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Abstract: In this paper, we consider fractional reaction-diffusiauations with linear and nonlinear fractional reactiomterin a
semi-infinite domain. Using g-Homotopy Analysis Methodusions to these equations are obtained in the form of génecarrence
relations. Closed form solutions in the form of the Mittagfller function are perfectly obtained in the case with Iinfactional
reaction term due to the ability to control the auxiliary g@eterh. Series solution is obtained for the case of nonlinear ifvaat
reaction term. Numerical analysis is presented for thig taslisplay the fast convergent rate of the series solutibained. g-HAM
is a relatively simple and powerful method and has advastager some other methods which we discuss and demonstragerfie
initial value problems.
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1 Introduction

Mathematical models to describe the process through whieltdncentration of one or two substances are dispersed in
space changes caused by two processes (reaction and dtiffuesie referred to as reaction-diffusion models. The
reaction-diffusion models have wide range of applicatiamsmodelling population evolution, chemical reactions,
epidemic spreading and also in combustion theory and paftemation. Reaction-diffusion approach is also used to
describe electric transport systems such as plasmas oc@aictors under some appropriate circumstances.1S2e [
3] for detail. Certainly, obtaining and studying solutionghese types of models is very important.

Physical systems are increasingly being modeled by theidread calculus due its ability to incorporate memory
effects. For example, ind], Darcys law was modified by Caputo to incorporates the mgntenm to model transport
through porous media. Other examples are, astrophygiasigteorology ], reactive flows 7] and semiconductorsy,
and ground water flond].

Typically, for such models like these, there is need to salpartial differential equation of fractional order (FPDE)
The commonly used analytical methods to obtain solutionthede equations are mostly restricted to linear systems and
in the case of non-linear equations, numerical techniquesisually employed sed (. There are some approximate
methods used for both linear and non-linear FPDE such aatiaral iteration method, VIM, Adomian decomposition
method, ADM, generalized differential transform method)T®1 see [L1,12,13]. Of recent, in 14,15,16,17,18,19],

a modified homotopy analysis method was introduced and hi@sf@ applications in a wide range of systems. This
modified method is called g-homotopy analysis method (q-HAM

In this paper, we present the application of g-HAM to initi@lue problems of the fractional reaction-diffusion
equations. The aim of this work is to obtain solutions in tberf of recurrence relations, and closed form solutions in
terms of the Mittag-Leffler function where possible esplgia the case with linear fractional reaction term due te th
ability to control the auxiliary parametdr. For the case with nonlinear fractional reaction term,esesolution is
obtained. Numerical analysis is presented for this casésfay the fast convergent rate of the series solution nbthi
Caputo’s fractional derivative is adopted in this work.

Definition 1.The Riemann-Liouville’6RL) fractional integral operator of ordear > 0, of a function g= L'(a, b) is given
as
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19g(t) = —/Ot(t _1)%1g(1)dr, t > 0, @ >0, @)

whererl is the Gamma function andd(t) = g(t).
Definition 2.The fractional derivative in the Caputo’s sense is definef®fls

29900 =1"D"gt) = o [ (-1 e, @)

wheren-1<a<n,neN,t>0.

Lemma 1Lette (a,b]. Then

hga-ap] 0= B apa

FBrasT a>0 B>0. ©)

Definition 3.The Mittag-Leffler function for two parameters is defined as

o P
Ea,ﬁ(Z):kzom, a,B,z€¢ ¢, Rega)>0. (4)

2 Method of Solution: g-Homotopy Analysis Method
Given consideration to differential equation of the form
N [.@taC(X,t)] - g(X,t) = 07 (5)

whereN denotes non-linear operat®,” is the the Caputo fractional derivativgis a given function and is an unknown
function. To generalize the original homotopy method, thth-order deformation equation is constructed as

(1=ng)L (o(x,t;0) — co(x,1)) = ahH(x,t) (N[Z o (x,t;a)] — g(x 1)), (6)

wheren>1,q9€ [O, %} denotes the so-called embedded paramietgiQ is an auxiliary parametdr,is an auxiliary linear
operatorH (x,t) is a non-zero auxiliary function.

Wheng =0 andq = % we have equatiorgj to be
1
o(x,t;0) =co(x,t) and o (x,t; ﬁ) = c(x,1), )

respectively. So, aq increases from 0 t(%, the solutiono(x,t;q) varies from the initial guessy(x,t) to the solution
c(x,t).

If co(X,t), L, h, H(x,t) are chosen appropriately, solutiorix,t; q) of equation6) exists forg € [0, %}

The Taylor series expansion afx,t;q) gives

o(xtq) =co(xt)+ 3 cm(xt)q", @)
m=1
where 1 Mo (xtiq)
a(x,t;q
Cm(x,t) = = ——2 1V 9
m( ) m| aqm q:O ( )

Assume that the auxiliary linear operatgrthe initial guessy, the auxiliary parametdrandH (x,t) are properly chosen
such that the seriggconverges afj = % then we have

c(x,t) = co(x,t) + ilcm(x,t) (%) . (10)
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Let the vectorc, be define as follows:
cnh = {co(x,t),ca(x,1), -+, Cn(X,t) }. (11)

Differentiating equation&) m-times with respect to the (embedding) paramegahen evaluating atf = 0 and finally
dividing them bym!, we have what is known as tlé"-order deformation equation, Lia@]]

L[Cm(xvt) _X%Cmfl(xvt)] = hH(Xat)‘@m (Cmfl) (12)
with initial conditions
®¥(x,00=0, k=0,1,2,...m—1, (13)
where "L (N[Za(xt;q)] —g(xt)
B 1 ™ (N[Zfo(xt;q)]—a(xt
Hm (Cm-1) = =1 g1 o (14)
and
0 m<1l,
Xm = (15)
n otherwise

3 Recurrence Relation for Fractional Reaction-Diffusion

We take into consideration the fractional reaction-diffmsequation with constant diffusivity, and reaction tefmn a
semi-infinite domairx > 0,

Pu(x,t) _d%u(xt)
P =D e + f(xu(xt)), 0<B,x>0,t>0 (16)

subjects to the initial condition

U(X, 0) = p(X), (7)

B
where;% = @tﬁ is the Caputo fractional derivatives of org@andD is the diffusivity.

In order to solve this system using g-HAM, we choose the liogerator
Llo(xt;q)] = Z7 o(x.t;0) (18)

having property thalt[c1] = 0, wherec; is constant; and initial approximatieg(x,t) = h(x). So, the non-linear operator
can then defined as,
N[o(x,t;q)] = _@tﬁo(x,t; q) — Dox(x,t;9) + f (X, 0(x,1)). (19)

Next, we construct the zeroth order deformation equation,
(1-na)L[0(xt:0) — to(x,1)] = AHON |7 o(xtiq)| (20)
ChoosingH (x,t) = 1 we obtain the mth-order deformation equation to be,
L [um(X,t) = XmUm-1(%,t)] = h%m (Um-1), (21)
with initial conditionun(x,0) =0, form> 1. x;, is as defined inX5), and%n, is given by,
Fm(Um-1) = ZPUm-1— DUg 1+ f (% Um-1(%,1)). (22)

We thus obtain the recurrent relation fgr(x,t), form> 1,

Um(Xt) = Xiotm-1 4 D1 [Zm (Um_1)] (23)
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4 Examples Involving Linear Fractional Reaction Terms

In this section, we consider particular choices of the setecm, namely as linear fractional reaction terms of thenfor

y
f(x,u(x,t)) = —%/ (r(x)u(x,t)) for y > 1, andr(x) is a function ofx (to be specified).

dPu(xt) u(x,t) 9
_ ~ < :
B D 32 I (r(xu(x,t)),0< B,y<1,x>0,t>0 (24)

4.1 Example 1

Problem 4) is considered here with = 1 andr(x) = —x given as

Pu(x,t)  d%u(x,t) oY
— - <
") B E + E (xu(x,t)), 0<B,y<1,x>0,t>0, (25)

u(x,0) = x9.

Using initial approximationip(x,t) = x9, we obtain components of the solution using g-HAM recurretgtion in £3)
successively as follows

ur(x,t) = xjuo+hif [%ﬁuo — Uoxx — DY (XUO)}

B , tP hr(a+2)xa-v+l P
= el O s T T F G yr2) TALH) (26)

Uz(X,t) = Xpu1+ hItB [@tﬁul — Upx— DY (xul)}

B L, tP (n+h)hr (a +2)xa-v+1 B
= A o) s o A B)

2,,0-4 i
+a(a—1)(a—2)(a—3)h°x r(1+2B)
(@—y+D@—yl(a+2h>xrt
r(a—y+2) Fd+2p)
2, 0—y—1 2
+a(a—1r(a)h™x" r(1+2p)
hr (o +2)r (o —y+3)x? #1212

. 27
MNa—-y+2) (a—2y+3) [I(1+2B) @7)
Following the same procedunay(x,t) for m= 3,4,5,--- can be obtained.
So, the expression of the series solution given by g-HAM eawtitten in the form
o 1\
ux,t;n;h) = x% + 5 ui(x,t;n;h) (—)
i; | n
o, B (2n+-h)hr (a +2)xa-v+1 P
=x —a(a—1)h(2n+h)x? 2 -
(o = Lhen+ X =T g er(a—yt2)  nr(iip)
+a(a—1)(a—2)(a—3)h2x“*4l+a(a—1)l'(a)h2x"’y’li
r1+2p) r(1+2p)
(a—y+1)(a—yl(a+2)h?xa-v-1 2k
Ma—-y+2) r(1+2pB)
2 _ a—2y+2 2B
hel (a +2) (a — y+ 3)X t (28)

Fla—y+2r(a—2y+3) Tri+2p)

Hence, equatior2@) is the solution to the problen29). This solution is given in terms of convergence paramietnd
n.
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Case I: Whena =0, y= 1 andn = 1, we choosé = —1 and obtain a closed form solution in form of Mittag-Leffler
function of one parameters
tB t28
(1+B)  T(1+28)
This agrees with the solution obtained by VI, and by GDTM [L3]. We confirm that for the case whe¢h= 1
we obtainu(x,t) = E; (t) = €.

+--- = Eg(tP). (29)

u(x,t):1+l_

Case Il: Whena =1, y=1andn =1, we choosé = —1 and obtain a closed form solution in form of Mittag-Leffler
function of one parameters

tB t2B8
YRR

This agrees with the solution obtained by VIMI1], and by GDTM [L3]. We confirm that wher3 = 1 we obtain
u(x,t) = xEy (2t) = xe*.

+--- =xEg(2tP). (30)

u(x,t) = x+2x
(x.t) =X+ 2

Case lll: Whena =2, y=1andn =1, we choosé = —1 and obtain a closed form solution in form of Mittag-Leffler
function of one parameters

2 3tB ot2B 3tB ot2B
ux) =X\ ra g T rasee T ) P\ M raes Trasm

tB t2B8
- <1+r(1+3) M) +>

= X*Ep (3tP) + Ep(3tP) — Ep(tP). (31)
This agrees with the one obtained Il by VIM, and in [13] by GDTM. When3 =1 as

u(x,t) = xE1(3t) + Eo(3t) — E1(t) = (@ + 1)e* — €. (32)

4.2 Example 2

Problem @4) is considered here with = 1,r(x) = e *andy = 1 given as

otB ox2 ax

Pubt) _ U 2 (e u(xt), 0<B<Lx>0t>0,
(P2) (33)

u(x,0) = e~

Also, using the initial approximatiom(x,t) = €%, we obtain components of the solution using g-HAM recurreldtion
in (23) successively as follows

U1 (x,t) = Xiuo+hiP [ 2P uo — o+ € g — e gy
- _
= —he‘m (34)
X3u1+hiP [P Uy — Upet €Uy — e *uy
. ) 128 _

—(n+ h)he*m +h exm

Xtz +hiP | ZPup — Upoet €70 — € XUy

up(x,t)

(35)

uz(x,t)

tB t2P
—(n+ h)zhé‘m +2(n+ h)hze"m

h3e?‘7tsﬁ
T r(1+3p)

(36)

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

26 NS 2 0. S. lyiola: Exact and approximate solutions of fractional

Then the series solution to equati@8) obtained from g-HAM method is

u(x,t;n;h) = ex+_iui(x,t;n; h) (%)'

=& hé‘itﬁ hhé‘itﬁ hzexitzﬁ
=& -he e~ (e e T e 2

—n+h2he*L+2n hhzeXL
(n+hhe s T2 2

3L+.... (37)
el (1+3B)

—h3¢
Also, equation37) is an appropriate solution to the proble&8)and is given in terms of convergence parambtandn.

Case I: Whena =0 andn= 1, we choosé = —1 and obtain a closed form solution in form of Mittag-Lefflanttion
of one parameters

tB t2B8 s
U(X’t):ex<1+F(1+B)+I’(1+2B)+m> = Ep(tF). (38)

For this particular case, our result is in perfect agreeméhtthe one obtained inl3] by GDTM.
The exact solution is obtained by our method for classics¢ eghen3 = 1 as

u(x,t) = eE1(t) = e (39)

5 Example Involving Nonlinear Fractional Reaction Term

5.1 Analytical Result

In this section, we consider equatid@¥ with nonlinear fractional reaction given as

oPuxt)  dfuxt) ., 9¥ )
pu— - <
) 5P 3 -~ ((u(x1)?), 0<B,y<1,x>0,t>0, 40)

u(x,0)=x2, a>0.

Some adjustment in the g-HAM algorithm given in sect®)n$ required here due to the nonlinear term present. So,

;14 m-1
HKm(Um-1) = @tﬁum—l_ Um-1)xx +X VW l Z ukum—l—k‘| . (41)
k=0
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Using initial approximationup(x,t) = x#, we obtain components of the solution using g-HAM recurrefdtion in 23)
successively with the neg#, as follows

9Y
ui(X,t) = X1Uo+ hltB {%ﬁ Ug — Uoxx+ Xfym (u%)}

th +h/‘(2a+1)x2'51 th
(1+B) rRa+y+21)ra+p)

= —a(a-Dhx *~ (42)

oxy
th N (n+h)hr(2a+1)x2 P
(1+PB) M2a+y+1) T (1+p)
2
+ala—1)(a-2)(a— 3)h2xa‘4ﬁ
2a(2a— 1)l (2a+1)h?x?-2 2P
I (2a+y+1)r (3a+y+1) I (1+2B)
2a(a— 1)l (2a—1)h?x?a-2 2B
r(2a+y-1) r(1+2B)

20°r (2a+ 1)l (3a+1)x% 2P
r(2a+y+1)(3a+y+1)r(1+2B)

Following the procedure, we can obtain(x,t) form=3,4,5,--- using Mathematica software.
Hence the series solution to equatid@)(obtained by g-HAM is written as

* B B —y 1724
Up(X,t) = Xsu1 +hlf” | 2 ug — Uixx+ 2X Y= (Uouz)

= —al@a-1)(n+ h)hx”‘*zl_

(43)

u(xt;n;h) = xa+_iui(x,t;n;h) (%)I

th N hr(2a+1)x22  tP
nf(1+pB) nl(2a+y+1)r1+p)
th (n+h)hr(2a+1)x2 P
n?r(1+P) n’lr (2a+y+1) [ (1+pP)
t2P
n?r(1+2pB)
2a(2a— 1)l (2a+1)h>x%@-2 28
n’l (2a+y+1)r (3a+y+1) r(1+2p)
2a(a— 1)l (2a—1)h?>x?a-2 2P
a n2l(2a+y—1) r(1+2B)
2h2r (2a+1)I (3a+1)x3 128
n’r (2a+y+1)r (3a+y+1) I (1+2B)
Equation 44) is the solution to the problerd() in terms of convergence parametesindn.

=x2—ala—1)h@2

—a(a—1)(n+h)h@ 2

+a(a—1)(a—2)(a—3)h»& 4

oo (44)

5.2 Numerical Results

Though a closed form is not obtained here for the case whet@ear fractional reaction term is involved, this subgatt
is devoted to showing that the series solution obtainedhsection §.1) is a good approximate solution to equatidf)
Figure (), Figure @) and Figure 8) are plotted withrea =2, 3 = y=1,h= —0.0001, anch=1
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10 x

Fig. 1: g-HAM solution plot forUg

Fig. 2: g-HAM solution plot forU, Fig. 3: g-HAM solution plot forU,

RemarkThe effects of differen andy on the solution obtained are displayed in Figuteand Figure ).

RemarkOur choice ot is not by chance but the help bfcurve given in Figure) using horizontal line test.
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Fig. 6: h-Curve witha=2,8=y=1andn=1

6 Conclusions

Solving mathematical models such as reaction-diffusidh gignificant applications into Physics and other field ofigts

is usually integral part of modern research. In a very elegay, this paper has obtained solutions to reaction-difus
with both linear and non-linear fractional reaction teri@sed form solution in the form of Mittag-Leffler functios i
obtained in generally for the linear case including exatiuteans for special cases. For the nonlinear case, a coewerg
series solution is obtained and the effect of the fractiondérs are shown.

The need for a Lagrange multiplier in the case of VIM, and laadculations often required with the Adomian
polynomials, and the assumption required in the generhliifferential transform methods, are avoided in g-HAM.
These considerations gives g-HAM significant advantageanynproblems, and may therefore become popular among
applied mathematicians and scientists in many differefdgigrhere it is applicable. Here, we have demonstrated the
power of g-HAM method in obtaining solutions of the non-Bmdractional reaction-diffusion equation with fractidna
reaction term in several cases. With appropriate choicesigiliary parameteh and the fraction facto;li this method
enables us to obtain solutions in the form of recurrenceiogla for initial value problems often quickly with littleffert
as compared with other methods. The fact that g-HAM can bé tessolve non-linear systems with equal ease broadens
its applicability and general usefulness significantly.
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