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Abstract: We study the quality of piecewise-quadratic Lagrange pakation for nonparametric data based &nniform sampling
and different forms of exponential parameterization. 8aipgly, it turns out that there is a sharp discontinuitytie quality of
interpolation: exponential parameterization performsbetter than a blind uniform guess, except for the case oedoalmulative
chord, which matches parametric interpolation.
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1 Introduction properties are known from classical results. Indeed, for
{ti} ", satisfying theadmissibility condition

A list of m+ 1 pointsQm = (qo,ds,---,0m) in Euclidean
n-spaceE" is obtained by sampling an unknown but
sufficiently smooth and regular curve: [0,1] — E" at
O=t<ti<th<...<tnh=1, wherety,to,....tn_1 are
also unknown. Herg; = y(ti) for 0 <i <m, and we have  Theorem 1.Let y: [0,1] — E" beC'*!, wherer > 0 and

a problem ofnonparametric interpolatior{see e.g.1]).  beregularin the sense thatis nowhered. Then piecewise
More precisely, the task is to estimate the unknown curver-degree Lagrange interpolation yields a sharp estimate:
y by a curvey : [0,1] — E™ such thaty(fj) = q; for all

i =0,1,...,m wherey and thef, are computed from p(t) = y(t) + O(35+1) 2
o, 01, ---,0m. TO emphasize that thigi} ", are not given, ) )

we call {qi}",, the nonparametric dataApplications of uniformly int € [0,1]. O

nonparametric data interpolation in computer vision, The asymptotic estimate if2) is sharp, i.e. there exist
computer graphics, engineering or physics can be founq, c cr+1 and admissible sampling; m , for which the
ine.g. P, [3], [4] or [3]. convergence order established & cannot be improved.
By contrast, when both{tj}", and {qg}", are .
known, the curvey can be estimated using standard Remark 1. Recall that, for a familyFs, : [0,T] — E"
methods forparametric interpolationsuch as piecewise With 0 <T < (e.g. forFs, = § —yandT = 1; herey
r-degree Lagrange interpolation. So our task can belepends ondn) we write Fs = O(d3) when
performed by a parametric interpolant using estimétes ||Fanll~ = O(37), where||Fg, [l = SURc(o1 [[Fa,(1)[| and
of the t;. For this to be useful, we also need to prove || - || denotes the Euclidean norm. The latter holds if there
results about the quality of the corresponding estinjate exists constank > 0 such that for somé& > 0 we have
of the unknown curvey. Such results will depend on the ||F5, || <Kd3, forall &y € (0,6) and allt € [0, T]. HereK
{ti}{",. For instance in the trivial case, when tfig}",  depends ory and on each samplinff;i}" ;. Evidently as
are chosen uniformly alon{®, 1] (or otherwise actually interval [0, T] is compact onc&, is continuous we have
known), theny is just a parametric interpolant whose ||F5 [lo = Mmaxcpo1 IIFs,(t)]. O

lim &m =0, where = oJmax =), (@)

there is the well-known resul6l:
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In our situation, where less information is available
about the distribution of theti}",, it is natural thaty
should be a lower-quality estimate yaf

Definition 1. We say that thét;}!" ; is samplednore-or-
less uniformly(see e.g.3], [ 7] or [ 8]) when, for som¢8 €
(0,1}, and all sufficiently large mand alk: 1,2,...,m, we
have:

Bom <ti—ti-1 < om. 3
Equivalently

Po i o B

Egtl_tlflg m’ (4)

for some 0 < By < B1, sufficiently large m and all
i = 1,2,....m. NecessarilyB; > 1, by summing the
inequalities. O

Definition 2. Givene > 0, we say thaft;j}" is sampled
e-uniformly (see e.g. 9]) when, for some €
diffeomorphisnp : [0,1] — [0, 1], sufficiently large m and
allo<i<m,

[ 1
m) +Olre)

This is more restrictive than the condition enforcing
{ti}",, to be distributed more-or-less uniformly. Since by
(1), mdm > 1 and thus the second term (%) reads as
o(6%). O

ti = ¢( ®)

Again both ¢ and the O(6%¢) term depend on the
e-uniform sampling. The most common method to
estimate the unknown knots{ti}", from the
nonparametric data is to use some formexponential
parametrizationsee e.g.4]) in the following sense:

Definition 3. ChooseA € [0,1] and setfy = 0. Then,
inductively, forl <i <m, set

(6)

Finally, set normalized; = {j /fm, for 0 <t < m. In order
to ensurd < i1 (and also thaf; < fi, ;) we assume that

G #Git1. O

fi=t_1+]aq _Qi—lH)\'

The choiceA = 0 yieldsf =i, corresponding to a

Note that in case of reduced da@, for F5, (see
Remarkl) we substitutd=s_ = yoo @ —y.

At the other extreme we have a more informative
estimate of the{tj}",, namely the scaledumulative
chord parameterization given by  exponential
parameterization withA = 1. Indeed, we have the
following (see [LO):

Theorem 3. Let y be C® and let the unknowrt; be
samplede-uniformly, whereg > 0. If ¥ is constructed
using piecewise-quadratic Lagrange interpolation based
on A = 1 (scaled cumulative chord) then, for
piecewiseC™ reparameterizationy : [0,1] — [0,1]
(computed from dat®y,), the sharp asymptotic estimate:

(Vo g)(t) = y(t) + O(5%) ()

follows for t € [0,1]. In fact (7) holds also for arbitrary
admissible samplingdl). O

So scaled cumulative chord parametrization performs
as well as the parametric interpolant obtained by taking
r=2in Th.1, at least in terms of asymptotic and modulo
the reparameterizationy. On the other hand, the
asymptotics for the blind uniform guess of Thare not
nearly so good for small values o&f. Between these
extremes, one might expect a steady increase in the
exponent ofdy, (or of 1/m) asA increases from 0 to 1.
Surprisingly this does not happen, as shown in %h.
below, whichis the main result of this paper

Theorem 4. Let y be C* and let the unknowrt; be
samplede-uniformly wheree > 0. If y is constructed
using piecewise-quadratic Lagrange interpolation based
on A € (0,1) then, for some piecewise-quadra@e-
reparameterizatioy : [0,1] — [0,1] (computed from data
Qm):

(Vo w)(t) = y(t) +O(am ™32
holds fort € [0, 1].

(8)
O

A similar phenomenon is discovered ill] for
more-or-less uniform samplings, where
(Vo Y)(t) = y(t) + O(Gw), for A € [0.1) and
(Yo )(t) = y(t) +0(823), for eitherA = 1, or a uniform

blind uniform guess, taking no account of the spread ofsampling and\ € [0, 1).

interpolation pointg g}, (see P]).

Theorem 2. Let y be C® and let the unknowrt;}™ , be
samplede-uniformly, whereg > 0. If ¥ is constructed

This paper proves T and its sharpness in E2.
The general framework used here, has some similarities
to [11] which applies only to such more-or-less uniformly
sampled curves for whichy : [0,1] — [0,1] is a

using piecewise-quadratic Lagrange interpolation basedeparameterization. Our proof feruniform samplings is

on A = 0 (blind uniform guess) then, for piecewi€2-
reparameterizatioy : [0,1] — [0,1] (computed from data
Qm), we have sharp asymptotic estimate ojgef]:

(Vo w)(t) = y(t) + O(am 312,

for the trajectory approximation.Od

different and also ensures thgt > 0 holds for curves

y € C3. Also, for the more restrictive case of samplings
(5) we achieved a better trajectory approximation than for
the general class of more-our-less uniform samplings
established in11]. As well as the analysis of the ER

the numerical tests confirm the sharpness of the
asymptotics from Th4.
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2 Exponential parameterization for
g-uniform samplings

The following example is used later in proving #h.

Example 1. a)An inspection reveals that eachuniform

2.1 Step 1: proof that is a reparameterization

We show first that ¢4 is asymptotically a
reparameterization ofi into I;, for arbitrarye > 0 and

A € [0,1]. This is proved here under the weaker
assumption thay € C3([0,1]) - recall that by 1], for
eitherA = 1 and{tj}{" , merely admissibl¢1) or {tj} ",

sampling is also more-or-less uniform. Indeed by Taylor'suniform and A € [0,1), the quadraticy; yields also

Th. and(5) we have:

AT T 1 1
G —ti= (P(E)a+ (Wﬂ'o(ﬁ)
QT T 1
= (P(E)E+O(W)- 9)
Since e > 0 we havem MN21+e} < m~1 and thus by
boundedness of continuoys over compact0, 1], there
exist constants & K; < K such that:

K <
m,|+1 I,m~

Soe-uniformity implies more-or-less uniformity (however
not conversely).

b) By (5) and Taylor's expansion (applied tpatt =
i/m) we have for eacls > 0 the following (withj = 0,1):

NaARW! 1
tivjr1—tivj= (P<E> E+O (W) . (10

Combining(10) with0 < 1/m< &y (asy M p(tiva—t) =1
and thusmdn, > 1) gives:

tio—tiya=tiya—t +O(5rrrr1ﬂn{2’l+£})- (11)

For uniform samplingt} ; we haveti;» —ti 1 =ti;1 —
tt=0=1/m O

We pass now to the proof of TA.

Proof. As we see later in Remabkkit is sufficient to prove

the asymptoticg8) for both unnormalized knotf; }|

(see(6)) and shifted according - fi. For simplicity the

knots in (6) and (12) use the same notation. Let

Wl = [t = I = [fi,fi;2] be the quadratic

polynomial  satisfying interpolation conditions
i(tis) :fi+ja with j =0,1,2, where

i=0, fi,1= HQi+1—Qi||)\a
tAi+2=fi+l'|‘||qi+2_qwrl||)\' (12)

The track-sum of{¢s}™2 (for i = 0,2,4,...,m— 2)
defines a _ continuous piecewi€€- mapping
¢ :[0,1] — [0, T], whereT = fp.

The proof of Th4 is divided into five steps:

asymptotically a reparameterization. This is not always
true for arbitrary more-or-less uniform samplin@@ and
A €10,1) as both shown also iriL[].

Newton’s Interpolation Formula for divided
differencesyi[-], Wi[-,-] and Y[, -,-] (see B]) gives over
eachl;:

Wi(t) = gilt] + ifti tia](t—t)
F ittt (t— ) (t—tisa),
qu(l) (t) =i [ti 7ti+l] + (Zt =t —ti)‘,Ui [tiati+lati+2]7
G2 () = 2¢afti, b1, b1 2). (13)
For Y5 to be a reparameterization it suffices to show that
q,i<1> > 0 overl;. For the latter, aslli(l> (t) is linear, it is

sufficient to demonstrate that botl;wi(l)(ti) > 0 and

qu<1) (tir2) > 0 hold asymptotically. In doing so, biL3) a
simple inspection reveals:

WP ) = Gilti a6t Yl ten i),
0 (62) = il i)

+((tiv2 —tiva) + (2 — ) Wi [t tis 1, o]
(14)

To show inequalitywi(l) (t)) > 0O, recall (see1l]) that
y € C3(]0, T]) with formula(1) leads to:

Gilti tiaa] = (i —t) 7 +O((ta — 1))
= (1) O,
Wilti vzl = (G2 i) "+ O((tz —ti) )
= (v —tiva) "+ O,

(ti2—tipn) T — (i —t) 1A

Wilti tivg,tio] = , _
t|+2 —t|

+0(32). (15)
We examine now the asymptotics of the second term of
@M () in (14) (denoted below as}) by using the
definiton of the second divided differences
Wilti by tivo):
Ji=—(tis—t) it tia, b2

. _ti+1—ti (

=~ Wiltivative] — dalti tiva]). (16)
i+2 4
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Combining(16) with 0 < (tiy1 —t)(tir2—ti)~ l<1(aterm

argument analogously justifies the second inequality

of orderO(1) with non vanishing asymptotic constant) and QU (t|+2) > 0. Hence, asymptotically the mappiggis a

with (15) and finally coupling it with(5) (thus yielding
(11)) leads to:
3 = O(D)[(tiz—tia) ™ — (1 —t) 7 +O(0F)]
= O(D)[((tr1—t) + O 1)+
—(tiyr—t) "+ 055 )]
=0(1)
(2 —t) A (L (g — ) O A )
—(tiea—t) T+ O(G).
As any g-uniform sampling is also more-or-less uniform

(see ExJ) the following holds(tj 1 —tj)~* = O(d51) and
hence:

J = O(1)[(ti41 —ti)_l+)‘ (1+ O(&Win{lv*‘:}))—l+/\

~ (i =)+ O35 ))- (17)
By Taylor’s expansion we obtain that
(14X T =14 (—14+ )2+ &) @A where

€] < |x]. Settingx = O(&m™ 1) and taking into account
that 2— A > 0, we have(l1+&)~2 = O(1) (as€ is
asymptotically separated from—1). Consequently,

(1+O(&mMLEN) =144 — 1 4 O(&m ™)) which in turn
coupled with (17) gives (with the termO(1) having
non-vanishing asymptotic constant):
J = O(D)[(tiy1 —t) " (1+ O(am™ehy)

~(tiea—t) "+ O(g)]
O(1)[0(an™* ) 1+ 0(a5™)
_ O(dwin{)\,flJr)\Jrs,lJr)\})

_ O(dwin{)\,flJr)\Jrs})
- O(érglJr)\JrE)’
- {0(5@,

Combining(18) with (14), (15), (16) andA € [0,1) results
in:

w (1)
:(ti+1—ti)71+)‘ +O(5r%]+)‘)+O(5min{/\’_l+/\+a})

for 0<e<1;

for € > 1. (18)

_ (ti+l _ti)—1+/\ + O(érrTT]‘in{)\7—1+)\ +£}) -0 (19)

asymptotically (as—1+A < min{A,—1+ A + ¢}, for
e>0and 1+ A > min{A,—1+ A + ¢}). By (14) as
0 < [(tiz2—ti) + (tir2 —tive)](tir2 —ti)fl < 2 the above

reparametrization df into ;. Thus the discussion @tep
1lis completed.

2.2 Step 2: difference between interpolgnt
and curvey

In order to accelerate the linear convergence rates for
trajectory estimation from 1[1] established for
more-or-less uniform sampling®), A € [0,1) and any
regular curvey € C3([0,1]) we assume from now on that
y € C4([0,1]).

Let the interpolant(fi) = g be defined as a track-
sum of quadratic; : [fi, i 2] — E" satisfyingp (it j) =
Gi+j, for j=0,1,2 andi = 2k, wherek=0,1,...,m/2. The
difference between the interpolght { and the unknown
curvey over eacH; (and thus ovef0, 1] since mapping;
is a reparameterization - s&ep ) reads as:

fi(t) = (Vaio gh)(t) — ¥(t).

(VZ,i o w)(tI+J) (for J = 07 172) we

(20)

Thus asfy;(fi+}) =
arrive at:
fi(tirj) = 0.

Recall now Hadamard’s Lemma (s, Part 1, Lemma
2.1):

(21)

Lemma 1.Let f : [a,b] — E" be of clas<C', wherel > 1
and assume thdt(ty) = O, for someip € (a,b). Then there
exists aC'~! functiong : [a,b] — E" for which we have

f(t) = (t —to)g(t). In additiong(t) = O(41). O

In order to construct the functioln(t) it suffices to note
that f (t) = F(1) — F(0), whereF (u) = f(tu+ (1— ujtp).
Thus by the Fundamental Th. of Calculus we obtain the
following:
f(t) = TR (u)du= (t—to) [3 ' (tu+ (1— U)to)du.

An inspection of the proof of Lemma leads to its
generalization withf having multiple zerof <t; <--- <
tx. Indeed upork+ 1 applications of Lemma we obtain:

f(t) =(t—to)(t —ta)... (t —ti)h(t), (22)

whereh is of classC!~ (k1 andh = O(‘ék:f)
Consequently, by Hadamard’s Lemma, for eaehl;

we have:

fit)=(t—t)(t-tiy)(t -t2)a(t), (23

whereg; (t) = O(fi(3> (t)), uniformly overl;. Furthermore

fi(t) =0(6%) -0 (o)1) — (1)) . (24)
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Using the chain rule for the composition of two quadratics

¥2.i o Wi combined withy € C*([0,1]), (24) gives":
fi(t) = O(dm)
(oG

oy (1) -0? 1) +0(1)) , (25)

for t € I; and f € [j, where ¥5; denotes the second

derivative ofys; with respect td = ¢ (t) € ii. In order to

examine the asymptotics dR5) it suffices to analyze
now the asymptotlcs of three involved terms, namely

O(#%;(®), oy () and O(y?(t)). As to be shown,

3 K (.
= (3 Y k,(t') (ti41—16) " +O((t 1 —1)°)]
=t 3 k) t
5 A 1 )4 Oft1 1))
—14 (ti+14— t)? K2(t) — (ti+13—ti)2K2(ti)
+O((ti+1—ti)23)
%Kz(tiwr@((tm—ti)a‘)- (30)

the respective asymptotic orders of the above three termgonsequently, coupling27) with (30) leads to:

are independent from.

2.3 Step 3: asymptotic orders qrﬁ" k=12

First we discuss the asymptotics @(([,Ii<1)(t)) and
o(y?(t)), given A € [0,1) and (5). In doing so it

suffices to analyze asymptotic orders of two divided

differenceqyi[ti, ti+1] andifti, ti11,t12], respectively.
By Taylor's Th. andy € C*([0,T]), for eacht € I; we
have:

3 K (1.
y(t) = kz / k,(t'> (t—t)*+0(t-t)*. (26)
=0
Furthermore by(12) the following holds:
il 1) = B 9O _ (MG0) - Z(ﬁﬂ?)“?
i+1 i i+1 i
(27)

Sincey is regular (i.ey # 0), it can be reparameterized to

the arc-length parameterization with/(t)|| = 1 over

[0,1] (see e.g. 14)). Such reparameterization does not

(tig —t) "1

Yilti tia) =

2

ti —t 2
: (1— %Kz(ti) +O((tia —n)"‘))
By Taylor’s expansion:

X AA=2)

A
1 =1
(1+x)2 =143 NI

for |€] < |x|, which satisfies 1+ 4% + O(x?) (for

X > —1+ p, where p > 0). The latter used with
x = —((ti41 — ti)2/12)K2(ti) + O((tiy1 — ti)3) (here
x> —1+ p holds asymptotically) results ity [t;, i, 1]

Atz —t)?
'(1_ 24
= (tipq — )

. (1— )\(thli;ti)sz(ti)> +0 ((ti+1 —ti)2+)‘) .
(31)

K2(t) +O((ti+1—ti)3)>

influence the asymptotics in question. Therefore as

= (YD(OIV(1) = 1 overt € [0,1], (here ()
denotes a standard dot produc&h) upon differentiating
a constant functioh(t) one arrives to:

= (WO O)Y =202 02 1)

which in turn results iny\Y and y/? being mutually
orthogonal. Taking the derivative ¢28) yields:

POV ) = (20121

where k(t) is the curvature ofy at t.
Iy V()| = 1, (26) (evaluated at = ti, 1), (2
obtam||v<t.+1> V()11 (s — )2

(28)

=—K2(t), (29)

Combining
8), (29) we

3 ktl

=13

(tir —t)* T+ O((tira — 1))

1 Derivatives overf are denoted by apostrophes, whereas

calculated ovet use superscript notation.

Note that, since 2 A > 0 (hereA € [0,1)) and O< tj11 —
ti < Om the last expressiod((ti 1 —t;)%**) from (31) can
also be substituted @(6%“ ). Similarly, for ¢i[ti1,ti+2]

Atz —tit1)?
= (tirz—tiyn) "+ (1_ Allisz ~tiva)” |+224 +1) Kz(ti+1)>
+0 ((ti+2 - ti+1)2+/\ ) .

The latter combined withk?(ti,1) = K2(t;) + O(ti 1 — ti)
yields gi[ti+1, 2]

= (tip2 —tipq) ¥

b2
'{1—WKZ(EHO((M—ti+1)2(ti+1—ti))]
+O((ti+2—ti+1)2+)‘)

= (tiy2—tip) 1 (1 - M%WKZ('&))
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+0 ((ti+2 —tiy1) A (b1 — ti)) +0 ((ti+2 — tiH)ZH) ,
(32)

Combining(31), (32) and|(ti+j+1 —ti+j)/ (i —t)[ <1
(for j = 0,1) rendersiti, ti11, 2]

Wity tive] — Wit tiga)

tio—1
(tio —tipq) 1+ (1 A (ti+22:1ti+1)2 K2(t ))
B G2 —1i
(i —) 4 (1 2 2 )
- G2 —1i

+0 ((ti+2 - ti+1)1+/\) +0 ((ti+2 - ti+l)1+)\) - (33)

Again, sinceA + 1 > 0 the last two terms are of order

O(35").
The argument applied so-far 8tep 3does not exploit
(5). We invoke nowe-uniformity (5). Indeed, recall that

from EX. 1, e-uniformity implies more-or-less uniformity.

By (11), (33) and|(ti+1+j — tij)(tia — 1) 1 < 1 (for
j =0,1) we haveyi[ti,ti 11,112

e 2
(ti+2_ti+1)_1+/\ (1_ )\<tl+224tl+l) Kz(ti))

ti2—t ,
(ti+1—ti)7l+)‘ 1_)\(ti+1*ti) K2(ti)
o ( 24 )_’_0(5##)\)
ti2—1
_ (ti+2—ti+l)_1+/\ B (ti+1—ti)_1+/\
G2 —1i " "
2(t. t: —t +A _ (t: —t)1t
~AKA(h) ((tiv2 —tiza) (tir1—t) )"‘0(5;#)\)
24 tiyo—t
; —1+A
((ti+1 — )+ 0(5?'”{271%})) — (tiyr— ) "1
B G2
_)\Kz(ti)
24 144
(2 =1) +OBR"™H))™ — (1,1 1)1+
' ti2—1
+O(o5™),
(34)

which by (3) (as any e-uniform sampling is also
more-or-less uniform and thtis ; —tj = O(d51)) and by
Taylor's  expansion of either (1 + x)~1*
=1+ (-1+A)1+ &2 =1+0(Kx or of
(14X =1+ (14+21)(1+ &)*x (applied atxo = 0 and
for x = O(&m™¢}) separated from-1 for € > 0, here
€] = O(x)) yields ¢ [ti, ti11, ti+2]

(tipg —t) "1 { (1—|— O(Gwin{l’g})) R 1}

tii2—1i

) (ti+1—ti)1+)‘ {(1—1—0(6,@”{1’8})) 14A B 1}

/\Kz(ti
R o=t
+0(55™)

i —t) T (A —popthe
S tiS—Z—ti) (o )+O(5,}1+’\)
AL+ 2)K2() (tae—t) A O(aR ")

B 24 tis2—1 )

_ ()\ - 1)0(6min{—1+/\,—2+/\+5})+O(6‘win{l+/\,)\+s})
+O(),

and thus by the latter, as1+ A < 1+ A, we have
(wi(z> (t)/2) = gafti tira,tis2
_ ()\ o 1)0(6rl’r711in{71+)\’72+)\ +s}) + O(dlr?m{lJr)\ ,)\+£})

O(smM-THA=2ZEAE © for A €[0,1);

= O(érrT?in{Z,lJre})’ for A = 1; (35)
o(a%™), fortj = 1,

asagain-1+A <1+A and—24+A+e<A+e¢€. The
O(8%*) asymptotics derived foft; }" , uniform in (35),
comes from the vanishing ter®(&m "> in (34) (see
(11)). Indeed fort; = (i/m) we havedn =1/m, ¢ = id
andO((Sr}]“) =0in(5) andti;2 —t 1 =t 1 —ti=1/m.
Hence, by(13), we finally obtain fort € [tj,t;+2] and for
A € ]0,1] the formula(35).

Remark 2. A simple verification shows that formu(&3)
within the class of merely more-or-less uniform samplings
(3) yields fort € [tj, tj2]:

Y1) = 0(3,2). (36)

The asymptotic$36) is independently shown inLf] for
(3) under weaker assumption admittinge C3([0,1])
instead ofy € C*([0,1]). Visibly, comparison between
(35 and (36) gives, for e-uniform samplings and
A € [0,1), an acceleration of order mit, e} in
asymptotics ofO(qu<2) (t)). In addition, for eitherA =1
and sampling$3) or {tj}[" ; uniform, formula(33) yields
overl;:

P t)=0(m) or Y?t)=0(). @7

respectively. The first result for this special casé€3n) is
already proved inq1] for y € C3([0,1]). Similarly, upon
comparing(35) with (37) (for A = 1) we obtain an extra
speed-up of order mirL, £} in asymptotics oO(qu<2) (t).
On the other hand, onemiformsampling is admitted, the
last formula from(35) yields faster convergence order
O(d%) thanO(&,) from (37) as shown also bylfl], for
yeC3([0,1)). O
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The asymptotics of O((ﬂf”(t)) for e-uniform

e 2
<(ti+2_ti+1)1+)\ (1_ )\(tl+224tl+l) Kz(ti))

samplings(5) by (13), (31) and (35), overl; reads with ti2—1 ) .
el (62— 1) (1 A0t
Altior —t.1)2 lir2—1i
= (tiy2—tip) 1 <1_ Az —tiv) |+224 +1) Kz(ti+1)> ) 5
2 "‘O((tiJrz—tiJrl)lJr )"‘O((th—tiﬂ)l+ ))
+O((tir2—tip1)=™)
O(8; 1+, forA €[0,1); (39)
+((t—t) + (t—tiz1)) F1+0(65), forti=Lora=1
min{—14+A,—2+A+¢} i Visibly, both asymptotics established for curves
O((Sfr?qin{z e} ), forAelo1); y € C*([0,1]) in either (38) (sampled along5)) or in
O(éTH ), forA = |1 (39) (sampled according t(8)) coincide. In addition, the
(&n "), forty = orders of O(yV(t)) derived for y € C3([0,1]) and
samplingg(3) in [11] are also the same to those specified
O(8; 1), for A € [0,1); in (38). Thus, as compared withl]], for estimating
1+0(82), forA =1; O((ﬂf”(t)) neither raising the smoothness of nor
S £ O(8LHA), forty = Lm restricting sampling$ti } " ; to e-uniformity improves the

examined asymptotics for regulae C3([0,1]). O
O(Gn)o(dwin{flJr)\,fZJr)\Jrs})’ forA ¢ [07 1);

in{2,1 . A A
+9 O(am)o(am "3+, fork =1; 2.4 Step 4: the asymptotic orders{gf (f)
O(dm)0(d%), forti =, '
We discuss now the asymptotics@(f/z/i( )) in terms of
O(8; 1) + O(gmnA-—LA%eh = for A € [0,1); Jm. Similarly to (13), as for eaclf € [; = [f;,f,2):
=) 106k +?(§%"'“{372”2})3 ford =1; 2. (6) = ot B2l (€ — )+ Pl B0, B2l €= B) (E— i)
— . | A~ A pop ~
I +0(65) +0(85), forti = o, we have W) = 2piffi.fiiafiz] and thus
¥5:(f) = O(ilfi, fiy1,tiv2]). Sincefs;(fivj) = y(tir;) (for
{ O(3, 1), for A €[0,1); j =0,1,2), by (6) we obtain the following:
=< 1+ 0(3%), forA =1; to1) — vt t 1) — vt
St +O(EE),  forti =g Poall ) = ; Vé_'“))_ V(i.'))”A TRy
Vili+a) = Vil (Iv(tiva) = y(t)%)2
0(3;1+), for A € [0,1); (38) The latter with(26), (30) and Taylor’s expansion gives for
St +0(8%),  forti=LorA =1. Voilfi,fiva] =

The condition(19) forcing i to be a reparameterization (ti, 1 —t)*~ (Ek_ (t.+1—t )14+ 0((tier — )3 ))
for e-uniform samplings is later exploited to compare both e 4) .
curvesy and s defined originally over different domains 1- %Kz(ti) +O((tiy1—1)3)

[0.1] and[0, T] (with T = - see(6)), respectively. Again Taylor's expansion abouty = 0 applied to the
. _ . . +)2

Remark 3. Formula(38) reveals that the asymptotics of function (14x)~* with x = —% +0((tiy1—1)?)

O(llfi(l)(t)) for e-uniform samplings does depend @n (separated asymptotically froml) yields:

(contrary to O(Llli(2>(t)) - see (35)). In addition, if . 1
more-or-less uniform sampling3) is combined with 1— At 0% 4e2(4) 4 O((ti41 — 1)3)
(13), (31) and (33), for t € [tj,ti1o] andA € [0,1], we Altiss—t)2 .
obtain thaty™ (t) =1+ =K (t) + O((ti+1 — 1))
_ Altizo—tiy1)? Consequently, ovdr we have thafs; [fi,fi1 1
= (ti+2_ti+l) 1A <1_%K2(ti+l)> '[' 1+ ]
NE V(k)(ti)(t_ LR O((ta - 1))
+0 ((ti+2—ti+l)2+)\) - k; K i+l i+1 1
(tisa—ti ) ) )
(=) + (t—t1a) (14202 O (1))
(tisa—t)A 1
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(i -0k ><1+MK2<M) 2 —t42)" A+ O]

A
L N (IVti2) — ¥lt0) 2) 2
(tiv1—1) +O((ti+1—ti) ) +H(tl+l_tl)l A B+O<(t.+1—ti)3*A) I
: _t A
— (ti— ) <y<1)(ti) + %%% (Iyfti) - vt)[2) 2
N tirz—ti)"?-A+O(8% )|
Of(t.r—t 3-A Of (tr—t 4— . _ [[(tis2 —tita .
* (( 1= 1) )+ (( 1 6) 1 Az b2 1) +O(83)
Hence, as yY(ti) = V( i) * V(Z)m(t'“ - ) 51 —t)" 2 B+O( (i1 —t)> 2 ) |
+O((tl+l _tl and V<2 ( i+1) = V<2> tl) + tl-‘rl_ti)) + At 1—t)2 (42)
we have: 1- 259 K2(t) + O(53)
Pilti, fia] Taylor's expansion applied t61+x) ! aboutxy = 0O
yields (forj = 0,1):
tiig—t
— (g —t) A VD) L) -1
= (tit1—t) <V< () + 5 y (tl)) (1_ )\(ti+j+214_ti+l')2K2(ti+j)_’_0(5%))
+O((ti+1_ti)3_)\)v /\(t P .)2
P = 14 = K () 4+ O(8)),
Voilti+1fiv2] 24
¢ ) and hence by42):
_ i+2 —lita
= (b2 —tir)™ (v<l> (tisn) + Y <ti+1>) Boilfi 6 ,tis2] = O(8% ) +0(85 %)
+0( (b2 —t42)°). — o8t ). (43)
S ) (¢1>(ti)+w¢z>(ti)) In the special case whefti}, is uniform the
. 2 formulas (40) and (41) (with
+0(5n ). (40)  tiy1—ti=tip2—tiy1 = Om = (1/m)) give:
Taking into account that30) and (31) we arrive at (for Wo.ilfifiia, i
j=0,1):
(e bk _ & (B0 - ByA0) +od )
R - 5A(1+0(82))
Mt iq—tie )2 522 2 3-22
(1 Mgt K2<ti+,->+0<<ti+j+1—ti+j>3>). S mORasL
(ti4jer—tipj) ™ —0(52 ). (44)

(41) Such accelerated convergence order for uniform
So, by(6), (40) and(41) for merely more-or-less uniform samplings (as compared wif#3)) can also be found in
samplings(3) (and hence for eack-uniform samplings)  [11] for curvesy € C3([0,1]).
the second divided difference, upon introducing the Finally, for another special case i.&. = 1 and

substitutions: samplings merely admissiblg1), by (40), (41),
tipo+ i1 — 2t (tirj41 —tiyj)/(ti2 — )] < 1 (with j = 0,1) and
— D) 2L AN (2) ] i
A=y (t.)+t_ . YA (t), YW (tip1) = YD (4) 4+ O(tiy 1 — t), upon substituting (for
B =y )+ 5=y 1), k=0.1)
o C(K) = (tipkp1 — tizk) (14 O((tipkp1 — tirk)?
the second divided differendgia,[f,{ - 1.f.+]| amounts (9 = (istert =t (L Ol 1 = b))
to: the divided difference; [ti, i1, 11 2]
_ eifiafiva) = aiff il V() + YA () — Y () — YA ()
(tiy2 —tiv1) + (tipa — 1) N C(1)+C(0)
(tire —tin)t? A+ O3] O((tis2—ti41)?) +O((tiy1—t)?)
T Ivticn) = v A+ lIy(ti2) - yitiza) |2 + C(1)+C(0)
a -t B+O((tea—1)37) | - Oftiy1—t) + Ot 12— ti11)
Iy(tiva) =y + [ly(tic2) — vtica) A (2= )+ O((tip2 —tiv1)®) + O((tir1 —1)3)
(@© 2016 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 1, 33-48 (2016) www.naturalspublishing.com/Journals.asp

N 5SS 2 41

n O((tiv1—1)?) + O ((tir2 —tiy1)?)
(tir2—t) + O((tis2 —tir1)?) + O ((tira —1)3)
_ O(1) 4+ O(ti+1—ti) + O(tiy2 —tiy1)
1+0((tiy2—tir1)?) +O((tiy1—1i)?)
— 0O(1).

(45)

Here we use Taylor's expansion wily = O applied to
(14+x)tatx=O((tis1—t)?) +O((tiz2 —ti+1)?). Note
that (45) coincides with(44) onceA = 1. Thus a single
formula (44) covers bothA = 1 or uniform samplings.
This result is the same as before ] for curves merely
y € C3([0,1]). Hence collating(43), (44) and (45) for
f e [fi,fi 2] (with each unique = @ *(f) € [t,ti. 2] since
i is a reparameterization as shown Btep ) the
following holds:
1-2) .
V() = {O( ; ), forAel0,1);

fortt=gorA=1 (46)

O(55 %),
We exploit now(5) of {tj}",
achievable for the asymptotics dd(y,;) once both

formulas (40) and (41) derived fory € C*([0,1]) are
considered with more care.

Remark 4. The analysis so-far indicates that an increase

of smoothness ity from C3([0,1]) to C*(]0,1]) does not
contribute on its own (as compared withl]) to faster

orders for O(y,\?)) than for more-or-less uniform ([[y(ti+2) -

. An extra acceleration is

we arrive at]| y(ti2) — y(tir1)|*
= (ti2—ti1)"
. <1 _ %kz(tm) (tir2 —tir1)® +O((ti2 — ti+1)3))
— ((ti+1—ti)+O(5r§1"m{2’1+5})>/\
: (1 _ %sz(ti+1)(ti+2 —tiy1)?+ O((ti2— ti+1)3)>
— (ti—t)- (1+ o(gmnitel ))A
(1_ A () (2 t110)?
+O((tis2 —ti1)*)
= (b —t)" (1+0@R"))
(1_ik (tir1) (tio —tize)?

+O((ti2—
y()|A

t|+1)3+/\ (48)
Similarly ||y(ti.1) —

= (tis1—t)*

: (1_ %kz(ti)(tiﬂ —ti)2> +O((tip1—1)>™).  (49)

samplings. Indeed a trajectory estimation for samplings 1

(3) and regular curveg € C4([0,1]) by (25), (36), (37),
(39) and(46) reads ad (t)

=0(5y)
O(8y21)0(8,+4)0(8, 1), A e0,2)
{ 085 ) (3™ +0(05))0(&),  ti=
O(8% 2) (8,44 + O(§5))0(8h), A =1;
1), forA e][0,1
+O(5) { 021;, fg:t. _6 [— or)/\ =1
+Ol for A €[0,1);
O(1), forti=LorA=1;
5m), for)\ € [0 1);
{ 0(53), forti=Lora=1. (47)
over[0,1]. O

We prove now that fore-uniform samplings the

asymptotics in(46), as in(35) (and hence also i(47))

can be accelerated. In fact, to improve the estimate of

¥ (f) we argue as if42). Indeed, by(41), e-uniformity
(5), (11) and by Taylor's expansion applied td + x)*

Coupling formula (48) with (49) leads to
Vit ) I+ (i) — yt)]Y)
() 2+ O3
= (i1 —t) " (2+0(aR ")), (50)
-1

where Taylor's expansion is applied t®2+x) - at

x = O(6m™>h) | Furthermore by(11), (40), (41), (50)

combined with (3), yV(t.1) = yV(t) + O(dm) and
Taylor's expansior(1+x)*™ we obtain for the divided
differenceys|fi, i1, i 2]

(tiro —tipg)t (V(l) (tiyr )+O(5m))

T Iv(tien) — y@) [P+ [y(tiez) — y(ten)]?
G0 (VW) Ol roE)
IV(tin) — V)P + [Yte2) — v A

(tir2~ 1) (Y () +O(8m)

~ Iv(tien) — Y[R+ [ytie) — (m)HA
(-0 (VW +0E) oy
TVt VTP i) - (t.+1>||A+ (% ™)

((ti+1—ti)+o(5rwm{21+g}) YUt
Iv(tip) — ()12 + [ly(tic2) — (t|+1)||’\
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(ta—t) YD ()

o 2—-2A
[ V(tiza) — &) A + ly(tis2) — Yl(ticg) |2 +0(0n
+0(6%)
(tipr— )P (14 O(3MNLEY) )1‘A Y ()
Yl YOI +YEs2) V) P
— (ti+l—ti)17 Y () b
VG0 — VT + W) vl oom )
(tipg —t) A (1_|_ (1—1)O(m mln{l g} )V(l
RO |¢ y()m) Yt
_ (ti1—t) Ay () b
VG0 — V)T + W2yl oom )
__@-mognE e o
= Tyt v 1A+ Y2 — vt r oo )
— (1_/\)0(6‘win{272)\,1+872)\}) +O(6m7 )
_ O(dwin{272)\,l+872)\}). (51)

Note that ifA = 1 then(51) yields y4; (f) = O(1) which
coincides with (46). Similarly, if in (51), uniform
sampling is used (i.e when te@(&?i”{z’”s}) in (5) and
(11) vanishes), evidently we havg;(f) 0(6% )
which again is already claimed [§$6). In summary over

i;, for A € [0,1] and e-uniform samplings the following
holds:

e min{2—2A 1+&—-2A}
% () = {8522_% )

forA €[0,1);
forti=forA=1.
(52)

Formula(52) as compared witl{46) yields, for allA €
[0,1) an acceleration by eitherfor 0 < € <1 or by 1 for

€ > 1. (In addition, the casg = 1 relaxes the assumption
concerning{ti }{" , to form merely admissible samplings

(1).)

2.5 Step 5: asymptotics for trajectory
estimation

Using (25), (35), (38) and (52) with &-uniformity
yields forA € [0,1] the following approximation orders in
trajectory estimation error over eakhreading adi(t)

= O(33)0(1)+

Oggngog )mln{2 2\ 1+e— 2/\})’ ;orﬁ €10,1);
o( &)0(52-2) forty = i.;
5-14)0 dwm{ 142, 2+/\+e})’ for A €0,1);
+O 52 6rl’rT1“n{2 1+s}) forA =1;
5m1+)\ —|—O l+)\)) 0(5%]”‘), fort; = Lm,
=0(9
o(&%”f”“"*”"‘“*”“mi”{*z*”’*‘*”*”) A €[0,2);
O(drr?m{SAJre}) A =1;
0(33), =g
(53)

We re- emphasized here that fdr= 1 the constraint on
samplings {ti}", in (53) are the loosest, i.e. only
condition (1) is imposed. Upon noting that both
inequalities5-2A <4+e—-2A and A —2<2A 4+¢-3
hold if and only ife > 1 formula(53) reduces to:

f(t) = O(&),

O(6%+2¢), for0<e<1&A €0,1);
0(83), fore >1& A €[0,1);
+ O(dw|n{5,4+s})’ forA = 1:
0(32), forti =L
B {o(émm{3,1+2£})7 for A € [0,1); (54)
083, forti=LorA =1.

The above asymptotics applies over each sub-intdrval
As the bounds involved are independent fram the
formula (8) holds over|0,1]. Consequently, the proof of
Th.4is complete. O

Remark 5. For (8) it suffices to takei } ", instead of the
re-normalized {f}, (see (6)). The linear mapping
6 : [fi,fii2] — [6,fii2], wheref = 6/(f) = f/T satisfies
e.(tlﬂ) = fi;, for j = 0,1,2. A quadratic
foi @ [f.fi2] — E" which fulfills §;(fiij) = iy

We pass now to the final stage of the asymptotic estimat&°résponds to the quadrafg; : [tl,t|+2] —E" sat|sfy|ng

for y approximation by mterpolanyzg It is essential to
observe that both curve,sand yo are originally defined
over different domains i.e. overd0,1] and [0, ],
respectively. The piecewise-quadratic [0,1] — [0, T] (a
track-sum of ¢ : [ti,ti 2] — [6i,fii2]) applied here to
comparey and, o i, as demonstrated iBtep 1forms a
genuine reparameterization of0,1] into [0,T] for
arbitrary e-uniform samplingg5). The latter may not be

the case for the general class of more-or-less uniformasymptotics derived

samplingq3) (see [L1)).

pillivj) = ditj,  where i = pjo 6 Let

& [t.,t.+2] — [tl,t.+2] is a quadrauc sansfymg
(Ll(tlﬂ) = fi;j, for j =0,1,2. By linearity of 6 and
uniqueness of Lagrange interpolant we also have
i = 6oy Hence f(t) = (foi o Yi)(t) — y(t) =
(Joio 6 toBoyn)(t) — y(t) = (i o )(t) — V(). Also

(i is asymptotically a reparameterization singe> 0,

for sufficiently largem (see Step 1 in Th4). Thus the
in(54) prevails equally for

(Vo o @)(t) — y(t). The shift int € [0, 2 — ] used in
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Step 1 does not change the asymptoticg54) as the
curveps; s(f) = yi(f —1i) satisfiesy;; () = 15;(f). O

Note that fore-uniform samplings Th4 extends Th2
(claimed for A = 0) to A € [0,1). The estimates
established in Th4 are sharp (as shown in Ex.2).
Consequently by T4 any increment within the interval
A e o,
acceleration (fore-uniform samplings) different thane2
established earlier foA = 0 in Th. 2. Moreover, the
biggere in (5) is, the closer, modulo a diffeomorphispn
the samplmg{t.
Indeed, this is manifested in(54), where cubic
convergence orde(53) established forti = i/m is
attained withe > 1. The case wheA = 1 (see Th3) is
also covered by TH.

The next example confirms analytically the sharpness

of Th. 4. Recall that sharpness for samplin@® with
A €10,1] or for A =1 and samplingg1) is already

demonstrated in11]. We pass now to the case when

A € [0,1) ande-uniform samplings are admitted.

Example 2.Consider the-uniform sampling such that for
some knotdt;,t1,t2} (with tg = 0):

Sm(1+ 39, &n(1—3F), (55)

wheredy, = 1/m. Note that herém = m(1+ 35) andp =
id (see B)). The curve under consideraticmgtraight ling
is defined ag{ (t) =tv, where|lv|| = 1 andt € [0, 1].

a) For sharpness ) (with € € (0,1]) it suffices to
show that, ovel; we have:

fit)= (o)) —n(t)=0

for somex > 0 and vectoo = (01, 0) #0 € E2. Note that
the second expression(&6) is a vector inE?. Slnceém =
(1 + 55) P by the Binomial Th.8f = 6m(1+0(6m))
and aséy < &, we havedh = S8(14 O(388)). Thus to
justify (56) it is sufficient to substitutéy, with . It is

also enough to provés6) for somet € [ti,ti;2]. We set
heret = (t +t2)/2. The proof of Lemm4 yields:

tip1—ti= ti2—tiy1=

5r}1+2£+o(5r%1+2€+K)’ (56)

fi(t) = [t —t)(t—ta)(f—ti)
[ () vPudududu, 57)
(0,133

for the function n(t) equal to nt) =

((tUZ-l- (1- Uz)ti+2) up+ (1— Ul)ti+1) u+ (1 —u)t and
where the third derivative off, is taken overn(t).
Furthermore by the Chain Rulé13) and y”(t) = 0 we
obtain that:

" (n(D)
= 3%, (u(n®) ™ (n©)w? (n®)

=126, fia, o] Wit tin 1, tio)

1) does not bring a further extra convergence

: <llli [ti,tiva] + (20 () —ti —tie) [ti,ti+1,ti+2]> (58)
and that by(55) the following holds:
(t—t)(t —tisa)(t —tiy2)
= (1/8)(ti+1—t)? ((tiz —t) + (1 1))

= (1/8)33(1+ 85)%(3— &5). (59)
Sincef013u updududu, = 1/6 formula(57) combined

", approaches a uniform sampling. With (58) and(59) yields fi (t) =

(3/2)82(1+ 65)%(38m— 015°%)
Voilli fa G2 Wittt o)
((

1/6 qJI t|7tl+1]
+/ (20 (1) —t — tic ) Y[ttt i UPuadududup).
o (60)

b) We determine now the asymptotics of the first
componentfj; (t) of (60) (assume here the decomposition

fi(t) = fi1(t) + fi2(t)). Combining(6) and(55) with the
Binomial Th.:

Wi fti tisa)
I\(tl+l—tu)V|\
5m(1+ 55)
= & 1A (14 88) 1A
_ 8—1+/\ . <1+()\ _1)8€+ (A-1)(A _2)826
m m 2 m

. 1>0<8%£>)

:Snf]lJr)\_'_(/\ _1)8';1l+£+)\_|_(/\ 1

)O(Srﬁl+2£+)\),
Wiltisa,tis 2]

_ 8r’r_11+/\ (1_ Sr%)—l+/\

A1 -2) -

:85A+1-<1—(A—1)8;+( 5 5z
- 103
_ 3r’r_11+/\ _ (/\ _ 1)8;]1—&-8-&-)\ + (/\ _ 1)0(3n_11+2£+)\)'

(61)
Therefore, by(55) and(61) we have:
Wifti tisa,tiv2)
361“ (1— 3@)71“ _ 361“(14_ &%)flﬂ
= 25 A
(1—2)O(§-2+3+)

= (1-2)3p% 5
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= §-2re+) ((1—)\)+ (1—)\)0(3,%8)) . (62)

The divided differences fof,; upon using again the
Binomial Th. read as:

P, lfi, figa, fiso]

_ (tiya—t)v
_ (t|+2 i) (i)

(Bnta- 50)" VP + (8n(+89)" v
_ (Gm(L= 38V — (Gn(1+ )
(Om(1— 35)* + (Gm(1 -+ 08))*

(20~ &+ (A —1)0(5%))

24 A (A —1)0(52)
= &2 (A -1+ - )0(E)) v

(tiyo—tipa)Vv

_Srn_

\Y

(63)

~ -1 ~
as (1+/\ (A — 1)0(6%5)) =1+ 0(6%). Therefore by

(61), (62), (63), the first expressiofy 1(_) n (60) satisfies:
fin () = (1/4)83(1+ 285 + 6%) (3 — §5) 5, 1A

(14 A =D&+ (A - 1)O(8F) ) 57
(@=2)+(@-2)0(8%)) 82

(A =1+ -1)0(8%)) v

- LA g (14089 ).

which asA # 1 gives a sharp estimate (8) for € € (0,1]
(up to the asymptotics of the second comporfest) in
(60) - see next step).

(64)

c) We demonstrate now that the second expression

fio(f) in (60) has higher convergence order thgk 2.

For the latter, it suffices to show that the expression

(1/6)Wlt.tiza] = O + O(8,M 1 €) (see (61)) has
slower asymptotics than the expression

=y [ti,ti+1,ti+2]/ (2 (1) —t — tir1)u?urdududu,.
(0,13
(65)
Indeed fort = (tj +t,1)/2 we have B (t) —tj —ti 1
= 2{[(tup + (1 — u)tis2)ug + (1 — up)tis 1 Ju+ (1 — u)ti}
—ti—tiig
= 2{[(tuz + (1 — u)tiz2)u1 + (1 — up)tica]u} + (ti —tisa)
—2Uut;
=2 [(t_U2 +(1- uz)ti+2)uu1] +2u(tis1—t) —

2Ulnti g

+(t —tis1)

= 2tuup — 2uth Uzt 2 + 2uuy (42 — tiv1) + 2u(tiv1 — )
+(ti —ti+l)

= 2ulgUz(t —ti12) +2uty(tis2 —tit1) + 2u(tig — )

+(ti —tiy1)
= uugU2 ((t —ti2) + (tig1 —tiv2)) +2uu(ti2 —tisa)
+2u(ti+1 —t|) + (t| _ti+]_).

Coupling the latter wit{55) yields the integral froni65)
equal to:

o (26— t2)+ (62— 2)
+20%U (2 — ti1) + 20U (ti 1 —t) + UPUL (6 —ti 1))
dududu,
=(1/24) ((ti —tis2) + (tisa—tiy2)) +(1/6)(ti2 —tiva)
+(1/4) (i1 — 1) + (1/6) (6 —ti 1)
=(=1/24)(tis2—ti) + (1/8)(tis2 —tit1)
+(1/12)(ti1 —t)
S (RIS CRRCIECTERE )
—&n((2/8)+0(85)).
Combining the above witt62) and(65) leads to:
D = ((1—=2)8;2H 4+ (1—1)O(§, 23 +A ))
8n ((1/8)+0(8))
= LA g e (1o 2)0(G; ),

which yields faster convergence rate bythan the term
Wilti,ti+1] (we assumed here that+# 1). Thus(64) and
(66) prove sharpness ¢8) for € € (0,1].

Note that forA = 1 (by (62)) here f(t) = 0 since

wi(2> (t) = 0 (as the quadratig is an affine function) and

y|(3) (t) = 0). The sharpness of Th4 for A =1 is
demonstrated in{0] or [11].

A close inspection of the proof of TH.shows that in
fact for yf and for sampling55) the cubic component in
min{3,1+ ¢} for € > 1 does not occur and the
asymptototic order 4 2¢ prevails for alle > 0 (as indeed
proved above). Such acceleration is also numerically
confirmed in Ex3.

In order to prove the sharpness of cubic order§8n
for € > 1 (andA # 1) we consider a cubic cur&1) (see
Ex. 3 b)) sampled according t®5). Note that ag{’(t) =

6m 1+A+e (66)
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(0,6) # 0 and as(59) is always a non-vanishing term of

orderd? we have e.g. ovep = [to,to] that fe(n (1))

= O(§)O(Re(wo(n ))O(wg” (n )0y (n(©))
~0(&3) (67)

with t = (to +1t2)/2. It is sufficient to show that the first

component in(67) has orderO(8%"%). Repeating the
calculation from above carried out fgr (upon recalling
a®—b® = (a—b)(a® + ab+ b?) and the Binomial Th.)
yields:

Wolto.tr] = G (1+65) "1 (1+0(8%),
Wolte.to] = G4 (21— 85) "1 (1+0(8%),

Wolto,tr, t2] = 352 5((A — 1) + (A — 1)O(8%))

(1+0(3%),
)72 o[fo,fl] = 8&1_)\ (1+ 8,%)1_/\ V1,
Poolfe, 2] = 654 (1 88) v, (68)
and
¥o.0lfo, f1, B2

Om 2 *€(2(A — 1) + O(5%))
(1+88)* (1+0(84) + (1 G5 (1+O(38))
_ P -1+ (A - 1)O(3)

1+O(&win{4,2$})
=824 -+ - o)
(1+0(8Rm4%h ) v, (69)
where vectorsv; = (1,0(1)) (for i = 1,2) and

v = (1,0(1)). An analogous analysis as for curyg
applied to(68) and (69) renders for the first component
in (67) the asymptotics of orded(d%%¢) (and thus also
of orderO(8%%)). O

3 Experiments

The tests are conductedlifathematica 9.@see e.g.13))
on a 2.4 GHz Intel Core 2 Duo computer with 8 GB
RAM. Since 1= y",(tiy1 —ti) < mdn the following
holdsm~% = O(d%), for a > 0. Hence, the verification of
the asymptotics expressed in terms ©fd%) can be
performed by examining the claim of TH.in terms of
O(1/m®) asymptotics.

For a parametric regular curve : [0,1] — E"
A € ]0,1) and m varying betweenmmmin < m < Mmax the
i-th component of the error foy estimation is defined
here according to:
Em=sup [(fioy)(t) -yl

teftitiyo]

= MaXep g, | (V2i o 1) (1) — (D),

asEl(t) = [|(Vai o ¢)(t) — y(t)]| > O is continuous over
each sub-intervdl;, ti, 2] C [0,1]. The maximal valué&n,
of Em(t) (the track-sum of/(t)), for eachm = 2k (here
k=123,...,m/2) is found by usingMathematica
optimization  built-in ~ functions: Maximize or
FindMinimum(the latter applied te-Em(t)). From the set
of absolute errors{En}pm  the numerical estimate
a(A) of genuine ordeor(A) is subsequently computed by
using a linear regression to the pair of points
(log(m), —log(Em)) (see also 3]). Since piecewisely
dedy») = 2 the number of interpolation poin{s) } ", is
odd i.e.m = 2k as indexing runs over & i < m. The
Mathematicabuilt-in functions LinearModelFit renders
the coefficienta(A) from the computed regression line
y(x) = a(A)x + b based on pairs of points
{(log(m), —log(Em)) jmra . Note that as indicated in
[17] the tested regular curves need not be parameterized
exclusively by arc-length. Namely, given our interpolatio
scheme both regular curvg and its reparameterized
version by arc-lengtlyo 6 (see also14)]) yields the same
asymptotics for trajectory estimation (which in partiqula
applies to Th4). Finally, recall that as justified in Thi
any e-uniform sampling renders asymptotically; as
reparameterization dfj,t ] into [fi,fi. 2] - recall that by
Remark 5 the tests can equally use normalized or
unnormalized exponential parameterizatioB)s

In the next steps we test experimentally the
asymptotics established in Th together with the
sharpness established by BxFirst we verify the latter.

Example 3. a) Consider a regular straight line
(parameterized by arc-length):

o) = (g o5 ) (70)

fort € [0,1], sampled according t®5), whereto = 0 and
tm = 1 - see Fig1 for the distribution of{y (t;) }", with
e =0.5andm=12.

Recall that case\ = 1 is excluded in Ex.2. The
quadraticys is a genuine reparameterization (see Step 1).
The linear regression is applied to
Mmin = 101 < m < mmax = 121 and the results for
computedig (A) =~ as(A) = min{3,1+ 2¢} are presented
in Tab.1. Note thatsharpness or nearly sharpnestTh.

4 is confirmed herein foe € (0,1] as proved in Ex2. In

fact as indicated also in EX the sharp result foyy and
samplingg55) should coincide with - 2¢ for all € > 0.
Indeed the latter is supported by the numerical estimates
as(A) listed in Tab2.

b) Considera cubic curvey : [0, 1] — E? defined as:

Ye(t) = (t,t%) (71)

sampled according t@b5). Visibly y; is a regular curve.
The numerical cubic estimates fer> 1 conducted for
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Fig. 1: The plot of the straight liney from (70) sampled
according ta55), form= 12 ande = 0.5.

Table 1: Computedag(A) ~ ag(A) = min{3,1+ 2¢} for y
from (70) sampled alond55) and interpolated by», with some
discrete valued € [0,1) ande € (0,1].

A e=01|e=033|e=05|€¢=07|e=09]| =10
0.00 1.47 1.80 2.10 2.46 2.85 3.04
0.10 1.45 1.80 2.10 2.46 2.85 3.04
0.33 1.42 1.80 2.10 2.46 2.85 3.04
0.50 1.39 1.80 2.10 2.46 2.85 3.04
0.70 1.37 1.79 2.10 2.47 2.85 3.04
0.90 1.36 1.79 2.10 2.47 2.85 3.04

ag(A) 1.20 1.66 2.00 2.40 2.80 3.00

Table 2: Computedas(A) ~ ag(A) = 1+ 2¢ for y from (70)
sampled along55) and interpolated by with some discrete

valuesA € [0,1) ande > 1.

A e=10|e=15|¢e=17|e=20|e=25| =27
0.33 3.04 4.04 4.44 5.05 6.04 6.37
0.50 3.04 4.04 4.44 5.05 6.03 6.30

ag(A) 3.00 4.00 4.40 5.00 6.00 6.40

Table 3: Computedig (A) =~ dg(A) = 3 for y from (71) sampled
along(55) and interpolated by, with some discrete valueks €
[0,1) ande > 1.

Fig. 2: The plot of the helixy, from (72) sampled according to
(73), for m= 22 ande = 0.5.

100< m < 121 shown in Tab3 confirm the sharpness of
Th.4. O

The next example refers to the regular spatial curiedin

Example 4 We verify now the sharpness of Th.for a
quadratic elliptical helixy, : [0,1] — E®:

Wh(t) = (2cog2mt),sin(2mt), 41%t2), (72)
samplece-uniformly (5) (with ¢ = id) according to:
& if i even;
ti={ b+ote ifi=4k+1; (73)
t— A, ifi=4k+3.

Fig. 2 illustrates the curver, sampled along73) for € =

0.5 andm= 22. Recall again that, by TH.the functiony

is a reparameterization. All tests conducted in this exampl

resort to the linear regression applied fogin = 101 <

m < Mmax = 121. The corresponding computed estimates

ag(A) ~ ag(A) =min{3,1+ 2¢} are presented in Tal.
Again all obtained results are consistent with the

asymptotics established in Th. The sharpness dB) is

also generically confirmed.O

A e=10|€e=15|€e=20|e=30| =40]| =50

ggg 2-8‘2‘ 2-82 g-gg 2-82 g-gg 3-83 Some combinations of curveg € C*([0,1]) and

aQ(M 300 300 300 300 300 300 s—unn‘orm. sa}mpllngs (5). may prowd_e an extra
acceleration in asymptotics in comparison with those
from Th. 4. Such potential situation is shown in the next
example.
Example 5.Considera planar regular convex spirasp :
[0,1] — E? defined as:
Ysp(t) = (61— 5mt) cog5mt), (61— 57it) sin(5mt)) (74)
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Table 4: Estimatedag (A) =~ ag(A) = min{3,1+ 2¢} (with A €
[0,1)) and a¢ (1) ~ ag(1) = 3 for y, from (72) sampled along
(73) and interpolated by, for some discrete valuek € [0,1]

Table 5: Estimatedag (A) ~ ag(A) = min{3,1+ 2¢} (with A €
[0,1)) and a¢ (1) = ag(1) = 3 for ysp from (74) sampled along
(73) and interpolated by for some discrete valuek € [0,1]

ande € (0,1]. ande € (0,1].
A £€=01)|e=033| e=05|€e=07|e=09]| =10 A £€=01| =033 | e=05|¢e=07| =09 ]| =10
000 | 1.26 1.74 210 | 254 | 296 | 301 000 | 1.25 2.07 280 | 2.96 | 297 | 297
010 | 1.26 1.74 209 | 254 | 297 | 301 010 | 1.26 2.16 284 | 296 | 297 | 297
0.33 1.24 1.72 2.07 2.93 2.93 2.95 0.33 1.33 2.44 291 2.97 2.97 2.98
050 | 1.23 1.70 2.06 | 301 | 301 | 304 050 | 1.45 2.67 295 | 397 | 297 | 298
070 | 1.20 1.64 294 | 294 | 294 | 319 070 | 1.87 2.89 297 | 297 | 297 | 298
090 | 1.15 2.89 289 | 289 | 289 | 322 090 | 2.82 2.99 299 | 298 | 297 | 298
ag(A) | 1.20 1.66 2.00 | 240 | 280 | 3.00 ag(A) | 1.20 1.66 2.00 | 240 | 280 | 3.00
1.00 2.89 291 2.92 2.93 2.88 3.21 1.00 2.99 3.01 2.99 2.98 2.96 2.97
a:(1) | 3.00 3.00 300 | 300 | 300 | 3.00 a:(1) | 3.00 3.00 300 | 300 | 300 | 3.00
20
e focuses onthe exponential parameterizatiof®) which
o el depends on a parameteA € [0,.1]. Exponential .
L P . parameterization is commonly used in computer graphics
K o N N for curve modeling - see e.4][ The case whed =0 is
/ , e " discussed in9]. The opposite one witih = 1, refers to
/ . ~® ~e " \ the cumulative chords and general admissible samplings
¢ ‘/ d ‘e \ \‘ (1) which is already analyzed e.g. i][or [10]. A recent
20 T s T ®2 result [L1] (established for sampling$3) and curves
| . . . y € C3([0,T])) addresses the remaining cases of
\ S I / A € (0,1) by proving that there is no acceleration in
N e ! trajectory estimation, and that the respective convergenc
. - e ordersa(A) =1, forall A € [0,1) have a discontinuity at
P B A =1 with ajump toa (1) = 3.
However, a further acceleration can be achieved for
g-uniform samplingg5) andA = 0 (see 9]), with sharp

-20-

orders ag(0) = min{3,1+ 2¢} claimed for trajectory
estimation (withe > 0). The main resulof this paper (i.e.
Th. 4 and Ex. 2) extends the latter to alh € [0,1)
combined with e-uniform samplings. As demonstrated
the accelerated convergence orders
ag(A) =min{3,1+ 2¢} are not dependent ok € [0,1)
but merely one. Again forA € [0,1) with 0 < € < 1 at
! A =1 we have a discontinuous jump in convergence
Cou'pled' with (73) for. e = 0.33 anq m = 22. The order from ag()\) = 1+ 2¢ to aa(l) — 3. Such
verification for sampling(73) enforcing i to be a  discontinuity is removed once > 1 as then cubic orders
reparameterization (proved earlier to be automaticallyhold for bothA = 1 andA e [0,1). This paper proves also
fulfilled) can be accomplished as in the previous examplehat a natural candidate for reparameterizatioft;of , o]
(see alsq19)). For the numerical assessmentefA), as  into [f,f.,] i.e. a Lagrange quadratigy satisfying
previously a linear regression is applied to Wi(tsj) =fiej with j = 0,1 (see(6)) forms a genuine
101<m<121. The relevant numerical results are listed reparameterization for ak-uniform Samp"ngs_ On the
in Tab.5. ) o other hand, the latter does not always hold for arbitrary
EV|dent|y most of the eXperlmentSfrom Tadndicate more-or-less uniform Samp“nqg) as shown in 11] It
faster convergence rates as opposed to those establisheddAould be mentioned that TH.extends also to the case
Th.4. O when & = 0 (with (8) still sharp), upon imposing extra
constraints on samplings (we omit the analysis). The
e-uniformly sampled reduced da@, in the context of
the asymptotics of length estimation for an arbitrary
regular curve irE" has been recently discussed 1]
In this paper we extend the existing results for trajectory A possible extension of this work is to invoke smooth
estimation viapiecewise-quadratic interpolation based interpolation schemes (seé€]) combined with reduced
on reduced data sampled@-uniformly. Our analysis data exponential parameterization (sép.[Certain clues

Fig. 3: The plot of the spirajsp from (74) sampled according to
(73), for m= 22 ande = 0.33.

sampled in accordance t(73). Fig. 3 illustrates ysp

4 Conclusion
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may be given in16], where complet€? splines are dealt [19] K. Marken and K. Scherer, Mathematics of Computation
with for A = 1, to obtain the fourth orders of convergence  66(217), 237-260 (1997).
in length estimation. The analysis 6f interpolation for
reduced data with cumulative chords (i.e. again with
A = 1) can additionally be found irg] or [17]. ] ~ Ryszard Kozera
There are also other parameterizations applied IS a Professor at
predominantly on sparse data (applicable also on dense the Faculty of Applied
Qm) - see e.g. the so-calleblending parameterization Informatics and Mathematics
[18] or monotonicity or convexity preserving ong4. at ~ Warsaw  University

The alternative approach is discussedlif][ of Life Sciences - SGGW. He
is also the Adjunct Associate
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