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Abstract: In this paper, we propose a methodology to numerically nmategfunctions using multicomplex algebras and their
corresponding matrix representations. The methodologpl@m multicomplex Taylor series expansion (MCTSE) to didafy
approximate and integrate a function using sufficiently lsmamber of points. We investigate this methodology by premg three
different algorithms for various approximation strategid/e also use numerical studies to demonstrate the pernficenad the proposed
methodology.
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1 Introduction generalization of the trapezoidal rule is Romberg
integration, which can yield more accurate results for
Numerical integration, also referred to as numericalmany fewer function evaluationd][ Another group of
guadrature, constitutes a broad family of algorithms forquadrature formulas allow intervals between interpofatio
calculating the numerical value of a definite integd][ points to vary, which includes Gaussian quadrature
There are several reasons for carrying out numericaformulas p]. When the integrand is smooth, a Gaussian
integration. The integrand function may not be known atquadrature rule is typically more accurate than a
some points, it may be difficult or impossible to find an NewtonCotes rule. Other quadrature methods with
antiderivative, or it may be easier to compute a numericavarying  intervals include  GaussKronrod and
approximation than to compute the antiderivative. ClenshawCurtis quadrature methodgdnd [4].
Numerical integration methods can be generallyThe other group of quadrature, known as adaptive
described as combining evaluations of the integrand to getjuadrature, approximates the function using static
an approximation of the integrall] The integrand is quadrature rules on adaptively refined subintervals of the
evaluated at a finite set of integration points and aintegration domainq]. Generally, adaptive algorithms are
weighted sum of these values is used to approximate th@ust as efficient and effective as traditional algorithmss fo
integral. The integration points and weights depend on théwell behaved” integrands, but are also effective for
specific method used and the accuracy required from thébadly behaved” integrands for which traditional
approximation. algorithms tend to fail. There are also other numerical
There has been a large body of literature aroundintegrations methods based on information theory, which
numerical integrationd]. A large class of methods uses have been developed to simulate information systems
Newton-Cotes formulas, also known as quadraturesuch as computer controlled systems, communication
formulas, which approximate the function with various systems, and control systendd].
degrees of polynomials evaluated at equally spacedin important part of the analysis of any numerical
points, of which the trapezoidal rule and Simpson’s ruleintegration method is to study the behavior of the
are among common exampled3[. Some of these approximation as a function of the number of integrand
methods have been integrated with Taylor seriesevaluations. Generally, a method that yields a small error
approximation as proposed in3][ In addition, a
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for a small number of evaluations is considered superiorjntegration and we provide detail description of the three
because reducing the number of evaluations of theproposed methods. In section 4, we first provide an
integrand typically reduces the number of arithmeticillustration example showing the steps of the proposed
operations involved, and therefore reduces the totamethods. Next, we evaluate the performance of the
round-off error. proposed methods in comparison with some of the
In this paper, we propose a methodology to numericallyexisting methods in the literature using several numerical
integrate functions based on multicomplex Taylor seriesexamples. Finally, in section 5, we present the conclusion
expansion (MCTSE) method8[12] and [10]. The and direction for future research.

proposed framework adaptively increases the order of

approximations and refines subintervals of the integration

domain as necessary to reduce the number of function

evaluations. Our methodology can be applied to the2 Multicomplex Algebrasfor The Calculation

problems V\'/he're' the number. of possible functlon of High order Numerical Derivatives
evaluations is limited or evaluations are expensive, such

as the finite element method (FEM). The methodology|, this section, we describe the multicomplex Taylor

also has the convenient property of nesting, wheresgjeg expansion (MCTSE) method for the calculation of

integrand values can be re-used. In addition, the proposefign, order derivatives]. MCTSE method uses the Taylor
framework has a modular and flexible structure, Wh'Chseries expansion df(x- ih) aroundx as,

allows its different components to be combined and
integrated in several ways. In particular, we present three f(x—hi) = f£(x)+hf'(x)i + O(h2

different methods based on proposed methodology and _( _+ ) .( )+_ G0+ O, _
compare their performance. In the proposed framework;Then, the limit of the imaginary part of the Taylor series
we begin with dividing the integration interval into divided byh ash approaches zero gives the first derivative
subintervals. Next, we use Taylor series expansion baseds follows,
on the MCTSE to approximate the function values at the
endpoints and compare them with the actual values. Then,

if the error is greater than a pre-specified threshold, we : /
first consider higher degrees of the Taylor series and then f) = lim | my [ (x+ hi)] =lim h
make additional points as necessary. Finally, we use the oX h—0 h =0 h

information of the approximating Taylor series t0  The procedure can be generalized for calculating the

integrate the function over the entire interval. Figdte  pth gerivative using multicomplex numbers by perturbing
shows the general scheme of the proposed framework. the function inn directions ofis, ..., in as given,

)

of"(x) _ im Iml_,_n(f[x+h|1+...+h|n)]). D
. ox" h—0 hn
« Subdividing the interval of integration into n subintervals MCTSE emp|0y3 the matrix representation of a
S I multicomplex number to calculate high order derivatives
of analytic functions. The implementation of the method
+ Estimating the function at the endpoints using MCTSE for the calculation of the first three derivatives has been
Step 2 shown here. Computation of the first three derivatives is
possible through perturbing the function in all three
- + Improving accuracy of the approximations direct[ons ofiq, io and.i 3 ir_1 the tripomplex space..To f_ind
the first three derivativesx is replaced with its
perturbation, 1?3 = x + hiy + hiz 4 hiz. The matrix
st « Integration of the estimated functions from step 3 representatlons Of the trlcomplex num@%ﬂz:; |S glven
ep 4 ) ]
below:
Fig. 1: The outline of the proposed methodology. )(123: X+ hiy + his + hig < N)%23
x—h-h 0 -hO0 0 O
The rest of the paper is organized as follows: In hx 0-h0-ho0O
section 2, we provide some necessary information about ho x-ho0 0-hoO
the MCTSE method for the calculation of various order of _)Jo0h h x 0 0 0-h
derivatives. We also describe the implementation of the ho 0O 0 x-h-ho
MCTSE using corresponding matrix representation of Oh 0 0 h x 0-h
multicomplex numbers. In section 3, we investigate our 00 h O h O x—h
proposed methodology for computing numerical 00 0h 0 h h x
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Then, we calculatef (N£2%) which will be a 2 x 23
matrix. Based on the MCTSE, the first three derivatives Cootx 3w e B e Bx 6x 6
can be calculated using equatidhg. 7 @ _6Mx 3@ —6Mx 3@ 6he  6hex
3% —7h® —6h?x  x*  3hx> —6h>x 6h°  3hx? 6Bh?x
6h?x 3@ 32 x®  —6h® —6h®x —6h?x 3hx2
3 —6h?x —6h?x 6h® X3 3 3nx? Bh?x
6h?x 3@ —6h —6h®x 3hx® X —6h?x 3hx2

FNES) =

of(x) i [F(NED)o1r  [F(NED)]ar  [F(NEZD)]sa 6hex  —6h° 3n —6hex 3@ —BMPx X 30
T - hIE]O h = h = h ) 6h® 6h°x  6h°x  3hx®> 6h’x 3h® 3hxe X
2)
Based on the equatior®s4, the elements in the second,
third and fifth rows, first column of th&(N}2%) divided by
92f (x) i [FINE23))ar  [F(NE3)]er  [F(NLZ3)]74 h show the first derivatives of the function as follow:
2 2 2 2 ) . 123 . 123
ox h—0 h h h - f/(x) = mm_}()% = I|mh_>02M _
limp o 185t — jimy, o 3¢ — 352
3 123 The elements in the fourth, sixth and seventh rows, first
0°f00 _ i [F(Ne™)]s1 (4)  column of thef(N¢{23) divided by h* show the second
ax3 h—0 h3 derivatives of the function as follow:
The general formulation for the position and number of f7(x) = Iimh_,()% = Iimhﬁo% =
appearances of different order of derivatives in the i (N2 6’ _ g
MCTSE resulted matrix has been discussed8h Pne Mho =z = IMh0 75z = OX
may also use algorithm2, to find the position of Finally, the element in the eighth row, first column of
derivatives. the f(N£23) divided by h® shows the third derivatives of

the function as follow:

. f N123 . 6h3
f///(x) =limn_o [f( ?13 )81 =limp_o == 6

Algorithm. Position of derivatives in MCTSE matrix

Input: Order of derivative (d)
Output: Matrix position of derivatives (D)

3 Proposed M ethodology

Stepl.  [D] = [0]2xq In this section we investigate numerical integration using
Step2. [D]; =1 multicomplex Taylor series expansion (MCTSE)
For i=2tod methodp,6] and [8]. In particular, we present three
Step3. |p]= [D] ‘ different methods and compare them by given numerical
Dlaixa examples investigating which method is more accurate
Step 4. [Dlyiriyy.ai, s =1 and costs less. In all of the methods, we divide the
End interval of integration(a,b) into n subintervals. In the
Step 5. [Doumlyang =mvsvl§rvrvlise[D] first method,n is considered an even positive integer,
while in the second and third methodscan be any
Fig. 2: Algorithm for the position of derivatives. positive integer. Next, we approximate the function in

each interval using the Taylor series of degdeabout a

point, namelyc, in that interval. In the first method, is
rows j to | and column i of matrix D. Also third methodsc is the left endpoint of each subinterval.
U Myow_vise(D) represents the summation of each row of AlSO, in the first and third methods starts from 2 and
D. will be increased in each step using MCTSE, while in the
Example2, describes the MCTSE for calculating the first Sécond method is a predetermined fixed number, e.g.
three derivatives using algebraic properties of tricomple 10- After that, we check if the difference betweéfxi)

numbers. and the approximated value 6fx), for all 0<i < nis
To calculate the first three derivatives bfx) = x3  greater than a pre-specified threshelce.g. 10°. If so,
using MCTSE and the equatidnwe have, in the first and third method we increaseup to a
specified number, e. g. 10, to malex) — f(x)| < €. If
P . Imyo3(f[X+ hig+ hiz+ his)]) the difference is still greater thag) we add a point at the
(%) = ,L'Lno h3 ’ center of the associated subinterval until the condition is

satisfied. But in the second method, we only consider
Using the matrix representation -2 and evaluating adding midpoints iteratively to make (x) — f(x)| < €.
f(N:23) we have, Finally, to calculatef” f (x)dx we integrate the resulting
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Taylor series from the previous steps. Bellow we will fA(xi,z) ~f(x_1)+ F'(x_1)(Xi—2—Xi—1) +
discuss the details of each method one step at a time. f”(m 1) 2 f(x)

. . TH - (X2 —X-1)%, f(x) =
Figure 3 also summarizes the major differences between £(%_1) )
the three proposed methods. F(%-1)+ (Xifl)(xl —%-1)+ (X —Xi-1)%,

where f’(x) and f”(x) are calculated using MCTSE.
Figureb, provides a graphical representation of method 1

Method Number of subintervals Degree of Taylor series Center of approximation (c),
) @) where
error > ¢, d =10
Method 1 n=2kk ez Varies from 2 to 10 Midpoints
Method 2 nezt Fixed at 10 Right endpoints
Method 3 nezt Varies from 2 to 10 Right endpoints f(X)A

Fig. 3: General view of the three proposed methods.
Actual finction

value

Method 1: i

Method 1, improves the accuracy of the integral —o——o0—0b—0—o> ¥
approximation using two strategies(l) adaptively %o X1 * *a Xa

increasing the degree of Taylor series approximation, and

( ) adapt|ve|y ref|n|ng the interval of |ntegra‘[|on It also Flg 5: An illustration of method 1 step 2: Estimate the function
employs the concept of Simpson’s rulg] which uses atthe endpoints using the midpoint.

three points to define the subintervals. Consequently, it

uses the Taylor series approximation based on MCTSE

method around the midpoints to approximate the functionStep 3. Improve the accuracy of the approximation by

at the left and right endpoints and estimate the integral inncreasing the degree of the Taylor series expansion. If
each subinterval. Figurd, provides the framework of at least one of [f(x_2) — f(x2)] > & or
method 1 followed by the detailed description of each|f(x)— f(x)| > € is true, and the degree of the Taylor
step. seriesd, is less tharyax, €.9.dvax = 10. We increase

by 1 to make the errors less thansubjected tal < 10.
Notably,we use MCTSE to calculate the various order of
the derivatives .

Step 4. Improve the accuracy of the approximation by
adding new points. If at least one of f (x—2) — f(Xi—2)|
or|f(x)— f(x)| is greater tham, we add a point at the
center of the associated subinterval and approximate the
function around. For instance iff (xi_2) — f(x_2)| > &,

we have the following expressions,

Step 2
Estimating the function at the
endpoint using midpoint and
the Taylor series starting

Jwith degree 2

Check if the error
is less than &

Check if the degree of
Taylor series (d) is less
than dygx

Adding the order of Tylor
series (d = d + 1)

f(x-2) = F()+ F/(1) (42— 1) + 2 (K2 — 1)+
£(20) (¢

20|( )(Xl 2~ )20

We follow the preceding process fom times,

Fig. 4: The outline of method 1. M < Mpax, Wherem < mpax is the maximum number of

added points, to make the difference between the

estimated and actual value (error) less tlgarFigure 6,

provides an illustration of method 1 step 4.

Adding a point at the
center of the associated
subinterval

Step 1. Divide the interval of integration into n = 2k

.SJbinterVals. We divide the interval of integratipfa, b) Step 5. |ntegrate_ Considering the Subintervak‘-_z’xi)
into n = 2kk € Z* equally spaced subintervals, and the Taylor series approximation with only the linear

(X0, X2), (X2,Xa), - - ., (Xon—2,X2n)- term we have,

Step 2. Estimate the function at the endpoint using

midpoint and the Taylor series of degree 2. We employ f;i";z f(x_1)+ /(% 1)(Xx—x_1)dx=2hf(x_1), d=1

the Taylor Series expansion about the centexafz, x),

2 <i < n, denoted byx;_1, to approximatef (x_2) and  adding the quadratic term to the Taylor series
f(x), as given, approximation we have,
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Estimate in the
refined interval

A
f)

Actual fiinction
value

X1 X2

Additional point & interval refinement

Fig. 6: An illustration of Method 1 step 4: Estimate the function
at the endpoint using the midpoint.

i F04-2) + (i) (X xi—1) + TG (x— xi_p)2dlx =

£ (% — 3
2hf(x1)+ L5t x 5, d=2

and with the cubic term we will get,

f;;,(';z fxi—1)+ F'(6_1)(X—X_1)+...+

fw(;j,l) (x—xi_1)%dx = 2hf(x_1) + % » h_33’

d=3

Step 2

Estimating the function at the left
endpoint using the right endpoint
and the Taylor series of order 10

Fig. 7: The outline of method 2.

n € zZ* subintervals,

into
(X0,X1), (X1,%2), - - s (Xn—1,Xn).

Step 2. Estimate the function at the left endpoint using

the right endpoint and the Taylor series of degree 10.

We employ the Taylor Series expansion about the right
endpointx;1, to approximate (x; ), as given,

equally  spaced

flx) = (10)
10) (y.
f(Xit1)+ ' (Xip1) % —Xis1) +...+ g 1(0)?H>

Note that, MCTSE is used to calculate the different order
of derivatives.

Step 3. Improve the accuracy of the approximation by
adding new points. If |T(x) — f(x)| > € we add a point

c at the center ofx,x+1) and approximate the function

(% —Xi+1)10

continuing this process we can derive the generalaboutc, as given,

formulation of the integral for the intervék_»,x) as,

o)

Xi
/’ummz 5
Xi—2 k=1

h2k—1

f(2k—2) (I’)
k-1

(2k—2)! d < e

(5)

One can use equatioh, for each subinterval and

calculate the overall integral a§;' , x)iqu f(x)dx. If only

one of| f(xi_2) — f(xi_2)| or | f(x) — f(x)| is less tharg,

£(10)
10!<C) (X — C)lO

f(x)=f(c)+ f'(c)(x—c)+...+
We follow the preceding process fortimes to make the
difference between the estimated and actual values of the
function less thars.
Step 4. Integrate. To calculate/ f(x)dx we integrate the
Taylor series in step 2. So we have:
19 (c) (4—o)**

10! 1

FO) = f(e) (6 —¢) + F(0) XL 4.+
Therefore, [, f (x)dx = F (xiy1) — F (x).

that is one subinterval has a midpoint but the other onéNVe can repeat this process for each subinterval and
does not, see Figu® we add a hypothetical midpoint at calculate the overall integral &g}, ;' , f (x)dx.

the center of the associated subinterval and approximat® ethod 3:

the function around that point using the Taylor series andMlethod 3 has some commonalities with both Methods 1
employ the same procedure described above to integratend 2. Similar to Method 1, it uses both of the two
the function. strategies, increasing the order of Taylor series
Method 2: approximation, and refining the interval of integration.
Method 2, starts with a Taylor series approximation of Meanwhile, like method 2 it uses a two point strategy to
high degree to estimate the integral, but adaptively refineslefine and integrate the subintervals. Fig8reprovides

the interval of integration (by increasing the number of the general framework of method 2 followed by detailed
points) to improve the accuracy of integration. Method 2 explanation of each step.

defines its interval simply based on pairs of consecutive

point, while using MCTSE around the right endpoints to Step 1. Divide theinterval of integration into n positive
approximate the function values at the left endpoints andnteger subintervals: Same as step 1 of method 2.
consequently estimate the integral in each subintervalStep 2. Estimate the function at the left endpoint using
Figure 7, provides the general framework of method 2 the right endpoint and the Taylor series of degree 2.
followed by detailed explanation of each step. Same as step 2 of method 2, except that we start
approximating using the second order Taylor series.
Figure9, provides a graphical representation of method 3
step 2.

Step 1. Divide the interval of integration into ne Z*+
subintervals. We divide the interval of integratiofe, b)

(@© 2016 NSP
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Step 5. Integrate. Same as step 4 of method 2.

3.1 Error analysis and computational
complexity

Adding a point at the
c sociat

ciated

It can be easily shown that the error in approximating the
integrals by the proposed framework and consequently
the three methods discussed above is directly related to
Fig. 8: The outline of method 3. the predefined Taylor series approximation error, which is
an input parameter for all the three methods. In other
words, the accuracy of the integral can be easily
determined by the setting the desirable approximation
error, e.g.£ = 107>, which is also demonstrated in
Section4.2 In addition, since the error is related to the
degree of Taylor series approximation and the number of
i i/hw | function subintervals, the proposed methods can be used to make

an efficient trade-off between the two choices based on

£

value . R
the practical limitations.

' . :
: | i The proposed methodology adaptively uses high order
. ] i derivatives and if necessary more points to improve the
X, X X, X3 X accuracy of integration, 'espgmglly when the number of
L possible function evaluations is limited. Consequently, t
Fig. 9: An illustration of Method 3 step 2: Estimate the function Proposed methods make a trade-off between the
at the left endpoint using the right endpoint. computational effort and number of function evaluations.
For the computational complexity, MCTSE is the major
contributor to the complexity of the proposed algorithm.
While the authors are not aware of any analytical analysis

Step 3. Improve the accuracy of the approximation by ~ 0f the complexity of MCTSE algorithm, using the
increasing the degree of the Taylor series expansion. If corresponding matrix representations of the mqltpqmplex
1f(x)— f(x)| > € and the degree of the Taylor seris, ~Number as proposed in this paper can significantly
is less thardyax, €.9.dvax = 10, we increase by 1 to  improve the speed of the algorithm specially for high
make the error less thag) subjected tal < 10. Notably, ~ order derivatives. In addition, the matrix form of
we use MCTSE to calculate the various order of theMulticomplex number, which includes the information of
derivatives . various order of derivatives, can be derived parametsicall
Step 4. Improve the accuracy of the approximation by~ Which eliminates the requirement of calling MCTSE
adding new points. Same as step 3 of method 2. Figure algorithm multiple times for each points. Finally, since

10, provides an illustration of method 3 step 4. the MCTSE matrix is typically very sparse in high
dimensions (high order derivatives), sparse matrix

manipulation techniques can be used to further improve

the processing time of the algorithm. Applying these

tricks will make the computation time of the proposed
. Estimation in the methodology (specifically at high order derivatives)
refined interval comparable to other numerical integration methods in the
literature.

fX)

Actual function
value

4 Numerical Examples

|
I
1
|
1

'_’X In this section we first show the steps of the three
Xo T Xq X2 X3 proposed methods using a simple example. Next, we
Additional point & interval refinement evaluate the performance of the methods against some of

the major existing numerical integration methods using
Fig. 10: Aniillustration of Method 3 step 4: Improve the accuracy (ifferent types of functions.

of the approximation by adding new points.
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4.1 Illustrative Example interval of integration. Sectiohl presents the results for
o ) step 2 of method 2, estimating function values at each
Here we present a simplified version of the proposedpoint (col 5) using the right endpoint and the Taylor series
method steps for integrating(x) = x* + 2x between 0 of maximum order, i.e. 3 (col 4). Additionally section Il
and 1. For ease of illustration, we consider the following of the table shows the actual function values at the
parametersm = 5, duax = 3, € = 10 % andmmex = 5. endpoints¢al. 6), the observed errocfl. 7), and weather
Tablel, illustrates the major Steps for method 1. Section they Satisfy the minimum allowed erroc(ﬂ_8)_ Section
of the table illustrates step 1 of method 1, which simply ||| “jllustrates the step 3 of method 2, which refines
shows the function values at the sampled points alongypintervals of high approximation error by adding new
with other preliminary information. Section presents (mid) points presented incol 2 and check the
the results for step 2 of method 1, estimating the functionapproximation errordols. 7-8). Note that approximation
values at the endpoints using the midpoints. In particularerrors at this section satisfy the predefined minimum error
columns 2-6 of this section show the midpoints, i. €30 |imjt. Finally, Section|V illustrates the step 4 of the
and Q75 (col. 2), and the estimated function values at method 2, integrating the function over the entire interval
their left and right endpointscél. 5 and 6) based on  (0,1) based on the sum of integrals at individual

Taylor series approximation of degreecd( 4). In  suybintervals ¢ol 8). Finally, Table3, shows the major
addition, column 7-12 illustrates the actual function

values at the endpointsd]. 7 and 8), the observed error
(cal. 9 and 10), and weather they satisfy the minimum

allowed error ¢ol. 11 and 12). Sectionll| tabulates the Table 2: Anillustrative example of Method 2 steps
step 3 of method 1, which increases the degree of Taylofsec.col] 2 3 4 5 6 7 8
. . . - . Step1:Subdividing the interval of integration
series expansion. This section provides the samg g e the et ofntesrat
information as the preceding section based on Taylor , Do, s 3
series approximation of degree 8ol 4). Section |V 305 1062
shows the step 4 of method 1, which refines subintervals P oo
Of h|gh apprOXImatlon error by add|ng new (mld) polnts Step2: estimating function values at each points using the adjacent point on the right
presented ircol 2 and recheck the errocdl. 11 and 12). L o Stepsire ¢ Closen) fhsen) _IC1__error zepsilon
Note that approximation errors at this section satisfy the oo 02 03000 03039 0003 !
predefined minimum error limit. Finally, SectioW 025 3 18125 18164 0.0039 i
illustrates the step 5 of the method 1, including the D I D ion
integral values at each subinterval along with their sum 0125 0D25 3 00002 00000 0.0002 0
showing the integral over the intervd, 1) (col 13). W lows o 3 amw osw oo o
0.5 0.125 3 0.7695 0.7698 0.0002 0
0.625 0.125 3 1.0623 1.0625 0.0002 0
0.75 0.125 3 1.4023 1.4026 0.0002 0
i . 0.875 0.125 3 1.8162 1.8164 0.0002 0
Table 1. An illustrative example of method 1 steps L 015 3 2.3359 23362 0.0002 0
Step 4: Integration
Sec.\Col 2 3 4 5 6 7 8 9 10 1 12 13 X Step size d error >epsilon _ F(x-step) F(x) integral
ID. e 0125 0.125 3 0 0.0039  0.0079 0.0118
] Step 1: Subdividing the interval of integration 025 0,125 3 0 0019 00239 0.0435
m X f(x) epsilon d_max - - 2 - Vel Va3
1 0 0.0000 103 3 v 0.375 0.125 3 0 -0.0356  0.0403 0.0758
1 2 025 0.5039 0.5 0.125 3 0 -0.0525  0.0579 0.1104
j [?fs :gféj 0.625  0.125 3 0 20.0714  0.0777 0.1491
S 3000 075 0.125 3 0 0.0937  0.1013 0.1950
Step 2: estimating function values at endpoints using the midpoints 0.875 0.125 3 0 -0.1210 0.1304 0.2514
e ::;" 4 mestep) Pcmistep) fvstep) f(ekstep) [P P S e 1 0.125 3 0 0.1555  0.1673 0.3229
025 025 2 0.0117 1.0430 0 1.0625 0.0117 0.0195 1 1 Sum 1.1599
T Tocr it T e o TavTor SrTe st paston
W e 5\:2’ d A mstep) fA(C_mistep) f(x-step) f(xtstep) [fA-f] [fA-f] i:::;; Z;r::“:
D 0% 3 oomp T 0 s Lum oo 1 steps of method 3. As for the preceding tables Sedtion
. Step  Adding new points presents the step 1 of the method 3, which includes
Stey " A(x mebste st vhsten) [Ad g ©FTOr> error> AT . . . .
e PO Plmste) st () 1M gy oy subdividing the interval of integration. Sectidh shows
v 2 K 2 . . .
057 os 3 osmr Vegs  osws reoe oo 000 o o the results for step 2 of method 2, estimating function
mlm oW NS Tl ¢ values at each pointgl 5) using the right endpoints and
Step 5: Integration . - .
sten ) ) . e s the Taylor series of order @l 4). Similar to Table2,
e 0 T foomn o B BT g aie " gaction] | of Tabled, shows the actual function values at
v 3;3; g:;; ; :;]((1];]72 (1)(5122 ggggg ?;232 gggg gggg g g 3‘1’;;2 the end O|nts c(ol ,6) the Observed errorcol 7) and
0.625 0.125 3 1.0623 1.8162 1.0625  1.8164 0.000 0.000 0 0 0.3510 p b 1 b 1
05 oks 3 dme 2o ames 3 oo om0 0 osws ) weather they satisfy the minimum allowed errool( 8)

as well. Sectionlll tabulates the step 3 of method 3,
which increases the degree of Taylor series expansion. In
Similarly, Table2, illustrates the major steps of method 2 particular, this section provides the same information as
for the example discussed above. Sectidifustrates the the preceding sections of the table based on Taylor series
step 1 of the method 2, which includes subdividing the approximation of degree 3@l 4). SectionlV illustrates
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the step 4 of method 2, which refines subintervals of highdyax = 10. For method 2, we usé = 10 throughout the
approximation error by adding new (mid) points integration process. For all of the three proposed methods
presented incol 2 and check the approximation error we usem = 50, and set maximum number of points as
(cols. 7-8). Note that approximation errors at this section myx = 75. In addition, we set the Taylor series
satisfy the predefined minimum error limit. Finally, approximation error limit ag = 10~ for all of the three
Section V illustrates the step 5 of the method 2, methods. For the trapezoidal method we set the number
integrating the function over the entire interved, 1) of points asm = 100 and for the Romberg method we use
based on the sum of integrals at individual subintervals7 rows. For all of the adaptive quadrature methods we use
(col 8). the Tolerance level ofe = 10°%. For the adaptive

Table 3: An illustrative example of method 3 steps

Step 2: estimating function values at each points using the adjacent point on

Step 3: increase the order of Taylor series and reestimating function values at

Step 4:Adding points to the intevrals with error greater than epsilon

Gauss-Kronrod quadrature methods in particular we also
set the maximum interval count as 650.

Table4, presents the specific functions, related interval of
integration and the level of error achieved by each of the

SeedColl 2 3 4 5 6 T 8 comparing methods. As illustrated in the table, even
Step1:Subdividing the interval of integration . . .
m x ™ epsilon a though the number of function evaluations in the
; Ogs ggggg 1073 3 proposed methods is limited toyax = 75, in all cases
ol s 05 1oes they achieved an error of less than~20(on average
g 0-175 ;2(1)83 10-%) which is competitive with other methods. Notably,

in several cases the number of function evaluations for the

x  Stepsize d  f(ustep)  f(estep)  [*-f]  error >epsilon proposed methods has been equal or very close to initial
n |02 025 2 00117 00000 0.0117 ! 50 points, because it already satisfied the predefined
0.5 0.25 2 0.5313 0.5039 0.0273 1 . . . 5
075 025 2 11055 10625 00430 | Taylor series approximation error gf= 107>. In other
1 0.25 2 1.8750 1.8164 0.0586 1

words, the predefined Taylor series approximation error
of, i.e. £ = 1075, set the upper bound of the error

X  Step size d fA(x-step) f(x-step) |f~-f] error >epsilon N
m |02 02 3 00039 00000 0.0039 I performance of the proposed methods. Meanwhile, as
05 0253 05000 05039 0.0039 ! investigated by the authors, the error performance of the
0.75 0.25 3 1.0586 1.0625 0.0039 1 .
I 025 3 1.8125 18164 0.0039 | proposed methods improves and converges to the

performance of the best performing methods by

X  Step size d fA(x-step) f(x-step) |f7-f] error >epsilon . . . .
T o 0002000000000 5 increasing .the maximum degreg of Taylor series
025 0125 3 02500 02502 0.0002 0 approximation and/or number of points. In summery, the
0.375 0.125 3 0.5037 0.5039 0.0002 0 1 i
O Pt ey oo . adgptlve nature of the proppseq frame_vvork makes it an
0.625 0125 3 1.0623 10625 0.0002 0 efficient and effective numerical integration tool for many
075 01253 14023 14026 0.0002 0 practical applications which requires both accuracy and
0.875 0.125 3 1.8162 1.8164 0.0002 0 .. . .
0125 3 23359 23362 0.0002 0 minimum function evaluations.
Step 5: Integration
X  Step size d error >epsilon F(X) F(X-step) integral
0.125  0.125 3 0 0.0079 -0.0039 0.0079
0.25 0.125 3 0 0.0239 -0.0196 0.0239
0.375  0.125 3 0 0.0403 -0.0356 0.0403
\% 0.5 0.125 3 0 0.0579 -0.0525 0.0579
0.625 0.125 3 0 0.0777 -0.0714 0.0777 .
075 0.125 3 0 01013 -0.0937 0.1013 Table 4: The error performance of the comparing methods
0.875 0.125 3 0 0.1304 -0.1210 0.1304 .
1 0.125 3 0 0.1673  -0.1555 0.1673 Function exp(x) 1/(x+1) cosh(x)-cos(x) x”"5-x Sin(1/x) e”(-x"2/2)
Sum 1.1599 range 0,0.5)  (1,2) 0,0.5) 0,05) (0.1,1) (0,0.5)
Error Error Error Error Error Error
Method 1 <10%-6 <10"-6 <10"-6 <10"-14 <10"-6 <106
Max Derv. Order= 10
No. of init points= 50
Max add. points= 25
Method 2 <1076 <10"-6 <10"-6 <1078 < 10"-6 <1076
. Taylor ser. order=10
42 Perforrrlance Compar|g)n Method 3 <10%-6 <10"-6 <106 <1078 <1075 <10"-6
Taylor ser. order=10
Trapozeidal <1072 <10"-6 <106 <10M6 <1075 <106
Here we study the performance of the proposed method =Rm=bwﬂ e
. . . . . . omber; - - - - - -
based on six different functions, including polynomial, | ‘v ofrows - 7
rational, exponential, Trigonometric, hyperbolic and Adapt Simpson guad. <106 <1079 <101 <10M15 <1078 <1010
oscillating functions, and compare with five other [xaupt ckquaa. 1056 <10M15  <10n15 <1015 <10~15 <1015
integration methods, namely trapezoidal, Romberg, A’Zﬁ;ﬁ s
adaptive Simpson quadrature, adaptive Gauss-KronroQhap. Lobatto quad. — |<106 <1011 <1015 <1015 <1058 <10%-14
quadrature and adaptive Lobatto quadrature from the fei—ifes

literature.
For method 1 and 3, we start the Taylor series
approximation withd = 2, and let it increase till
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5 Conclusion

[9JW. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P.

Flannery, Numerical Recipes in FORTRAN: The Art of

In this paper we proposed an adaptive numerical

Scientific Computing. Cambridge: Univ. press. (1992).

integration framework for application, where the number[10] G. B. Price, An Introduction to Multicomplex Spaces and

of possible function evaluations are limited but the high

Functions, Marcel Dekker INC, New York (1991).

level of accuracy is needed. The proposed framework use-1] J. M. Smith, Recent Developments in Numerical Inteigrat

the basic idea of Taylor series for function approximation
and integration, while adaptively increasing the degree of
the Taylor series and refines the integration area a
necessary to reduce the integration error to the desired
level. To calculate the high order derivatives efficiently, 13
the proposed methodology uses multicomplex algebraé
and their corresponding matrix representations through 16, (1997).
multicomplex Taylor series expansion (MCTSE). In

Journal of Dynamic Systems, Measurement, and Contro
96(1), 61-70, (1974).

£12] V. Vittaldev, R. P. Russell, N. Arora and D. Gaylor, Sede
order Kalman Filter Using Multicomplex Step Derivatives,
American Astronomial Societ04 (2012).

] C. W. Ueberhuber, Numerical Computation 1: Methods,
Software, and Analysis, Springer Science & Business Media

addition, it uses the predetermined error of the MCTSE to
control the accuracy of the results. The framework has a
modular strategy and its components can be used i
different combinations. In particular, we present three
different methods derived from the proposed framewor
and demonstrate their competitive performance agains
other methods in the literature. Method 1 is
computationally more expensive than Methods 2 and 3
but provides the best results. Method 2 is suitable for
applications with higher order differentiability. Fingll

Method 3 is the most computationally efficient algorithm
among the three. The proposed framework can be
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