
m +O(δ 1+λ

m ), for ti = i
m or λ = 1.

(38)

The condition(19) forcing ψi to be a reparameterization
for ε-uniform samplings is later exploited to compare both
curvesγ and γ̂2 defined originally over different domains
[0,1] and[0, T̂] (with T̂ = t̂m - see(6)), respectively.

Remark 3. Formula(38) reveals that the asymptotics of

O(ψ(1)
i (t)) for ε-uniform samplings does depend onε

(contrary to O(ψ(2)
i (t)) - see (35)). In addition, if

more-or-less uniform sampling(3) is combined with
(13), (31) and (33), for t ∈ [ti , ti+2] and λ ∈ [0,1], we

obtain thatψ(1)
i (t)

= (ti+2− ti+1)
−1+λ

(

1− λ (ti+2− ti+1)
2

24
κ2(ti+1)

)

+O
(

(ti+2− ti+1)
2+λ
)

+((t − ti)+ (t− ti+1))

·
( (ti+2− ti+1)

−1+λ
(

1− λ (ti+2−ti+1)
2

24 κ2(ti)
)

ti+2− ti

−
(ti+1− ti)−1+λ

(

1− λ (ti+1−ti )2

24 κ2(ti)
)

ti+2− ti

+O
(

(ti+2− ti+1)
1+λ
)

+O
(

(ti+2− ti+1)
1+λ
)

)

=

{

O(δ−1+λ
m ), for λ ∈ [0,1);

δ λ−1
m +O(δ 1+λ

m ), for ti = i
m or λ = 1.

(39)

Visibly, both asymptotics established for curves
γ ∈ C4([0,1]) in either (38) (sampled along(5)) or in
(39) (sampled according to(3)) coincide. In addition, the

orders of O(ψ(1)
i (t)) derived for γ ∈ C3([0,1]) and

samplings(3) in [11] are also the same to those specified
in (38). Thus, as compared with [11], for estimating

O(ψ(1)
i (t)) neither raising the smoothness ofγ nor

restricting samplings{ti}m
i=0 to ε-uniformity improves the

examined asymptotics for regularγ ∈C3([0,1]). ⊓⊔

2.4 Step 4: the asymptotic orders ofγ̂ ′′
2,i(t̂)

We discuss now the asymptotics ofO(γ̂ ′′2,i(t̂)) in terms of

δm. Similarly to(13), as for eacĥt ∈ Îi = [t̂i , t̂i+2]:

γ̂2,i(t̂) = γ2,i [t̂i , t̂i+1](t̂ − t̂i)+γ̂2,i[t̂i , t̂i+1, t̂i+2](t̂ − t̂i)(t̂ − t̂i+1)

we have γ̂ ′′2,i(t̂) = 2γ̂2,i [t̂i , t̂i+1, t̂i+2] and thus
γ̂ ′′2,i(t̂) = O(γ̂2,i [t̂i , t̂i+1, t̂i+2]). Sinceγ̂2,i(t̂i+ j) = γ(ti+ j) (for
j = 0,1,2), by(6) we obtain the following:

γ̂2,i [t̂i , t̂i+1] =
γ(ti+1)− γ(ti)

‖γ(ti+1)− γ(ti)‖λ =
γ(ti+1)− γ(ti)

(‖γ(ti+1)− γ(ti)‖2)
λ
2

.

The latter with(26), (30) and Taylor’s expansion gives for
γ̂2,i [t̂i , t̂i+1] =

(ti+1− ti)1−λ
(

∑3
k=1

γ(k)(ti)
k! (ti+1− ti)k−1+O

(

(ti+1− ti)3
)

)

1− λ (ti+1−ti)2

24 κ2(ti)+O((ti+1− ti)3)
.

Again Taylor’s expansion aboutx0 = 0 applied to the

function (1+ x)−1 with x = − λ (ti+1−ti)2

24 +O
(

(ti+1− ti)3
)

(separated asymptotically from−1) yields:

1

1− λ (ti+1−ti)2

24 κ2(ti)+O((ti+1− ti)3)

= 1+
λ (ti+1− ti)2

24
κ2(ti)+O((ti+1− ti)

3).

Consequently, over̂Ii we have that̂γ2,i [t̂i , t̂i+1]

=

(

3

∑
k=1

γ(k)(ti)
k!

(ti+1− ti)
k−1+O

(

(ti+1− ti)
3)
)

·

(

1+ λ (ti+1−ti)
2

24 κ2(ti)+O
(

(ti+1− ti)3
)

)

(ti+1− ti)λ−1
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=

( 3

∑
k=1

γ(k)(ti)
k!

(ti+1− ti)
k−1
)(

1+
λ (ti+1− ti)2

24
κ2(ti)

)

·(ti+1− ti)
1−λ +O

(

(ti+1− ti)
4−λ
)

= (ti+1− ti)
1−λ
(

γ(1)(ti)+
ti+1− ti

2
γ(2)(ti)

)

+O
(

(ti+1− ti)
3−λ
)

+O
(

(ti+1− ti)
4−λ
)

.

Hence, as γ(1)(ti+1) = γ(1)(ti) + γ(2)(ti)(ti+1 − ti)
+O((ti+1 − ti)2) and γ(2)(ti+1) = γ(2)(ti) +O((ti+1− ti))
we have:

γ̂2,i [t̂i , t̂i+1]

= (ti+1− ti)
1−λ
(

γ(1)(ti)+
ti+1− ti

2
γ(2)(ti)

)

+O
(

(ti+1− ti)
3−λ
)

,

γ̂2,i [t̂i+1, t̂i+2]

= (ti+2− ti+1)
1−λ
(

γ(1)(ti+1)+
ti+2− ti+1

2
γ(2)(ti+1)

)

+O
(

(ti+2− ti+1)
3−λ
)

,

= (ti+2− ti+1)
1−λ
(

γ(1)(ti)+
ti+2+ ti+1−2ti

2
γ(2)(ti)

)

+O(δ 3−λ
m ). (40)

Taking into account that(30) and (31) we arrive at (for
j = 0,1):

(

‖γ(ti+ j+1)− γ(ti+ j)‖2)
λ
2

=

(

1− λ (ti+ j+1−ti+ j )
2

24 κ2(ti+ j)+O((ti+ j+1− ti+ j)
3)

)

(ti+ j+1− ti+ j)−λ .

(41)

So, by(6), (40) and(41) for merely more-or-less uniform
samplings(3) (and hence for eachε-uniform samplings)
the second divided difference, upon introducing the
substitutions:

A = γ(1)(ti)+
ti+2+ ti+1−2ti

2
γ(2)(ti),

B = γ(1)(ti)+
ti+1− ti

2
γ(2)(ti),

the second divided difference‖γ̂2,i[t̂i , t̂i+1, t̂i+2]‖ amounts
to:

=
‖γ̂2,i [t̂i+1, t̂i+2]− γ̂2,i [t̂i, t̂i+1]‖
(t̂i+2− t̂i+1)+(t̂i+1− t̂i)

≤ ‖(ti+2− ti+1)
1−λ ·A+O(δ 3−λ

m )‖
‖γ(ti+1)− γ(ti)‖λ +‖γ(ti+2)− γ(ti+1)‖λ

+
‖(ti+1− ti)1−λ ·B+O

(

(ti+1− ti)3−λ
)

‖
‖γ(ti+1)− γ(ti)‖λ +‖γ(ti+2)− γ(ti+1)‖λ

≤ ‖(ti+2− ti+1)
1−λ ·A+O(δ 3−λ

m )‖
(

‖γ(ti+2)− γ(ti+1)‖2
)

λ
2

+
‖(ti+1− ti)1−λ ·B+O

(

(ti+1− ti)3−λ
)

‖
(

‖γ(ti+1)− γ(ti)‖2
)

λ
2

=
‖(ti+2− ti+1)

1−2λ ·A+O(δ 3−2λ
m )‖

1− λ (ti+2−ti+1)2

24 κ2(ti+1)+O(δ 3
m)

+
‖(ti+1− ti)1−2λ ·B+O

(

(ti+1− ti)3−2λ
)

‖

1− λ (ti+1−ti )2

24 κ2(ti)+O(δ 3
m)

. (42)

Taylor’s expansion applied to(1+ x)−1 about x0 = 0
yields (for j = 0,1):
(

1− λ (ti+ j+1− ti+ j)
2

24
κ2(ti+ j)+O(δ 3

m)

)−1

= 1+
λ (ti+ j+1− ti+ j)

2

24
κ2(ti+ j)+O(δ 3

m),

and hence by(42):

γ̂2,i [t̂i , t̂i+1, ti+2] = O(δ 1−2λ
m )+O(δ 2−2λ

m )

= O(δ 1−2λ
m ). (43)

In the special case when{ti}m
i=0 is uniform, the

formulas (40) and (41) (with
ti+1− ti = ti+2− ti+1 = δm = (1/m)) give:

γ̂2,i [t̂i , t̂i+1, t̂i+2]

=
δ 1−λ

m

(

3δm
2 γ(2)(ti)− δm

2 γ(2)(ti)
)

+O(δ 3−λ
m )

δ λ
m(1+O(δ 2

m))

=
δ 2−2λ

m γ(2)(ti)+O(δ 3−2λ
m )

1+O(δ 2
m)

= O(δ 2−2λ
m ). (44)

Such accelerated convergence order for uniform
samplings (as compared with(43)) can also be found in
[11] for curvesγ ∈C3([0,1]).

Finally, for another special case i.e.λ = 1 and
samplings merely admissible(1), by (40), (41),
|(ti+ j+1 − ti+ j)/(ti+2 − ti)| ≤ 1 (with j = 0,1) and
γ(1)(ti+1) = γ(1)(ti) +O(ti+1 − ti), upon substituting (for
k= 0,1):

C(k) = (ti+k+1− ti+k)(1+O((ti+k+1− ti+k)
2)

the divided differenceŝγ2,i [t̂i , t̂i+1, t̂i+2]

=
γ(1)(ti+1)+

ti+2−ti+1
2 γ(2)(ti+1)− γ(1)(ti)− ti+1−ti

2 γ(2)(ti)
C(1)+C(0)

+
O
(

(ti+2− ti+1)
2
)

+O
(

(ti+1− ti)2
)

C(1)+C(0))

=
O(ti+1− ti)+O(ti+2− ti+1)

(ti+2− ti)+O((ti+2− ti+1)3)+O((ti+1− ti)3)
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+
O
(

(ti+1− ti)2
)

+O
(

(ti+2− ti+1)
2
)

(ti+2− ti)+O((ti+2− ti+1)3)+O((ti+1− ti)3)

=
O(1)+O(ti+1− ti)+O(ti+2− ti+1)

1+O((ti+2− ti+1)2)+O((ti+1− ti)2)

= O(1). (45)

Here we use Taylor’s expansion withx0 = 0 applied to
(1+ x)−1 at x = O

(

(ti+1− ti)2
)

+O
(

(ti+2− ti+1)
2
)

. Note
that (45) coincides with(44) onceλ = 1. Thus a single
formula (44) covers bothλ = 1 or uniform samplings.
This result is the same as before in [11] for curves merely
γ ∈ C3([0,1]). Hence collating(43), (44) and (45) for
t̂ ∈ [t̂i , t̂i+2] (with each uniquet = ψ−1

i (t̂) ∈ [ti , ti+2] since
ψi is a reparameterization as shown inStep 1) the
following holds:

γ ′′2,i(t̂) =
{

O(δ 1−2λ
m ), for λ ∈ [0,1);

O(δ 2−2λ
m ), for ti = i

m or λ = 1.
(46)

We exploit now(5) of {ti}m
i=0. An extra acceleration is

achievable for the asymptotics ofO(γ ′′2,i) once both

formulas (40) and (41) derived for γ ∈ C4([0,1]) are
considered with more care.

Remark 4. The analysis so-far indicates that an increase
of smoothness inγ from C3([0,1]) to C4([0,1]) does not
contribute on its own (as compared with [11]) to faster

orders for O(γ ′′(2)2,i ) than for more-or-less uniform
samplings. Indeed a trajectory estimation for samplings
(3) and regular curvesγ ∈ C4([0,1]) by (25), (36), (37),
(39) and(46) reads asf (t)

= O(δ 3
m)

·







O(δ 1−2λ
m )O(δ−1+λ

m )O(δ−2+λ
m ), λ ∈ [0,1);

O(δ 2−2λ
m )(δ−1+λ

m +O(δ 1+λ
m ))O(δ λ

m), ti = i
m;

O(δ 2−2λ
m )(δ−1+λ

m +O(δ 1+λ
m ))O(δ λ

m), λ = 1;

+O(δ 3
m)

{

O(1), for λ ∈ [0,1);
O(1), for ti = i

m or λ = 1;

= O(δ 3
m)

{

O(δ−2
m )+O(1), for λ ∈ [0,1);

O(δm)+O(1), for ti = i
m or λ = 1;

=

{

O(δm), for λ ∈ [0,1);
O(δ 3

m), for ti = i
m or λ = 1.

(47)

over[0,1]. ⊓⊔

We prove now that for ε-uniform samplings the
asymptotics in(46), as in(35) (and hence also in(47))
can be accelerated. In fact, to improve the estimate of
γ ′′2 (t̂) we argue as in(42). Indeed, by(41), ε-uniformity
(5), (11) and by Taylor’s expansion applied to(1+ x)λ

we arrive at‖γ(ti+2)− γ(ti+1)‖λ

= (ti+2− ti+1)
λ

·
(

1− λ
24

k2(ti+1)(ti+2− ti+1)
2+O((ti+2− ti+1)

3)

)

=

(

(ti+1− ti)+O(δ min{2,1+ε}
m )

)λ

·
(

1− λ
24

k2(ti+1)(ti+2− ti+1)
2+O((ti+2− ti+1)

3)

)

= (ti+1− ti)
λ ·
(

1+O(δ min{1,ε}
m )

)λ

·
(

1− λ
24

k2(ti+1)(ti+2− ti+1)
2
)

+O((ti+2− ti+1)
3+λ )

= (ti+1− ti)
λ ·
(

1+O(δ min{1,ε}
m )

)

·
(

1− λ
24

k2(ti+1)(ti+2− ti+1)
2
)

+O((ti+2− ti+1)
3+λ ). (48)

Similarly ‖γ(ti+1)− γ(ti)‖λ

= (ti+1− ti)
λ

·
(

1− λ
24

k2(ti)(ti+1− ti)
2
)

+O((ti+1− ti)
3+λ ). (49)

Coupling formula (48) with (49) leads to
(

‖γ(ti+2)− γ(ti+1)‖λ + ‖γ(ti+1)− γ(ti)‖λ)−1

=
1

(ti+1− ti)λ (2+O(δ min{1,ε}
m ))

= (ti+1− ti)
−λ (2+O(δ min{1,ε}

m )), (50)

where Taylor’s expansion is applied to(2+ x)−1 at

x = O(δ min{1,ε}
m ). Furthermore by(11), (40), (41), (50)

combined with (3), γ(1)(ti+1) = γ(1)(ti) + O(δm) and
Taylor’s expansion(1+ x)1−λ we obtain for the divided
differenceγ̂2[t̂i , t̂i+1, t̂i+2]

=
(ti+2− ti+1)

1−λ
(

γ(1)(ti+1)+O(δm)
)

‖γ(ti+1)− γ(ti)‖λ + ‖γ(ti+2)− γ(ti+1)‖λ

−
(ti+1− ti)1−λ

(

γ(1)(ti)+O(δm)
)

‖γ(ti+1)− γ(ti)‖λ + ‖γ(ti+2)− γ(ti+1)‖λ +O(δ 3−2λ
m )

=
(ti+2− ti+1)

1−λ
(

γ(1)(ti)+O(δm)
)

‖γ(ti+1)− γ(ti)‖λ + ‖γ(ti+2)− γ(ti+1)‖λ

−
(

ti+1− ti
)1−λ

(

γ(1)(ti)+O(δm)
)

‖γ(ti+1)− γ(ti)‖λ + ‖γ(ti+2)− γ(ti+1)‖λ +O(δ 3−2λ
m )

=

(

(ti+1− ti)+O(δ min{2,1+ε}
m )

)1−λ
γ(1)(ti)

‖γ(ti+1)− γ(ti)‖λ + ‖γ(ti+2)− γ(ti+1)‖λ
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−
(

ti+1− ti
)1−λ γ(1)(ti)

‖γ(ti+1)− γ(ti)‖λ + ‖γ(ti+2)− γ(ti+1)‖λ +O(δ 2−2λ
m )

+O(δ 3−2λ
m )

=
(ti+1− ti)1−λ (1+O(δ min{1,ε})

)1−λ γ(1)(ti)
‖γ(ti+1)− γ(ti)‖λ + ‖γ(ti+2)− γ(ti+1)‖λ

−
(

ti+1− ti
)1−λ γ(1)(ti)

‖γ(ti+1)− γ(ti)‖λ + ‖γ(ti+2)− γ(ti+1)‖λ +O(δ 2−2λ
m )

=
(ti+1− ti)1−λ

(

1+(1−λ )O(δ min{1,ε}
m )

)

γ(1)(ti)

‖γ(ti+1)− γ(ti)‖λ + ‖γ(ti+2)− γ(ti+1)‖λ

− (ti+1− ti)1−λ γ(1)(ti)
‖γ(ti+1)− γ(ti)‖λ + ‖γ(ti+2)− γ(ti+1)‖λ +O(δ 2−2λ

m )

=
(1−λ )O(δ min{2−λ ,1+ε−λ}

m )

‖γ(ti+1)− γ(ti)‖λ + ‖γ(ti+2)− γ(ti+1)‖λ +O(δ 2−2λ
m )

= (1−λ )O(δ min{2−2λ ,1+ε−2λ}
m )+O(δ 2−2λ

m )

= O(δ min{2−2λ ,1+ε−2λ}
m ). (51)

Note that ifλ = 1 then(51) yields γ ′′2,i(t̂) = O(1) which
coincides with (46). Similarly, if in (51), uniform

sampling is used (i.e when termO(δ min{2,1+ε}
m ) in (5) and

(11) vanishes), evidently we haveγ ′′2,i(t̂) = O(δ 2−2λ
m )

which again is already claimed by(46). In summary, over
Îi , for λ ∈ [0,1] and ε-uniform samplings the following
holds:

γ̂ ′′2 (t̂) =

{

O(δ min{2−2λ ,1+ε−2λ}
m ), for λ ∈ [0,1);

O(δ 2−2λ
m ), for ti = i

m or λ = 1.
(52)

Formula(52) as compared with(46) yields, for all λ ∈
[0,1) an acceleration by eitherε for 0< ε ≤ 1 or by 1 for
ε ≥ 1. (In addition, the caseλ = 1 relaxes the assumption
concerning{ti}m

i=0 to form merely admissible samplings
(1).)

2.5 Step 5: asymptotics for trajectory
estimation

We pass now to the final stage of the asymptotic estimate
for γ approximation by interpolant̂γ2. It is essential to
observe that both curvesγ and γ̂2 are originally defined
over different domains i.e. over[0,1] and [0, T̂],
respectively. The piecewise-quadraticψ : [0,1]→ [0, T̂] (a
track-sum of ψi : [ti , ti+2] → [t̂i , t̂i+2]) applied here to
compareγ and γ̂2 ◦ψ , as demonstrated inStep 1forms a
genuine reparameterization of[0,1] into [0, T̂] for
arbitraryε-uniform samplings(5). The latter may not be
the case for the general class of more-or-less uniform
samplings(3) (see [11]).

Using (25), (35), (38) and (52) with ε-uniformity
yields forλ ∈ [0,1] the following approximation orders in
trajectory estimation error over eachIi reading asfi(t)

= O(δ 3
m)O(1)+







O(δ 3
m)O(δ min{2−2λ ,1+ε−2λ}

m ), for λ ∈ [0,1);
O(δ 3

m)O(1), for λ = 1;
O(δ 3

m)O(δ 2−2λ
m ), for ti = i

m;

·











O(δ−1+λ
m )O(δ min{−1+λ ,−2+λ+ε}

m ), for λ ∈ [0,1);
(

1+O(δ 2
m)
)

O(δ min{2,1+ε}
m ), for λ = 1;

(

δ−1+λ
m +O(δ 1+λ

m )
)

O(δ 1+λ
m ), for ti = i

m;

= O(δ 3
m)+











O(δ min{5−2λ ,4+ε−2λ}+min{−2+2λ ,−3+2λ+ε}
m ), λ ∈ [0,1);

O(δ min{5,4+ε}
m ), λ = 1;

O(δ 5
m), ti = i

m.

(53)

We re-emphasized here that forλ = 1 the constraint on
samplings {ti}m

i=0 in (53) are the loosest, i.e. only
condition (1) is imposed. Upon noting that both
inequalities 5−2λ ≤ 4+ ε −2λ and 2λ −2≤ 2λ + ε −3
hold if and only ifε ≥ 1 formula(53) reduces to:

f (t) = O(δ 3
m),

+















O(δ 1+2ε
m ), for 0< ε ≤ 1 & λ ∈ [0,1);

O(δ 3
m), for ε > 1 & λ ∈ [0,1);

O(δ min{5,4+ε}
m ), for λ = 1;

O(δ 5
m), for ti = i

m;

=

{

O(δ min{3,1+2ε}
m ), for λ ∈ [0,1);

O(δ 3
m), for ti = i

m or λ = 1.
(54)

The above asymptotics applies over each sub-intervalIi .
As the bounds involved are independent fromIi , the
formula (8) holds over[0,1]. Consequently, the proof of
Th. 4 is complete. ⊓⊔
Remark 5. For (8) it suffices to take{t̂i}m

i=0 instead of the
re-normalized{t̃i}m

i=0 (see (6)). The linear mapping
θi : [t̂i , t̂i+2] → [t̃i , t̃i+2], where t̃ = θi(t̂) = t̂/T̂ satisfies
θi(t̂i+ j) = t̃i+ j , for j = 0,1,2. A quadratic
γ̃2,i : [t̃i , t̃i+2] → En which fulfills γ̃2,i(t̃i+ j) = qi+ j
corresponds to the quadraticγ̂2,i : [t̂i , t̂i+2]→ En satisfying
γ̂2,i(t̂i+ j) = qi+ j , where γ̃2,i = γ̂2,i ◦ θ−1

i . Let
ψ̃i : [ti , ti+2] → [t̃i , t̃i+2] is a quadratic satisfying
ψ̃i(ti+ j) = t̃i+ j , for j = 0,1,2. By linearity of θi and
uniqueness of Lagrange interpolant we also have
ψ̃i = θi ◦ ψi . Hence f (t) = (γ̂2,i ◦ ψi)(t) − γ(t) =

(γ̂2,i ◦ θ−1
i ◦ θi ◦ψi)(t)− γ(t) = (γ̃2,i ◦ ψ̃i)(t)− γ(t). Also

ψ̃i is asymptotically a reparameterization sinceψ̇i > 0,
for sufficiently largem (see Step 1 in Th.4). Thus the
asymptotics derived in (54) prevails equally for
(γ̃2,i ◦ ψ̃i)(t)− γ(t). The shift in t̂ ∈ [0, t̂i+2 − t̂i ] used in
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Step 1 does not change the asymptotics in(54) as the
curveγ̂2,i,s(t̂) = γ̂2,i(t̂ − t̂i) satisfiesγ̂ ′′2,i,s(t̂) = γ̂ ′′2,i(t̂). ⊓⊔

Note that forε-uniform samplings Th.4 extends Th.2
(claimed for λ = 0) to λ ∈ [0,1). The estimates
established in Th.4 are sharp (as shown in Ex.2).
Consequently by Th.4 any increment within the interval
λ ∈ [0,1) does not bring a further extra convergence
acceleration (forε-uniform samplings) different than 2ε
established earlier forλ = 0 in Th. 2. Moreover, the
biggerε in (5) is, the closer, modulo a diffeomorphismφ ,
the sampling{ti}m

i=0 approaches a uniform sampling.
Indeed, this is manifested in(54), where cubic
convergence orderO(δ 3

m) established forti = i/m is
attained withε ≥ 1. The case whenλ = 1 (see Th.3) is
also covered by Th.4.

The next example confirms analytically the sharpness
of Th. 4. Recall that sharpness for samplings(3) with
λ ∈ [0,1] or for λ = 1 and samplings(1) is already
demonstrated in [11]. We pass now to the case when
λ ∈ [0,1) andε-uniform samplings are admitted.

Example 2.Consider theε-uniform sampling such that for
some knots{ti, ti+1, ti+2} (with t0 = 0):

ti+1− ti = δ̂m(1+ δ̂ ε
m), ti+2− ti+1 = δ̂m(1− δ̂ ε

m), (55)

whereδ̂m= 1/m. Note that hereδm= δ̂m(1+ δ̂ ε
m) andφ =

id (see (5)). The curve under consideration (a straight line)
is defined asγl (t) = tv, where‖v‖= 1 andt ∈ [0,1].

a) For sharpness of(8) (with ε ∈ (0,1]) it suffices to
show that, overIi we have:

fl (t) = (γ̂2◦ψi)(t)−γl (t) = σδ 1+2ε
m +O(δ 1+2ε+κ

m ), (56)

for someκ >0 and vectorσ =(σ1,σ2) 6=0∈E2. Note that
the second expression in(56) is a vector inE2. Sinceδ̂ ρ

m =

δ ρ
m(1+ δ̂ ε

m)
−ρ by the Binomial Th.δ̂ ρ

m = δ ρ
m(1+O(δ̂ ε

m))

and asδ̂m < δm we haveδ̂ ρ
m = δ ρ

m(1+O(δ ε
m)). Thus to

justify (56) it is sufficient to substituteδm with δ̂m. It is
also enough to prove(56) for somet̄ ∈ [ti , ti+2]. We set
heret̄ = (ti + ti+2)/2. The proof of Lemma1 yields:

fl (t̄) = (t̄ − ti)(t̄ − ti+1)(t̄ − ti+2)

·
∫

[0,1]3
f ′′′l (η(t̄))u2u1dudu1du2, (57)

for the function η(t̄) equal to η(t̄) =
((

t̄u2+(1−u2)ti+2
)

u1+(1−u1)ti+1
)

u + (1 − u)ti and
where the third derivative offl is taken overη(t).
Furthermore by the Chain Rule,(13) and γ ′′′l (t) ≡ 0 we
obtain that:

f ′′′l (η(t̄))

= 3γ̂ ′′2,i(ψi(η(t̄)))ψ
(1)
i (η(t̄))ψ(2)

i (η(t̄))

= 12γ̂2,i[t̂i , t̂i+1, t̂i+2]ψi [ti , ti+1, ti+2]

·
(

ψi [ti , ti+1]+ (2η(t̄)− ti − ti+1)ψi [ti , ti+1, ti+2]

)

(58)

and that by(55) the following holds:

(t̄ − ti)(t̄ − ti+1)(t̄ − ti+2)

= (1/8)(ti+1− ti)
2 ((ti+2− ti)+ (ti+1− ti))

= (1/8)δ̂ 3
m(1+ δ̂ ε

m)
2(3− δ̂ ε

m). (59)

Since
∫

[0,1]3 u2u1dudu1du2 = 1/6 formula(57) combined
with (58) and(59) yields fl (t̄) =

(3/2)δ̂ 2
m(1+ δ̂ ε

m)
2(3δ̂m− δ̂ 1+ε

m )

·γ̂2,i [t̂i , t̂i+1, t̂i+2]ψi [ti , ti+1, ti+2]

·
(

(1/6)ψi[ti , ti+1]

+

∫

[0,1]3
(2η(t̄)− ti − ti+1)ψi [ti , ti+1, ti+2]u

2u1dudu1du2
)

.

(60)

b) We determine now the asymptotics of the first
componentfl1(t̄) of (60) (assume here the decomposition
fl (t̄) = fl1(t̄)+ fl2(t̄)). Combining(6) and(55) with the
Binomial Th.:

ψi [ti , ti+1]

=
‖(ti+1− ti)v‖λ

δ̂m(1+ δ̂ ε
m)

= δ̂−1+λ
m (1+ δ̂ ε

m)
−1+λ

= δ̂−1+λ
m ·

(

1+(λ −1)δ̂ ε
m+

(λ −1)(λ −2)
2

δ̂ 2ε
m

+(λ −1)O(δ̂ 3ε
m )

)

= δ̂−1+λ
m +(λ −1)δ̂−1+ε+λ

m +(λ −1)O(δ̂−1+2ε+λ
m ),

ψi [ti+1, ti+2]

= δ̂−1+λ
m (1− δ̂ ε

m)
−1+λ

= δ̂−λ+1
m ·

(

1− (λ −1)δ̂ ε
m+

(λ −1)(λ −2)
2

δ̂ 2ε
m

+(λ −1)O(δ̂ 3ε
m )

)

= δ̂−1+λ
m − (λ −1)δ̂−1+ε+λ

m +(λ −1)O(δ̂−1+2ε+λ
m ).

(61)

Therefore, by(55) and(61) we have:

ψi [ti , ti+1, ti+2]

=
δ̂−1+λ

m (1− δ̂ ε
m)

−1+λ − δ̂−1+λ
m (1+ δ̂ ε

m)
−1+λ

2δ̂m

= (1−λ )δ̂−2+ε+λ
m +(1−λ )O(δ̂−2+3ε+λ

m )
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= δ̂−2+ε+λ
m

(

(1−λ )+ (1−λ )O(δ̂ 2ε
m )
)

. (62)

The divided differences for̂γ2,i upon using again the
Binomial Th. read as:

γ̂2,i [t̂i , t̂i+1, t̂i+2]

=

(ti+2−ti+1)v
(ti+2−ti+1)λ − (ti+1−ti)v

(ti+1−ti)λ

(

δ̂m(1− δ̂ ε
m)
)λ

‖v‖λ +
(

δ̂m(1+ δ̂ ε
m)
)λ

‖v‖λ

=
(δ̂m(1− δ̂ ε

m))
1−λ v− (δ̂m(1+ δ̂ ε

m))
1−λ v

(δ̂m(1− δ̂ ε
m))

λ +(δ̂m(1+ δ̂ ε
m))

λ

=
δ̂ 1−2λ

m

(

2(λ −1)δ̂ ε
m+(λ −1)O(δ̂ 3ε

m )
)

2+λ (λ −1)O(δ̂ 2ε
m )

v

= δ̂ 1−2λ+ε
m

(

(λ −1)+ (λ −1)O(δ̂ 2ε
m )
)

v (63)

as
(

1+λ (λ −1)O(δ̂ 2ε
m )
)−1

= 1+O(δ̂ 2ε
m ). Therefore by

(61), (62), (63), the first expressionfl1(t̄) in (60) satisfies:

fl1(t̄) = (1/4)δ̂ 3
m(1+2δ̂ ε

m+ δ̂ 2ε
m )(3− δ̂ ε

m)δ̂
−1+λ
m

·
(

1+(λ −1)δ̂ ε
m+(λ −1)O(δ̂ 2ε

m )
)

δ̂−2+ε+λ
m

·
(

(1−λ )+ (1−λ )O(δ̂ 2ε
m )
)

δ̂ 1−2λ+ε
m

·
(

(λ −1)+ (λ −1)O(δ̂ 2ε
m )
)

v

=
−(1−λ )2

4
δ̂ 1+2ε

m

(

1+O(δ̂ ε
m)

)

v, (64)

which asλ 6= 1 gives a sharp estimate in(8) for ε ∈ (0,1]
(up to the asymptotics of the second componentfl2(t̄) in
(60) - see next step).

c) We demonstrate now that the second expression
fl2(t̄) in (60) has higher convergence order thanδ̂ 1+2ε

m .
For the latter, it suffices to show that the expression
(1/6)ψi[ti , ti+1] = δ̂−1+λ

m + O(δ̂−1+λ+ε
m ) (see (61)) has

slower asymptotics than the expressionD

= ψi [ti , ti+1, ti+2]

∫

[0,1]3
(2η(t̄)− ti − ti+1)u

2u1dudu1du2.

(65)

Indeed for̄t = (ti + ti+1)/2 we have 2η(t̄)− ti − ti+1

= 2{[(t̄u2+(1−u2)ti+2)u1+(1−u1)ti+1]u+(1−u)ti}

−ti − ti+1

= 2{[(t̄u2+(1−u2)ti+2)u1+(1−u1)ti+1]u}+(ti − ti+1)

−2uti

= 2[(t̄u2+(1−u2)ti+2)uu1]+2u(ti+1− ti)−2uu1ti+1

+(ti − ti+1)

= 2t̄uu1u2−2uu1u2ti+2+2uu1(ti+2− ti+1)+2u(ti+1− ti)

+(ti − ti+1)

= 2uu1u2(t̄ − ti+2)+2uu1(ti+2− ti+1)+2u(ti+1− ti)

+(ti − ti+1)

= uu1u2 ((ti − ti+2)+ (ti+1− ti+2))+2uu1(ti+2− ti+1)

+2u(ti+1− ti)+ (ti − ti+1).

Coupling the latter with(55) yields the integral from(65)
equal to:
∫

[0,1]3

(

u3u2
1u2 ((ti − ti+2)+ (ti+1− ti+2))

+2u3u2
1(ti+2− ti+1)+2u3u1(ti+1− ti)+u2u1(ti − ti+1)

)

dudu1du2
= (1/24)((ti − ti+2)+ (ti+1− ti+2))+ (1/6)(ti+2− ti+1)

+(1/4)(ti+1− ti)+ (1/6)(ti − ti+1)

= (−1/24)(ti+2− ti)+ (1/8)(ti+2− ti+1)

+(1/12)(ti+1− ti)

= δ̂m

(

(−1/12)+ (1/8)(1− δ̂ ε
m)+ (1/12)(1+ δ̂ ε

m)

)

= δ̂m

(

(1/8)+O(δ̂ ε
m)
)

.

Combining the above with(62) and(65) leads to:

D =
(

(1−λ )δ̂−2+ε+λ
m +(1−λ )O(δ̂−2+3ε+λ

m )
)

·δ̂m

(

(1/8)+O(δ̂ ε
m)
)

=
1−λ

8
δ̂−1+λ+ε

m +(1−λ )O(δ̂−1+2ε+λ
m ), (66)

which yields faster convergence rate byε than the term
ψi [ti , ti+1] (we assumed here thatλ 6= 1). Thus(64) and
(66) prove sharpness of(8) for ε ∈ (0,1].

Note that forλ = 1 (by (62)) here f (t) ≡ 0 since

ψ(2)
i (t) = 0 (as the quadraticψi is an affine function) and

γ(3)l (t) = 0). The sharpness of Th.4 for λ = 1 is
demonstrated in [10] or [11].

A close inspection of the proof of Th.4 shows that in
fact for γl and for sampling(55) the cubic component in
min{3,1 + ε} for ε ≥ 1 does not occur and the
asymptototic order 1+2ε prevails for allε > 0 (as indeed
proved above). Such acceleration is also numerically
confirmed in Ex.3.

In order to prove the sharpness of cubic orders in(8)
for ε > 1 (andλ 6= 1) we consider a cubic curve(71) (see
Ex. 3 b)) sampled according to(55). Note that asγ ′′′c (t) =
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(0,6) 6= 0 and as(59) is always a non-vanishing term of
orderδ̂ 3

m we have e.g. overI0 = [t0, t2] that fc(η(t̄))

= O(δ̂ 3
m)O(γ̂2(ψ0(η(t̄))))O(ψ(1)

0 (η(t̄))O(ψ(2)
0 (η(t̄)))

−O(δ̂ 3
m) (67)

with t̄ = (t0 + t2)/2. It is sufficient to show that the first
component in(67) has orderO(δ̂ 1+2ε

m ). Repeating the
calculation from above carried out forγl (upon recalling
a3 − b3 = (a− b)(a2 + ab+ b2) and the Binomial Th.)
yields:

ψ0[t0, t1] = δ̂−1+λ
m (1+ δ̂ ε

m)
−1+λ (1+O(δ̂ 4

m)),

ψ0[t1, t2] = δ̂−1+λ
m (1− δ̂ ε

m)
−1+λ (1+O(δ̂ 4

m)),

ψ0[t0, t1, t2] = δ̂−2+λ+ε
m ((λ −1)+ (λ −1)O(δ̂ 2ε

m ))

·(1+O(δ̂ 4
m)),

γ̂2,0[t̂0, t̂1] = δ̂ 1−λ
m (1+ δ̂ ε

m)
1−λ v1,

γ̂2,0[t̂1, t̂2] = δ̂ 1−λ
m (1− δ̂ ε

m)
1−λ v2 (68)

and

γ̂2,0[t̂0, t̂1, t̂2]

=
δ̂ 1−2λ+ε

m (2(λ −1)+O(δ̂ 2ε
m ))

(1+ δ̂ ε
m)

λ (1+O(δ̂ 4
m))+ (1− δ̂ ε

m)
λ (1+O(δ̂ 4

m))
v

=
δ̂ 1−2λ+ε

m ((λ −1)+ (λ −1)O(δ̂ 2ε
m ))

1+O(δ̂ min{4,2ε}
m )

v

= δ̂ 1−2λ+ε
m

(

(λ −1)+ (λ −1)O(δ̂ 2ε
m )

)

·
(

1+O(δ̂ min{4,2ε}
m )

)

v, (69)

where vectors vi = (1,O(1)) (for i = 1,2) and
v = (1,O(1)). An analogous analysis as for curveγl
applied to(68) and (69) renders for the first component
in (67) the asymptotics of orderO(δ̂ 1+2ε

m ) (and thus also
of orderO(δ 1+2ε

m )). ⊓⊔

3 Experiments

The tests are conducted inMathematica 9.0(see e.g. [13])
on a 2.4 GHz Intel Core 2 Duo computer with 8 GB
RAM. Since 1= ∑m

i=1(ti+1 − ti) ≤ mδm the following
holdsm−α = O(δ α

m), for α > 0. Hence, the verification of
the asymptotics expressed in terms ofO(δ α

m) can be
performed by examining the claim of Th.4 in terms of
O(1/mα) asymptotics.

For a parametric regular curveγ : [0,1] → En

λ ∈ [0,1] and m varying betweenmmin ≤ m≤ mmax the
i-th component of the error forγ estimation is defined
here according to:

Ei
m = sup

t∈[ti ,ti+2]

‖(γ̂2,i ◦ψi)(t)− γ(t)‖

= maxt∈[ti ,ti+2]‖(γ̂2,i ◦ψi)(t)− γ(t)‖,

as Ẽi
m(t) = ‖(γ̌2,i ◦ψi)(t)− γ(t)‖ ≥ 0 is continuous over

each sub-interval[ti , ti+2] ⊂ [0,1]. The maximal valueEm
of Ẽm(t) (the track-sum ofẼi

m(t)), for eachm= 2k (here
k = 1,2,3, . . . ,m/2) is found by usingMathematica
optimization built-in functions: Maximize or
FindMinimum(the latter applied to−Ẽm(t)). From the set
of absolute errors{Em}mmax

m=mmin
the numerical estimate

ᾱ(λ ) of genuine orderα(λ ) is subsequently computed by
using a linear regression to the pair of points
(log(m),− log(Em)) (see also [3]). Since piecewisely
deg(γ̂2) = 2 the number of interpolation points{qi}m

i=0 is
odd i.e. m = 2k as indexing runs over 0≤ i ≤ m. The
Mathematicabuilt-in functions LinearModelFit renders
the coefficientᾱ(λ ) from the computed regression line
y(x) = ᾱ(λ )x + b based on pairs of points
{(log(m),− log(Em))}mmax

m=mmin
. Note that as indicated in

[11] the tested regular curves need not be parameterized
exclusively by arc-length. Namely, given our interpolation
scheme both regular curveγ and its reparameterized
version by arc-lengthγ ◦θ (see also [14]) yields the same
asymptotics for trajectory estimation (which in particular
applies to Th.4). Finally, recall that as justified in Th.4
any ε-uniform sampling renders asymptoticallyψi as
reparameterization of[ti , ti+2] into [t̂i , t̂i+2] - recall that by
Remark 5 the tests can equally use normalized or
unnormalized exponential parameterizations(6).

In the next steps we test experimentally the
asymptotics established in Th.4 together with the
sharpness established by Ex.2. First we verify the latter.

Example 3. a) Consider a regular straight line
(parameterized by arc-length):

γl (t) =

(

t√
5
,

2t√
5

)

⊂ E2 (70)

for t ∈ [0,1], sampled according to(55), wheret0 = 0 and
tm = 1 - see Fig.1 for the distribution of{γl (ti)}m

i=0 with
ε = 0.5 andm= 12.

Recall that caseλ = 1 is excluded in Ex.2. The
quadraticψi is a genuine reparameterization (see Step 1).
The linear regression is applied to
mmin = 101 ≤ m ≤ mmax = 121 and the results for
computedᾱε(λ )≈ αε(λ ) = min{3,1+2ε} are presented
in Tab.1. Note thatsharpness or nearly sharpnessof Th.
4 is confirmed herein forε ∈ (0,1] as proved in Ex.2. In
fact as indicated also in Ex.2 the sharp result forγl and
samplings(55) should coincide with 1+2ε for all ε > 0.
Indeed the latter is supported by the numerical estimates
ᾱε(λ ) listed in Tab.2.

b) Considera cubic curveγc : [0,1]→ E2 defined as:

γc(t) = (t, t3) (71)

sampled according to(55). Visibly γc is a regular curve.
The numerical cubic estimates forε ≥ 1 conducted for
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Fig. 1: The plot of the straight lineγl from (70) sampled
according to(55), for m= 12 andε = 0.5.

Table 1: Computedᾱε (λ ) ≈ αε(λ ) = min{3,1+ 2ε} for γl
from (70) sampled along(55) and interpolated bŷγ2 with some
discrete valuesλ ∈ [0,1) andε ∈ (0,1].

λ ε = 0.1 ε = 0.33 ε = 0.5 ε = 0.7 ε = 0.9 ε = 1.0
0.00 1.47 1.80 2.10 2.46 2.85 3.04
0.10 1.45 1.80 2.10 2.46 2.85 3.04
0.33 1.42 1.80 2.10 2.46 2.85 3.04
0.50 1.39 1.80 2.10 2.46 2.85 3.04
0.70 1.37 1.79 2.10 2.47 2.85 3.04
0.90 1.36 1.79 2.10 2.47 2.85 3.04

αε (λ ) 1.20 1.66 2.00 2.40 2.80 3.00

Table 2: Computedᾱε(λ ) ≈ αε (λ ) = 1+ 2ε for γl from (70)
sampled along(55) and interpolated bŷγ2 with some discrete
valuesλ ∈ [0,1) andε ≥ 1.

λ ε = 1.0 ε = 1.5 ε = 1.7 ε = 2.0 ε = 2.5 ε = 2.7
0.33 3.04 4.04 4.44 5.05 6.04 6.37
0.50 3.04 4.04 4.44 5.05 6.03 6.30

αε (λ ) 3.00 4.00 4.40 5.00 6.00 6.40

Table 3: Computedᾱε(λ )≈αε(λ ) = 3 for γc from (71) sampled
along(55) and interpolated bŷγ2 with some discrete valuesλ ∈
[0,1) andε ≥ 1.

λ ε = 1.0 ε = 1.5 ε = 2.0 ε = 3.0 ε = 4.0 ε = 5.0
0.33 3.04 3.03 3.02 3.03 3.03 3.04
0.50 3.02 3.04 3.03 3.03 3.03 3.04

αε (λ ) 3.00 3.00 3.00 3.00 3.00 3.00
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Fig. 2: The plot of the helixγh from (72) sampled according to
(73), for m= 22 andε = 0.5.

100≤ m≤ 121 shown in Tab.3 confirm the sharpness of
Th. 4. ⊓⊔

The next example refers to the regular spatial curve inE3.

Example 4.We verify now the sharpness of Th.4 for a
quadratic elliptical helixγh : [0,1]→ E3:

γh(t) = (2cos(2πt),sin(2πt),4π2t2), (72)

sampledε-uniformly (5) (with φ = id) according to:

ti =























i
m, if i even;

i
m+ 1

2m1+ε , if i = 4k+1;

i
m− 1

2m1+ε , if i = 4k+3.

(73)

Fig. 2 illustrates the curveγh sampled along(73) for ε =
0.5 andm= 22. Recall again that, by Th.4 the functionψi
is a reparameterization. All tests conducted in this example
resort to the linear regression applied formmin = 101≤
m≤ mmax= 121. The corresponding computed estimates
ᾱε(λ )≈ αε (λ ) = min{3,1+2ε} are presented in Tab.4.

Again all obtained results are consistent with the
asymptotics established in Th.4. The sharpness of(8) is
also generically confirmed.⊓⊔

Some combinations of curvesγ ∈ C4([0,1]) and
ε-uniform samplings (5) may provide an extra
acceleration in asymptotics in comparison with those
from Th. 4. Such potential situation is shown in the next
example.

Example 5.Considera planar regular convex spiralγsp :
[0,1]→ E2 defined as:

γsp(t) = ((6π −5πt)cos(5πt),(6π−5πt)sin(5πt)) (74)
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Table 4: Estimatedᾱε (λ )≈ αε (λ ) = min{3,1+2ε} (with λ ∈
[0,1)) and ᾱε (1) ≈ αε (1) = 3 for γh from (72) sampled along
(73) and interpolated bŷγ2 for some discrete valuesλ ∈ [0,1]
andε ∈ (0,1].

λ ε = 0.1 ε = 0.33 ε = 0.5 ε = 0.7 ε = 0.9 ε = 1.0
0.00 1.26 1.74 2.10 2.54 2.96 3.01
0.10 1.26 1.74 2.09 2.54 2.97 3.01
0.33 1.24 1.72 2.07 2.93 2.93 2.95
0.50 1.23 1.70 2.06 3.01 3.01 3.04
0.70 1.20 1.64 2.94 2.94 2.94 3.19
0.90 1.15 2.89 2.89 2.89 2.89 3.22

αε (λ ) 1.20 1.66 2.00 2.40 2.80 3.00

1.00 2.89 2.91 2.92 2.93 2.88 3.21
αε(1) 3.00 3.00 3.00 3.00 3.00 3.00
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Fig. 3: The plot of the spiralγsp from (74) sampled according to
(73), for m= 22 andε = 0.33.

sampled in accordance to(73). Fig. 3 illustrates γsp
coupled with (73) for ε = 0.33 and m = 22. The
verification for sampling(73) enforcing ψi to be a
reparameterization (proved earlier to be automatically
fulfilled) can be accomplished as in the previous example
(see also(19)). For the numerical assessment ofαε (λ ), as
previously a linear regression is applied to
101≤ m≤ 121. The relevant numerical results are listed
in Tab.5.

Evidently most of the experiments from Tab.5 indicate
faster convergence rates as opposed to those established in
Th. 4. ⊓⊔

4 Conclusion

In this paper we extend the existing results for trajectory
estimation viapiecewise-quadratic interpolation based
on reduced data sampledε-uniformly. Our analysis

Table 5: Estimatedᾱε(λ ) ≈ αε (λ ) = min{3,1+2ε} (with λ ∈
[0,1)) and ᾱε(1) ≈ αε (1) = 3 for γsp from (74) sampled along
(73) and interpolated bŷγ2 for some discrete valuesλ ∈ [0,1]
andε ∈ (0,1].

λ ε = 0.1 ε = 0.33 ε = 0.5 ε = 0.7 ε = 0.9 ε = 1.0
0.00 1.25 2.07 2.80 2.96 2.97 2.97
0.10 1.26 2.16 2.84 2.96 2.97 2.97
0.33 1.33 2.44 2.91 2.97 2.97 2.98
0.50 1.45 2.67 2.95 3.97 2.97 2.98
0.70 1.87 2.89 2.97 2.97 2.97 2.98
0.90 2.82 2.99 2.99 2.98 2.97 2.98

αε (λ ) 1.20 1.66 2.00 2.40 2.80 3.00

1.00 2.99 3.01 2.99 2.98 2.96 2.97
αε(1) 3.00 3.00 3.00 3.00 3.00 3.00

focuses onthe exponential parameterization(6) which
depends on a parameterλ ∈ [0,1]. Exponential
parameterization is commonly used in computer graphics
for curve modeling - see e.g. [4]. The case whenλ = 0 is
discussed in [9]. The opposite one withλ = 1, refers to
the cumulative chords and general admissible samplings
(1) which is already analyzed e.g. in [3] or [10]. A recent
result [11] (established for samplings(3) and curves
γ ∈ C3([0,T])) addresses the remaining cases of
λ ∈ (0,1) by proving that there is no acceleration in
trajectory estimation, and that the respective convergence
ordersα(λ ) = 1, for all λ ∈ [0,1) have a discontinuity at
λ = 1 with a jump toα(1) = 3.

However, a further acceleration can be achieved for
ε-uniform samplings(5) andλ = 0 (see [9]), with sharp
orders αε (0) = min{3,1 + 2ε} claimed for trajectory
estimation (withε > 0). The main resultof this paper (i.e.
Th. 4 and Ex. 2) extends the latter to allλ ∈ [0,1)
combined withε-uniform samplings. As demonstrated
the accelerated convergence orders
αε(λ ) = min{3,1+ 2ε} are not dependent onλ ∈ [0,1)
but merely onε. Again for λ ∈ [0,1) with 0 < ε < 1 at
λ = 1 we have a discontinuous jump in convergence
order from αε (λ ) = 1 + 2ε to αε (1) = 3. Such
discontinuity is removed onceε ≥ 1 as then cubic orders
hold for bothλ = 1 andλ ∈ [0,1). This paper proves also
that a natural candidate for reparameterization of[ti , ti+2]
into [t̂i , t̂i+2] i.e. a Lagrange quadraticψi satisfying
ψi(ti+ j) = t̂i+ j with j = 0,1 (see(6)) forms a genuine
reparameterization for allε-uniform samplings. On the
other hand, the latter does not always hold for arbitrary
more-or-less uniform samplings(3) as shown in [11]. It
should be mentioned that Th.4 extends also to the case
when ε = 0 (with (8) still sharp), upon imposing extra
constraints on samplings (we omit the analysis). The
ε-uniformly sampled reduced dataQm in the context of
the asymptotics of length estimation for an arbitrary
regular curve inEn has been recently discussed in [15].

A possible extension of this work is to invoke smooth
interpolation schemes (see [6]) combined with reduced
data exponential parameterization (see [4]). Certain clues
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may be given in [16], where completeC2 splines are dealt
with for λ = 1, to obtain the fourth orders of convergence
in length estimation. The analysis ofC1 interpolation for
reduced data with cumulative chords (i.e. again with
λ = 1) can additionally be found in [3] or [17].

There are also other parameterizations applied
predominantly on sparse data (applicable also on dense
Qm) - see e.g. the so-calledblending parameterization
[18] or monotonicity or convexity preserving ones[4].
The alternative approach is discussed in [19].

References

[1] E.T.Y. Lee, Computer-Aided Design21(6), 363-370 (1989).
[2] M. Janik, R. Kozera, P. Kozioł, Advances in Science and

Technology7(18), 28-35 (2013).
[3] R. Kozera, Studia Informatica25(4B-61), 1-140 (2004).
[4] B.I. Kvasov, Methods of Shape-Preserving Spline

Approximation. World Scientific Publishing Company,
Singapore, 2000.

[5] L. Piegl and W. Tiller, The NURBS Book. Springer-Verlag,
Berlin Heidelberg New York, 1997.

[6] C. de Boor, A Practical Guide to Splines. Springer-Verlag,
Berlin Heidelberg New York, 2001.

[7] L. Noakes and R. Kozera, Quarterly of Applied Mathematics
61(3), 475-484 (2003).

[8] L. Noakes and R. Kozera, Proc. 7th European Conf.
Computer Vision, ECCV’02, Copenhagen, Denmark, May
2002, editors: A. Heyden, G. Sparr, M. Nielsen and P.
Johansen, LNCS Springer-Verlag, Berlin Heidelberg2351/II,
613-625 (2002).

[9] L. Noakes, R. Kozera, R. Klette, Digital Image Geometry,
editors: G. Bertrand, A. Imiya, R. Klette, LNCS Springer-
Verlag, Berlin Heidelberg2243, 339-351 (2001).

[10] L. Noakes and R. Kozera, Geometric Properties of
Incomplete Data, editors: R. Klette, R. Kozera, L. Noakes,
J. Weickert, Computational Imaging and Vision, Kluver
Academic Publishers, The Netherlands31, 59-75 (2006).

[11] R. Kozera and L. Noakes, Applied Mathematics and
Computation221, 620-639 (2013).

[12] J.W. Milnor, Morse Theory. Annals of Mathematical Studies
51, Princeton University Press, 1963.

[13] Wolfram Mathematica 9, Documentation Center, URL link:
reference.wolfram.com/mathematica/guide/Mathematica.html.

[14] M.P. do Carmo, Differential Geometry of Curves and
Surfaces. Prentice Hall, Inc., Inglewood Cliffs, New York,
USA, 1976.

[15] R. Kozera, L. Noakes and P. Szmielew, Proceedings of
International Conference on Numerical Analysis and Applied
Mathematics, ICNAAM’14, Rhodes, Greece, September
2014, editors: T. Simos, C. Tsitouras, AIP Conference
Proceedings, AIP Publishing LLC 1648, 660015-1–660015-4
(2015).

[16] M.S. Floater, IMA Journal of Numerical Analysis26, 25-33
(2006).

[17] R. Kozera and L. Noakes, Fundamenta Informaticae61(3-
4), 285-301 (2004).
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