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1 Introduction

It is well known [12] that modern analysis directly or
indirectly involve the applications of convexity.

Several generalizations have been introduced in recent
years and extensions of the classical notion of convex
function and in the theory of inequalities are produced
important contributions in this regard. This research deals
with some inequalities related to the renowned works, on
classical convexity, of Charles Hermite [5], Jaques
Hadamard [4] and Lipót Fejér [3]. The inequalities of
Hermite-Hadamard and Fejér have been object of intense
investigation and have produced many applications. In
this paper we establish the notion of relative strongly
h-convex function, properties and some results related
with these inequalities mentioned above. The
Hermite-Hadamard inequality gives us a estimate of the
(integral) mean value of a convex function; more
precisely:

Theorem 1([4]). Let f be a convex function on[a,b], with
a< b. Then

f

(

a+b
2

)

≤
1

(b−a)

∫ b

a
f (x)dx≤

f (a)+ f (b)
2

. (1)

In [3], Fejér established the following Fejér inequality
which is the weighted generalization of
Hermite-Hadamard inequality (1) as follows:

Theorem 2.Let f : I ⊂ R→ R be a convex function on an
interval I and let a,b∈ I with a< b. Then

f

(

a+b
2

)

∫ b

a
p(x)dx ≤

∫ b

a
f (x)p(x)dx

≤
f (a)+ f (b)

2

∫ b

a
p(x)dx, (2)

where p: [a,b] → R is non negative, integrable and
symmetric with respect to(a+b)/2.

2 Preliminaries

In [11] Noor introduced and studied a new class of
convex set and convex function with respect to an
arbitrary function; which are called relative convex set
and relative convex function respectively, as follows.

Let K be a nonempty closed set in a real Hilbert spaces
H.

Definition 1([11]). Let Kg be any set in H. The set Kg
is said to be relative convex (g-convex) with respect to an
arbitrary function g: H → H such that

(1− t)u+ tg(v) ∈ Kg, ∀u,v∈ H : u,g(v) ∈ Kg, t ∈
[0,1].

Note that every convex set is relative convex, but the
converse is not true.

Definition 2([11]). A function f : Kg→ H is said to be
relative convex, if there exists an arbitrary function
g : H → H such that

∗ Corresponding author e-mail:mvivas@ucla.edu.ve

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amisl/040201
mvivas@ucla.edu.ve


40 M. J. Vivas Cortez: Relative stronglyh-convexity

f ((1− t)u+ tg(v)) ≤ (1− t) f (u)+ t f (g(v))

for all u,v∈ H : u,g(v) ∈ Kg and t∈ [0,1].

Clearly every convex function is relative convex, but
the converse is not true. The reader interested in the
relative convex functions can consult the references [9,
11]. In [10] Noor established some Hadamard’s type
inequality for relative convex functions as follows:

Theorem 3([10]). Let f : Kg= [a,g(b)]→R be a relative
convex function. Then, we have

f

(

a+g(b)
2

)

≤
1

(g(b)−a)

∫ g(b)

a
f (x)dx

≤
f (a)+ f (g(b))

2
.

Noor in [8] introduced the class of relativeh-convex
functions and also discussed some special cases, in
addition established some Hermite-Hadamard type
inequalities related to relativeh-convex functions.

Definition 3([8]). A function f : Kg → H is said to be
relative h-convex function with respect to two functions h:
[0,1]→ (0,+∞) and g: H → H such that Kg is a relative
convex set, if

f ((1− t)u+ tg(v)) ≤ h(1− t) f (u)+h(t) f (g(v))

∀u,v∈ H : u,g(v) ∈ Kg, t ∈ (0,1).

Theorem 4([8]). Let f : Kg→R be a relative h-convex
function, such that h(1

2) 6= 0, then, we obtain

1

2h(1
2)

f

(

a+g(b)
2

)

≤
1

(g(b)−a)

∫ g(b)

a
f (x)dx

≤ [ f (a)+ f (g(b))]
∫ 1

0
h(t)dt.

Strongly convex functions have been introduced by
Polyak in [13]. Since strong convexity is a strengthening
of the notion of convexity, some properties of strongly
convex functions are just stronger versions of known
properties of convex functions. Strongly convex functions
have been used for proving the convergence of a gradient
type algorithm for minimizing a function. These functions
play an important role in optimization theory and
mathematical economics ([7,14]). In [1] H. Angulo, J.
Giménez, A. Moros and K. Nikodem established some
Hadamard’s Type inequality for stronglyh-convex
functions, this result generalizes the
Hermite-Hadamard-type inequalities obtained by N.
Merentes and K. Nikodem in [6] for strongly convex
functions, as follows:

Definition 4.Let (X,‖ · ‖) be a real normed space, D
stands for a convex subset of X, h: (0,1) → (0,∞) is a
given function and c is a positive constant. We say that a
function f : D →R is strongly h-convex with modulec if

f (tx+(1− t)y) ≤ h(t) f (x)+h(1− t) f (y)−ct(1− t)‖x−y‖2

(3)
for all x,y∈ D and t∈ (0,1).

Theorem 5.Let h: (0,1)→ (0,∞) be a given function. If a
function f : I ⊆R→R is Lebesgue integrable and strongly
h-convex with module c> 0, then

1

2h(1
2)

[

f

(

a+b
2

)

+
c
12

(b−a)2
]

≤
1

b−a

∫ b

a
f (x)dx

≤ ( f (a)+ f (b))
∫ 1

0
h(t)dt−

c
6
(b−a)2, (4)

for all a,b∈ I, a< b.

3 Main results

In this section, we present the class of relative strongly
h-convex functions and discuss some important
properties, in addition discuss some
Hermite-Hadamard-Fejér type inequalities related to
relative stronglyh-convex functions.

Definition 5.A function f : Kg → H is said to be relative
strongly h-convex function with module c> 0 with respect
to two functions h: [0,1]→ (0,+∞) and g: H → H such
that Kg is a relative convex set, if

f ((1− t)u+ tg(v))

≤ h(1− t) f (u)+h(t) f (g(v))−ct(1− t)‖u−g(v)‖2 , (5)

∀u,v∈ H : u,g(v) ∈ Kg, t ∈ (0,1).

Remark. 1.If we takeh(t) = t in (5), then we have the
definition of relative strongly convex function with
modulec.

2.If we take h(t) = ts in (5), then the definition of
relative stronglyh-convex function with modulec
reduces to the definition of relative stronglys-convex
function with modulec.

3.If we takeh(t) = t−1 in (5), then the definition of
relative stronglyh-convex function with modulec
reduces to the definition of relative strongly
Godunova-Levin function with modulec.

4.If we takeh(t) = 1 in (5), then we have the definition
of relative stronglyP-convex function with modulec.

5.If we takeg(x) = x in (5), then we have the definition
of stronglyh-convex function.

6.If we takeg(x) = x, h(t) = t in (5), then we have the
definition of strongly convex function with modulec.
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We will present some properties for the class of relative
stronglyh-convex function.

Theorem 6.Let hi : [0,1] → (0,+∞), i = 1,2 be any two
functions,α ≥ 0. If f i : Kg → H, is relative strongly hi-
convex function with module ci > 0, then

(a) f1+ f2 is strongly h-convex function with module c> 0
where h= max{h1,h2} y c= c1+ c2.

(b)α f1 is relative strongly h1-convex function with
module c where c= αc1.

Proof.(a). Since eachfi : Kg→ H is relative stronglyhi-
convex function with moduleci , then∀u,v∈ H : u,g(v) ∈
Kg andt ∈ (0,1) we have

( f1+ f2)((1− t)u+ tg(v))

= f1((1− t)u+ tg(v))+ f2((1− t)u+ tg(v))

≤ h1(1− t) f (u)+h1(t) f (g(v))−c1t(1− t)‖u−g(v)‖2

+h2(1− t) f (u)+h2(t) f (g(v))−c2t(1− t)‖u−g(v)‖2

≤ h(1− t)( f1+ f2)(u)+h(t)( f1+ f2)(g(v))

−(c1+c2)(t(1− t))‖u−g(v)‖2

≤ h(1− t)( f1+ f2)(u)+h(t)( f1+ f2)(g(v))

−c(t(1− t))‖u−g(v)‖2

whereh= max{h1,h2} andc= c1+ c2.
(b). Let α ∈ R. As f1 : Kg→ H is relative strongly

h1-convex function with modulec1 ∀u,v∈H : u,g(v)∈Kg
andt ∈ (0,1) we have

(α f1)((1− t)u+ tg(v))

= α f1((1− t)u+ tg(v))

≤ α
(

h1(1− t) f (u)+h1(t) f (g(v))−c1t(1− t)‖u−g(v)‖2
)

≤ h1(1− t)α f (u)+h1(t)α f (g(v))−αc1t(1− t)‖u−g(v)‖2.

Thereforeα f1 is relative stronglyh1-convex function
with modulec wherec= αc1.

Proposition 1.If f : Kg → H, is relative strongly convex
function with module c> 0 and h: [0,1]→ (0,+∞), h(t)≥
t, then f is relative strongly h-convex function with module
c.

Proof.Given that f is relative strongly convex function
then∀u,v∈ Kg : u,g(v) ∈ Kg andt ∈ (0,1) we have

f ((1− t)u+ tg(v))

≤ (1− t) f (u)+ t f (g(v))−ct(1− t)‖u−g(v)‖2

≤ h(1− t) f (u)+h(t) f (g(v))−ct(1− t)‖u−g(v)‖2 .

Therefore f is relative stronglyh-convex function with
modulec.

Proposition 2.If f : Kg→ H, is relative strongly h-convex
function with module c and h: [0,1]→ (0,+∞), h(t) ≤ t,
then f is relative strongly convex function with module c>
0.

Proof.Since f is relative stronglyh-convex function with
modulec then∀u,v∈ Kg : u,g(v) ∈ Kg andt ∈ (0,1) we
have

f ((1− t)u+ tg(v))

≤ h(1− t) f (u)+h(t) f (g(v))−ct(1− t)‖u−g(v)‖2

≤ (1− t) f (u)+ t f (g(v))−ct(1− t)‖u−g(v)‖2 .

Therefore f is relative strongly convex function with
modulec> 0.

Proposition 3.Let hi : [0,1] → (0,+∞), i = 1,2 be any
function such that h1(t) ≤ h2(t) for t ∈ [0,1]. If
f : Kg → H is relative strongly h1-convex function with
module c1 then f is relative strongly h2-convex function
with module c with0< c2 ≤ c.

Proof.Given thatf is relative stronglyh1-convex function
with modulec1 then∀u,v∈Kg : u,g(v)∈Kg andt ∈ (0,1)
we have

f ((1− t)u+ tg(v))

≤ h1(1− t) f (u)+h1(t) f (g(v))−c1t(1− t)‖u−g(v)‖2

≤ h2(1− t) f (u)+h2(t) f (g(v))−ct(1− t)‖u−g(v)‖2.

Thereforef is relative stronglyh2-convex function with
modulec with 0< c2 ≤ c.

Proposition 4.If fn : Kg → H, is a sequence of functions
which pointwise converge to f: Kg → H and
hn : [0,1] → (0,+∞), is a sequence of functions which
pointwise converge to h: [0,1] → (0,+∞) so there is a
k > 0 such that fn is relative strongly hn-convex function
with module cn for n ≥ k, then f is relative strongly
h-convex function with module c, where c= lim

n→+∞
cn.

Proof.As each fn is relative stronglyhn-convex function
with modulecn then∀u,v∈Kg : u,g(v)∈Kg andt ∈ (0,1)
we have

f ((1− t)u+ tg(v))

= lim
n→+∞

fn((1− t)u+ tg(v))

≤ lim
n→+∞

(

hn(1− t) fn(u)+hn(t) fn(g(v))−cnt(1− t)‖u−g(v)‖2
)

≤ h(1− t) f (u)+h(t) f (g(v))−ct(1− t)‖u−g(v)‖2 .

Therefore f is relative stronglyh-convex function with
modulec, wherec= lim

n→+∞
cn.

Proposition 5.Let fi : Kg → H,g : H → H,
hi : [0,1] → (0,+∞), be with i= 1,2. If f i is relative
strongly hi-convex function with module ci with i = 1,2
then f(x) = max{ f1(x), f2(x)} is relative strongly
h-convex function with module c, where
h(t) = max{h1(t),h2(t)}.
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Proof.Since eachfi is relative stronglyhi-convex function
with moduleci then∀u,v∈Kg : u,g(v)∈Kg andt ∈ (0,1)
we have

fi((1− t)u+ tg(v))

≤ hi(1− t) fi (u)+hi (t) fi(g(v))−cit(1− t)‖u−g(v)‖2

≤ h(1− t) f (u)+h(t) f (g(v))−ct(1− t)‖u−g(v)‖2 .

This implies that

f ((1− t)u+ tg(v))

= max{ f1((1− t)u+ tg(v)), f2((1− t)u+ tg(v))}

≤ h(1− t) f (u)+h(t) f (g(v))−ct(1− t)‖u−g(v)‖2 .

Therefore f (x) = max{ f1(x), f2(x)} is relative strongly
h-convex function with module c, where
h(t) = max{h1(t),h2(t)}.

Proposition 6.Let h : [0,1] → (0,+∞) be a given
function. If g: H → H, is invertible and f: Kg → H is
relative strongly h-convex function with module c, then f
is strongly h-convex function with module c.

Proof.Since f is relative stronglyh-convex function with
modulec then∀u,v∈ Kg : u,g(v) ∈ Kg andt ∈ (0,1) we
get

f ((1− t)u+ tv)

= f ((1− t)u+ t(g(g−1(v))))

≤ h(1− t) f (u)+h(t) f (g(g−1(v)))−c1t(1− t)‖u−g(g−1(v))‖2

≤ h(1− t) f (u)+h(t) f (v)−ct(1− t)‖u− (v)‖2 .

Thereforef is stronglyh-convex function with modulec.

Note that the previous theorem shows us that if
g : H → H, is invertible then the set of the relative
stronglyh-convex functions with modulec is contained in
the set of the stronglyh-convex functions with modulec.

Proposition 7.If f : [a,g(b)]→ R is a relative strongly h-
convex function with module c and h: [0,1]→ (0,+∞) is
an upper bounded function then f is an upper bounded
function.

Proof.For anyx= (1− t)a+ tg(b)∈ [a,g(b)] we obtain

f (x) ≤ h(1− t) f (a)+h(t) f (g(b))−c1t(1− t)(a−g(b))2

≤ M f (a)+M f (g(b))−ct(1− t)(a−g(b))2

≤ M( f (a)+ f (g(b))).

Thereforef is an upper bounded function.

Theorem 7.Let h : (0,1) → (0,∞) be a given function. If
a function f : I → R is Lebesgue integrable and relative
strongly h-convex with module c> 0, then

1
g(b)−a

∫ g(b)

a
f (x)dx

≤ ( f (a)+ f (g(b)))
∫ 1

0
h(t)dt−

c
6
(g(b)−a)2, (6)

for all a,g(b) ∈ I, a< g(b).

Proof.Take(1− t)a+ tg(b) ∈ [a,g(b)]. Then, the relative
strongh-convexity of f implies

f ((1− t)a+ tg(b))

≤ h(1− t) f (a)+h(t) f (g(b))− ct(1− t)(a−g(b))2.

Integrating over the interval(0,1), we get

∫ 1

0
f ((1− t)a+ tg(b))dt

≤
∫ 1

0

(

h(1− t) f (a)+h(t) f (g(b))−ct(1− t)(a−g(b))2
)

dt

≤ f (a)
∫ 1

0
h(1− t)dt+ f (g(b))

∫ 1

0
h(t)dt

−c‖a−g(b)‖2
∫ 1

0
t(1− t)dt.

By a simple calculation and using the change of the
variable, we obtain

1
g(b)−a

∫ g(b)

a
f (x)dx

≤ ( f (a)+ f (g(b)))
∫ 1

0
h(t)dt−

c
6
(g(b)−a)2. (7)

Remark.If g : R → R is right-invertible,
f : Kg = [a,g(b)] → R is a relative stronglyh-convex
function and f is Lebesgue integrable thenf is strongly
h-convex and we get the following result is a counterpart
of the Hermite-Hadamard inequalities for relative
stronglyh-convex functions.

1

2h

(

1
2

)

[

f

(

a+g(b)
2

)

+
c

12
(g(b)−a)2

]

≤
1

g(b)−a

∫ g(b)

a
f (x)dx

≤ ( f (a)+ f (g(b)))
∫ 1

0
h(t)dt−

c
6
(g(b)−a)2, (8)

and wheng is the identity function then the result (8)
coincides with the Theorem 4.1 in [1].

4 A refinement of the Hermite-Hadamard
type inequalities

In this section we present a refinement of the right-hand
side of the Hermite-Hadamard type inequalities (8) for
relative stronglyh-convex functions. A similar result for
strongly convex functions can be found in [2, Theorem 5].

Theorem 8.Let h : (0,1) → (0,∞) be a given function. If
a function f : I → R is Lebesgue integrable and relative

c© 2016 NSP
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strongly h-convex with module c> 0, then

1
g(b)−a

∫ g(b)

a
f (x)dx

≤

(

1+2h
( 1

2

))

2
( f (a)+ f (g(b)))

∫ 1

0
h(t)dt

−

[

1
4

∫ 1

0
h(t)dt+

1
24

]

c(g(b)−a)2, (9)

for all a,g(b) ∈ I, a< g(b).

Proof.Applying the Theorem 7 in the intervals
[

a,
a+g(b)

2

]

and

[

a+g(b)
2

,g(b)

]

we obtain

2
g(b)−a

∫
a+g(b)

2

a
f (x)dx

≤

(

f (a)+ f

(

a+g(b)
2

))

∫ 1

0
h(t)dt−

c
6
(g(b)−a)2

4
, (10)

and
2

g(b)−a

∫ g(b)

a+g(b)
2

f (x)dx

≤

(

f

(

a+g(b)
2

)

+ f (g(b))

)

∫ 1

0
h(t)dt−

c
6
(g(b)−a)2

4
. (11)

Summing up these inequalities we get

2
g(b)−a

∫ g(b)

a
f (x)dx

≤ ( f (a)+2 f

(

a+g(b)
2

)

+ f (g(b)))
∫ 1

0
h(t)dt−

2c
6
(g(b)−a)2

4
.

Therefore
1

g(b)−a

∫ g(b)

a
f (x)dx

≤

(

f (a)+2 f

(

a+g(b)
2

)

+ f (g(b))

)

2

∫ 1

0
h(t)dt−

c
6
(g(b)−a)2

4
.

Now, using the relative strongh-convexity of f , we obtain

f

(

a+g(b)
2

)

≤ h

(

1
2

)

f (a)+h

(

1
2

)

f (g(b))−
c
4
(a−g(b))2.

Thus,

1
g(b)−a

∫ g(b)

a
f (x)dx

≤

(

1+2h
( 1

2

))

2
( f (a)+ f (g(b)))

∫ 1

0
h(t)dt

−
c
4
(a−g(b))2

∫ 1

0
h(t)dt−

c
6
(g(b)−a)2

4

=

(

1+2h
( 1

2

))

2
( f (a)+ f (g(b)))

∫ 1

0
h(t)dt

−

[

1
4

∫ 1

0
h(t)dt+

1
24

]

c(g(b)−a)2.

Corollary 1.Under the same hypotheses of theorem8, if
h(1

2)≤
1
2 and

∫ 1
0 h(t)dt ≥ 1

2 we get

1
g(b)−a

∫ g(b)

a
f (x)dx

≤

(

1+2h
( 1

2

))

2
( f (a)+ f (g(b)))

∫ 1

0
h(t)dt−

[

1
4

∫ 1

0
h(t)dt+

1
24

]

c(g(b)−a)2

≤ ( f (a)+ f (g(b)))
∫ 1

0
h(t)dt−

c
6
(g(b)−a)2.

Corollary 2.If we take g(b) = b, then we get the
right-hand side of the inequality given in [1].

Remark. 1.If we takec= 0 andh(1
2) =

1
2 in the Theorem

9, then we have the right-hand side of the inequality
given in [8, Theorem 16].

2.If we takeh(t) = ts with s∈ [0,1] in Corollary1, then
we obtain
∫ 1

0
tsdt =

1
s+1

≥
1
2
⇔ 0≤ s≤ 1,

and

h

(

1
2

)

≤
1
2

⇔
1
2s ≤

1
2

⇔ 2≤ 2s

⇔ s≥ 1

thus, the theorem is valid only fors= 1.
3.If we takeh(t) = t for t ∈ (0,1) then the inequalities in

the Corollary1 reduce to

1
g(b)−a

∫ g(b)

a
f (x)dx ≤

( f (a)+ f (g(b)))
2

−
c
6
(g(b)−a)2,

these is the hermite-Hadamard type inequalities for
relative strongly convex functions.

5 Fejér type inequalities

Now we will present a bound for the right hand side of
(2). First, we prove the following result which is similar to
Lemma 1 in [15].

Lemma 1.If f : [0,∞)→ R is a relative strongly h-convex
function, with module c> 0, then, for all x∈ [a,g(b)]⊂
[0,∞) there isαx ∈ [0,1] such that

f (a+g(b)−x)

≤ h(1−αx) f (a)+h(αx) f (g(b))−c(x−a)(g(b)−x). (12)

whereαx =
x−a

g(b)−a
and1−αx =

g(b)− x
g(b)−a

.

c© 2016 NSP
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Proof.Since anyx∈ [a,g(b)] can be written as

x= αxa+(1−αx)g(b),

for some αx ∈ [0,1], where αx =
x−a

g(b)−a
,

1−αx =
g(b)− x
g(b)−a

and

a+g(b)−x=a+g(b)−αxa−(1−αx)g(b)= (1−αx)a+αxg(b),

we get

f (a+g(b)−x)

= f (a+g(b)−αxa− (1−αx)g(b))

= f ((1−αx)a+αxg(b))

≤ h(1−αx) f (a)+h(αx) f (g(b))−c(x−a)(g(b)−x).

The proof is completed.

Theorem 9.Let f : [0,∞) → R be a relative strongly
h-convex function with module c> 0, which is integrable
in [a,g(b)], where a,g(b) ∈ [0,∞), a < g(b), and let
p : [a,g(b)] → R be a non negative and integrable

function which is symmetric with respect toa+g(b)
2 , then

∫ g(b)

a
f (x)p(x)dx

≤

∫ g(b)

a
[h(1−αx) f (a)+h(αx) f (g(b))−c(x−a)(g(b)−x)]p(x)dx.

whereαx =
x−a

g(b)−a
and1−αx =

g(b)− x
g(b)−a

.

Proof.By the symmetry ofp with respect toa+g(b)
2 and

Lemma1
∫ g(b)

a
f (x)p(x)dx

=
1
2

∫ g(b)

a
f (a+g(b)−x)p(a+g(b)−x)dx+

1
2

∫ g(b)

a
f (x)p(x)dx

=
1
2

∫ g(b)

a
f (a+g(b)−x)p(x)dx+

1
2

∫ g(b)

a
f (x)p(x)dx

≤
1
2

∫ g(b)

a
[h(1−αx) f (a)+h(αx) f (g(b))−c(x−a)(g(b)−x)]p(x)dx

+
1
2

∫ g(b)

a
f (x)p(x)dx

≤
f (a)
2

∫ g(b)

a
h(1−αx)p(x)dx+

f (g(b))
2

∫ g(b)

a
h(αx)p(x)dx

−
1
2

∫ g(b)

a
c(x−a)(g(b)−x)p(x)dx+

1
2

∫ g(b)

a
f (x)p(x)dx,

thus
1
2

∫ g(b)

a
f (x)p(x)dx

=
1
2

∫ g(b)

a
f (a+g(b)−x)p(a+g(b)−x)dx

+
1
2

∫ g(b)

a
f (x)p(x)dx

≤
f (a)
2

∫ g(b)

a
h(1−αx)p(x)dx+

f (g(b))
2

∫ g(b)

a
h(αx)p(x)dx

−
1
2

∫ g(b)

a
c(x−a)(g(b)−x)p(x)dx.

Remark.Notice that ifh(t) = 1 in Theorem9 we, indeed,
get

∫ g(b)

a
f (x)p(x)dx

≤

(

f (a)+ f (g(b))
2

)

∫ g(b)

a
p(x)dx

−
1
2

∫ g(b)

a
c(x−a)(g(b)−x)p(x)dx

for relative stronglyP-convex functions with modulec.

We expect that the ideas and techniques used in this
paper may inspire interested readers to explore some new
applications of these newly introduced functions in
various fields of pure and applied sciences.
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