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1 Introduction

The study of common fixed points of mappings which
satisfies certain contractive conditions has been studied
by numerous researchers due to its valuable applications
in Mathematics as well as in other sciences. To carried
out a survey in metric as well for cone metric spaces of a
common fixed point theory, we refer the reader to [1,2,3,
4,8,9,10,11,12,15,17,18]. In 2006 Mustafa and Sims
[16], introduced the concept of G-metric space and
presented some fixed point theorems in G-metric space.
The concept of a coupled coincidence point of mapping
was introduced by V. Lakshmikantham [5,14], they also
studied some fixed point theorems in partially ordered
metric spaces. In 2010 Shatanawi [20] gave the proof of
coupled coincidence fixed point theorems in generalized
metric spaces. In 2013 Feng and Yun [7], presented a
common coupled fixed point theorem in generalized
metric space and give some applications to integral
equations. Moreover, In 2002, Branciari [6] presented the
notion of integral type contractive mappings in complete
metric spaces and study the existence of fixed points for
mappings which is defined on complete metric space
satisfies integral type contraction. Also F. Khojasteh et al.
[13], introduced the idea of integral type contraction in
cone metric spaces and proved some fixed point theorems
in such spaces. In this paper we used the idea of Branciari

[6] and presented some common coupled coincidence
fixed point results of integral type contractive mappings
in setting of generalized metric spaces. We recommend
some other references for reader see [19,21]. Also we
give suitable examples that support our results.

2 Preliminaries

We needs the following definitions and results in this
paper.

Definition 2.1[16] Let Y be a non-empty set and
G : Y × Y × Y → R+ is a function that satisfies the
following conditions:
(G1) G(a,b,c) = 0 if a = b= c,
(G2) G(a,a,b)> 0 for all a,b∈Y with a 6= b,
(G3) G(a,a,b)≤ G(a,b,c), for all a,b,c∈Y with c6= b
(G4) G(a,b,c) = G(a,c,b) = G(b,c,a) = . . . , symmetry
in all variables,
(G5) G(a,b,c) ≤ G(a,s,s) + G(s,b,c) for all
a,b,c,s∈Y.
Then the function G is called a generalized metric and the
pair (Y,G) is called a G-metric space.

Example 2.2[16] Let Y= {x,y}. Define G on Y×Y×Y by

G(x,x,x) = G(y,y,y) = 0,G(x,x,y) = 1,G(x,y,y) = 2
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and extend G to Y×Y×Y by using the symmetry in the
variables. Then it is clear that(Y,G) is a G-metric space.

Definition 2.3[16] Let(Y,G) be a G-metric space and(an)
a sequence of points of Y . A point a∈ Y is said to be the
limit of the sequence(an), if limn,m→+∞ G(a,an,am) = 0
and we say that the sequence(an) is G-convergent to a.

Proposition 1.[16] Let (Y,G) be a G-metric space. Then
the following are equivalent:
(1) (an) is G-convergent to a.
(2) G(an,an,a)→ 0 as n→+∞.
(3) G(an,a,a)→ 0 as n→+∞.
(4) G(an,am,a)→ 0 as n,m→+∞.

Definition 2.4[15] Let (Y,G) be a G-metric space. A
sequence(an) is called G-Cauchy if for everyε > 0, there
is k ∈ N such that G(an,am,al ) < ε, for all n,m, l ≥ k;
that is G(an,am,al )→ 0 as n,m, l →+∞.

Proposition 2.[16] Let (Y,G) be a G-metric space. Then
the following are equivalent:
(1) The sequence(an) is G-Cauchy.
(2) For every ε > 0, there is k∈ N such that
G(an,am,am)< ε, for all n,m≥ k.

Definition 2.5[16] A G-metric space(Y,G) is called
G-complete if every G-Cauchy sequence in(Y,G) is
G-convergent in(Y,G).

Definition 2.6[5] An element(a,b) ∈ Y ×Y is called a
coupled coincidence point of the mappings F: Y×Y →Y
and g: Y →Y if F(a,b) = ga and F(b,a) = gb.

Definition 2.7[14] let Y be a non-empty set. Then we say
that the mappings F: Y ×Y → Y and g: Y → Y are
commutative if gF(a,b) = F(ga,gb).

Definition 2.8[14] An element(a,b) ∈ Y ×Y is called a
coupled fixed point of mapping F: Y×Y →Y if F(a,b) =
a and F(b,a) = b.

Proposition 3.[16] Let (Y,G) be a G-metric space. Then
for any a,b,c,e∈Y, it follows that
(i) if G(a,b,c) = 0, then a= b= c;
(ii) G(a,b,c)≤ G(a,a,b)+G(a,a,c);
(iii ) G(a,b,b)≤ 2G(b,a,a);
(iv) G(a,b,c)≤ G(a,e,c)+G(e,b,c);
(v) G(a,b,c)≤ 2

3(G(a,b,e)+G(a,e,c)+G(e,b,c));
(vi) G(a,b,c)≤ G(a,e,e)+G(b,e,e)+G(c,e,e).

Proposition 4.[16] Let (Y,G) be a G-metric space. Then
the function G(a,b,c) is jointly continuous in all three of
its variables.

Proposition 5.[16] Let (Y,G) and (Y′
,G′) be G-metric

spaces, then the mapping f: Y →Y′ is G-continuous at a
point a∈ Y if and only if it is G-sequentially continuous
at a; that is, whenever{an} is G-convergent to a,( f (an))
is G-convergent to f(a).

In 2002, Branciari in[6] introduced a general contractive
condition of integral type as follows.

Theorem 2.9[6] Let(Y,d) be a complete metric space,α ∈
(0,1), and f :Y→Y is a mapping such that for all x,y∈Y,

∫ d( f (x), f (y))

0
φ(t)dt ≤ α

∫ d(x,y)

0
φ(t)dt

where φ : [0,+∞) → [0,+∞) is nonnegative and
Lebesgue-integrable mapping which is summable(i.e.,
with finite integral) on each compact subset of[0,+∞)
such that for eachε > 0,

∫ ε
0 φ(t)dt > 0, then f has a

unique fixed point a∈ Y, such that for each x∈ Y,
limn→∞ f n(x) = a.

In this manuscript we use the above idea of Branciari [6]
and presented our results in generalized metric spaces.

3 Main Results

In this section we will prove some common coupled fixed
point results in generalized metric space by using integral
type contractive mappings. We will start our work by the
following lemma.

Lemma 1.Let (Y,G) be a G-metric space. Suppose
H1,H2,H3 : Y×Y → Y and h: Y → Y be four mappings
such that

∫ G(H1(a,b),H2(p,q),H3(r,c))

0
ϕ(t)dt ≤

α1

∫ G(ha,hp,hr)

0
ϕ(t)dt+α2

∫ G(hb,hq,hc)

0
ϕ(t)dt

+ α3

∫ G(ha,hp,hp)

0
ϕ(t)dt+α4

∫ G(hb,hq,hq)

0
ϕ(t)dt

+ α5

∫ G(ha,hr,hr)

0
ϕ(t)dt+α6

∫ G(hb,hc,hc)

0
ϕ(t)dt

+ α7

∫ G(hr,ha,ha)

0
ϕ(t)dt+α8

∫ G(hc,hb,hb)

0
ϕ(t)dt (3.1)

for all a,b,c, p,q, r ∈ Y, whereαi ≥ 0, i = 1,2, . . . ,8 with
α1 + α2 + α3 + α4 + α7 + α8 < 1 and
ϕ : [0,+∞) → [0,+∞) is a Lebesgue integrable mapping
which is summable, non-negative and such that for each
ε > 0,

∫ ε
0 ϕ(t)dt > 0. Assume that(a,b) is a common

coupled coincidence point of the mappings pair(H1,h),
(H2,h) and(H3,h). Then
H1(a,b) = H2(a,b) = H3(a,b) = ha = hb = H1(b,a) =
H2(b,a) = H3(b,a).

Proof. Since(a,b) is a common coupled coincidence point
of the mappings pair(H1,h), (H2,h) and(H3,h), we have
ha= H1(a,b) = H2(a,b) = H3(a,b) andhb= H1(b,a) =
H2(b,a) = H3(b,a). Supposeha 6= hb. Then by (3.1), we
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get

∫ G(ha,hb,hb)

0
ϕ(t)dt =

∫ G(H1(a,b),H2(b,a),H3(b,a))

0
ϕ(t)dt

≤ α1

∫ G(ha,hb,hb)

0
ϕ(t)dt+α2

∫ G(hb,ha,ha)

0
ϕ(t)dt

+ α3

∫ G(ha,hb,hb)

0
ϕ(t)dt+α4

∫ G(hb,ha,ha)

0
ϕ(t)dt

+ α5

∫ G(hb,hb,hb)

0
ϕ(t)dt+α6

∫ G(ha,ha,ha)

0
ϕ(t)dt

+ α7

∫ G(hb,ha,ha)

0
ϕ(t)dt+α8

∫ G(ha,hb,hb)

0
ϕ(t)dt

= (α1+α3+α8)

∫ G(ha,hb,hb)

0
ϕ(t)dt

+ (α2+α4+α7)

∫ G(hb,ha,ha)

0
ϕ(t)dt.

Also by (3.1), we have

∫ G(hb,ha,ha)

0
ϕ(t)dt =

∫ G(H1(b,a),H2(a,b),H3(a,b))

0
ϕ(t)dt

≤ α1

∫ G(hb,ha,ha)

0
ϕ(t)dt+α2

∫ G(ha,hb,hb)

0
ϕ(t)dt

+ α3

∫ G(hb,ha,ha)

0
ϕ(t)dt+α4

∫ G(ha,hb,hb)

0
ϕ(t)dt

+ α5

∫ G(ha,ha,ha)

0
ϕ(t)dt+α6

∫ G(hb,hb,hb)

0
ϕ(t)dt

+ α7

∫ G(ha,hb,hb)

0
ϕ(t)dt+α8

∫ G(hb,ha,ha)

0
ϕ(t)dt

= (α1+α3+α8)

∫ G(hb,ha,ha)

0
ϕ(t)dt

+ (α2+α4+α7)

∫ G(ha,hb,hb)

0
ϕ(t)dt.

Therefore
∫ G(ha,hb,hb)

0
ϕ(t)dt+

∫ G(hb,ha,ha)

0
ϕ(t)dt

≤ (α1+α2+α3+α4+α7+α8)
∫ (G(ha,hb,hb)+G(hb,ha,ha))

0
ϕ(t)dt.

Since 0≤ α1+α2+α3+α4+α7+α8 < 1, we get

∫ G(ha,hb,hb)

0
ϕ(t)dt+

∫ G(hb,ha,ha)

0
ϕ(t)dt <

∫ G(ha,hb,hb)

0
ϕ(t)dt+

∫ G(hb,ha,ha)

0
ϕ(t)dt,

which is contradiction. Soha= hb, hence

H1(a,b) =H2(a,b) =H3(a,b) = ha= hb=H1(b,a)=
H2(b,a) = H3(b,a).

Theorem 3.1Let (Y,G) be a G-metric space. Suppose
H1,H2,H3 : Y×Y → Y and h: Y → Y be four mappings

such that
∫ G(H1(a,b),H2(p,q),H3(r,c))

0
ϕ(t)dt ≤

α1

∫ G(ha,hp,hr)

0
ϕ(t)dt+α2

∫ G(hb,hq,hc)

0
ϕ(t)dt

+ α3

∫ G(ha,hp,hp)

0
ϕ(t)dt+α4

∫ G(hb,hq,hq)

0
ϕ(t)dt

+ α5

∫ G(ha,hr,hr)

0
ϕ(t)dt+α6

∫ G(hb,hc,hc)

0
ϕ(t)dt

+ α7

∫ G(hr,ha,ha)

0
ϕ(t)dt+α8

∫ G(hc,hb,hb)

0
ϕ(t)dt (3.2)

for all a,b,c, p,q, r ∈ Y, whereαi ≥ 0, i = 1,2, . . . ,8 with
α1 + α2 + α3 + α4 + 2α5 + 2α6 + α7 + α8 < 1 and
ϕ : [0,+∞) → [0,+∞) is a Lebesgue integrable mapping
which is summable, non-negative and such that for each
ε > 0,

∫ ε
0 ϕ(t)dt > 0. Assume that H1,H2,H3 and h

satisfies the following conditions:
(i)
H1(Y×Y)⊂ h(Y),H2(Y×Y)⊂ h(Y),H3(Y×Y)⊂ h(Y);
(ii) h(Y) is G-complete;
(iii ) h is G-continuous and continuous with H1,H2,H3.
Then there exist a unique a∈ Y such that
ha= H1(a,a) = H2(a,a) = H3(a,a) = a.

Proof. Let a0,b0 ∈ Y. Since H1(Y × Y) ⊂ h(Y),
H2(Y ×Y) ⊂ h(Y), H3(Y ×Y) ⊂ h(Y), we can choose
a1,a2,a3,b1,b2,b3 ∈ Y such that
ha1 = H1(a0,b0),hb1 = H1(b0,a0),ha2 =
H2(a1,b1),hb2 = H2(b1,a1),ha3 = H3(a2,b2) and
hb3 = H3(b2,a2). Combining this process, we can
construct two sequences{an} and{bn} in Y such that

ha3n = H3(a3n−1,b3n−1),
hb3n = H3(b3n−1,a3n−1), n= 1,2,3, . . . ,

ha3n+1 = H1(a3n,b3n), hb3n+1 = H1(b3n,a3n),
n= 1,2,3, . . . ,

ha3n+2 = H2(a3n+1,b3n+1),
hb3n+2 = H2(b3n+1,a3n+1), n= 1,2,3, . . . .

If ha3n = ha3n+1, then ha = H1(a,b), where
a= a3n,b= b3n.

If ha3n+1 = ha3n+2, then ha = H2(a,b), where
a= a3n+1,b= b3n+1.

If ha3n+2 = ha3n+3, then ha = H3(a,b), where
a= a3n+2,b= b3n+2.

Also, If hb3n = hb3n+1, then hb = H1(b,a), where
b= b3n,a= a3n.

If hb3n+1 = hb3n+2, then hb = H2(b,a), where
b= b3n+1,a= a3n+1.
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If hb3n+2 = hb3n+3, then hb = H3(b,a), where
b= b3n+2,a= a3n+2.

Without loss of generality, we may assume that
han 6= han+1 andhbn 6= hbn+1, for all n= 0,1,2, . . . .

By (3.2), we have

∫ G(ha3n,ha3n+1,ha3n+2)

0
ϕ(t)dt

=
∫ G(H3(a3n−1,b3n−1),H2(a3n,b3n),H2(a3n+1,b3n+1))

0
ϕ(t)dt

≤ α1

∫ G(ha3n,ha3n+1,ha3n−1)

0
ϕ(t)dt

+ α2

∫ G(hb3n,hb3n+1,hb3n−1)

0
ϕ(t)dt

+ α3

∫ G(ha3n,ha3n+1,ha3n+1)

0
ϕ(t)dt

+ α4

∫ G(hb3n,hb3n+1,hb3n+1)

0
ϕ(t)dt

+ α5

∫ G(ha3n+1,ha3n−1,ha3n−1)

0
ϕ(t)dt

+ α6

∫ G(hb3n+1,hb3n−1,hb3n−1)

0
ϕ(t)dt

+ α7

∫ G(ha3n−1,ha3n,ha3n)

0
ϕ(t)dt

+ α8

∫ G(hb3n−1,hb3n,hb3n)

0
ϕ(t)dt

≤ (α1+α3+α5+α7)
∫ G(ha3n−1,ha3n,ha3n+1)

0
ϕ(t)dt

+ (α2+α4+α6+α8)

∫ G(hb3n−1,hb3n,hb3n+1)

0
ϕ(t)dt.

Which implies that

∫ G(ha3n,ha3n+1,ha3n+2)

0

ϕ(t)dt ≤ (α1+α3+α5+α7)
∫ G(ha3n−1,ha3n,ha3n+1)

0
ϕ(t)dt

+(α2+α4+α6+α8)

∫ G(hb3n−1,hb3n,hb3n+1)

0
ϕ(t)dt. (3.3)

Similarly, we can get

∫ G(hb3n,hb3n+1,hb3n+2)

0
ϕ(t)dt

≤ (α1+α3+α5+α7)
∫ G(hb3n−1,hb3n,hb3n+1)

0
ϕ(t)dt

+ (α2+α4+α6+α8)
∫ G(ha3n−1,ha3n,ha3n+1)

0
ϕ(t)dt. (3.4)

Combining (3.3) and (3.4), we get

∫ G(ha3n,ha3n+1,ha3n+2)

0
ϕ(t)dt

+

∫ G(hb3n,hb3n+1,hb3n+2)

0
ϕ(t)dt (3.5)

≤
(

8

∑
i=1

ai
)

∫ [G(ha3n−1,ha3n,ha3n+1)+G(hb3n−1,hb3n,hb3n+1)]

0
ϕ(t)dt.

Next, we can show that

∫ G(ha3n−1,ha3n,ha3n+1)

0
ϕ(t)dt

+
∫ G(hb3n−1,hb3n,hb3n+1)

0
ϕ(t)dt

≤
(

8

∑
i=1

ai
)

∫ [G(ha3n−2,ha3n−1,ha3n)+G(hb3n−2,hb3n−1,hb3n)]

0
ϕ(t)dt.(3.6)

and

∫ G(ha3n−2,ha3n−1,ha3n)

0
ϕ(t)dt

+
∫ G(hb3n−2,hb3n−1,hb3n)

0
ϕ(t)dt (3.7)

≤
(

8

∑
i=1

ai
)

∫ [G(ha3n−3,ha3n−2,ha3n−1)+G(hb3n−3,hb3n−2,hb3n−1)]

0
ϕ(t)dt.

It follows from (3.5), (3.6) and (3.7) that for alln∈ N,
we have

∫ G(han,han+1,han+2)

0
ϕ(t)dt+

∫ G(hbn,hbn+1,hbn+2)

0
ϕ(t)dt

≤
(

8

∑
i=1

ai
)

∫ [G(han−1,han,han+1)+G(hbn−1,hbn,hbn+1)]

0
ϕ(t)dt

= k
∫ [G(han−1,han,han+1)+G(hbn−1,hbn,hbn+1)]

0
ϕ(t)dt

≤ k2
∫ [G(han−2,han−1,han)+G(hbn−2,hbn−1,hbn)]

0
ϕ(t)dt

...

≤ kn
∫ [G(ha0,ha1,ha2)+G(hb0,hb1,hb2)]

0
ϕ(t)dt, (3.8)

where k = ∑8
i=1ai ∈ [0,1). From (G3), we have

G(han,han+1,han+2) ≤ G(han,han+1,han+2) and
G(hbn,hbn+1,hbn+2) ≤ G(hbn,hbn+1,hbn+2). Hence,
from (G3) and (3.8), we get

∫ G(han,han+1,han+1)

0
ϕ(t)dt+

∫ G(hbn,hbn+1,hbn+1)

0
ϕ(t)dt

≤
∫ G(han,han+1,han+2)

0
ϕ(t)dt+

∫ G(hbn,hbn+1,hbn+2)

0
ϕ(t)dt

≤ kn
∫ [G(ha0,ha1,ha2)+G(hb0,hb1,hb2)]

0
ϕ(t)dt. (3.9)
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Therefore, for alln,m∈ N,n < m, by (G5) and (3.9), we
have

∫ G(han,ham,ham)

0
ϕ(t)dt+

∫ G(hbn,hbm,hbm)

0
ϕ(t)dt

≤

∫ [G(han,han+1,han+1)+G(hbn,hbn+1,hbn+1)]

0
ϕ(t)dt

+ · · ·+

∫ [G(ham−1,ham,ham)+G(hbm−1,hbm,hbm)]

0
ϕ(t)dt

≤ (kn+ kn+1+ · · ·+ km−1)
∫ [G(ha0,ha1,ha2)+G(hb0,hb1,hb2)]

0
ϕ(t)dt

≤
kn

1− k

∫ [G(ha0,ha1,ha2)+G(hb0,hb1,hb2)]

0
ϕ(t)dt.

(3.10)

Thus

∫ G(han,ham,ham)

0
ϕ(t)dt → 0 asn,m→ ∞.

Which implies that

G(han,ham,ham)→ 0 and G(hbn,hbm,hbm)→ 0 asn,m→∞.

Thus,{han} and{hbn} are all G-Cauchy inhY. SincehY
is G-complete, we get{han} and{hbn} are converges to
some a ∈ hY and b ∈ hY, respectively. Sinceh is
G-continuous, we have{hhan} is G-convergent toha and
{hhbn} is G-convergent tohb. i.e.,

hhan → ha and hhbn → hb as n→ ∞. (3.11)

Also, ash commutes withH1,H2 andH3, we have

hha3n = hH3(a3n−1,b3n−1) = H3(ha3n−1,hb3n−1),

hhb3n = hH3(b3n−1,a3n−1) = H3(hb3n−1,ha3n−1),

hha3n+1 = hH1(a3n,b3n) = H1(ha3n,hb3n),

hhb3n+1 = hH1(b3n,a3n) = H1(hb3n,ha3n),

hha3n+2 = hH2(a3n+1,b3n+1) = H2(ha3n+1,hb3n+1),

and

hhb3n+2 = hH2(b3n+1,a3n+1) = H2(hb3n+1,ha3n+1).

Thus, from (3.2), we have

∫ G(hha3n,hha3n+1,H2(a,b))

0
ϕ(t)dt

=

∫ G(H1(ha3n,hb3n),H2(a,b),H3(ha3n−1,hb3n−1))

0
ϕ(t)dt

≤ α1

∫ G(hha3n,ha,hha3n−1)

0
ϕ(t)dt

+ α2

∫ G(hhb3n,hb,hhb3n−1)

0
ϕ(t)dt

+ α3

∫ G(hha3n,ha,ha)

0
ϕ(t)dt

+ α4

∫ G(hhb3n,hb,hb)

0
ϕ(t)dt

+ α5

∫ G(ha,hha3n−1,hha3n−1)

0
ϕ(t)dt

+ α6

∫ G(hb,hhb3n−1,hhb3n−1)

0
ϕ(t)dt

+ α7

∫ G(hha3n−1,hha3n,hha3n)

0
ϕ(t)dt

+ α8

∫ G(hhb3n−1,hhb3n,hhb3n)

0
ϕ(t)dt.

Lettingn→ ∞, and using (3.11), alsoG is continuous, we
get
G(ha,ha,H2(a,b)) = 0.
Hence,ha= H2(a,b). By the same way, we can show that
hb = H2(b,a). Also we may show that
ha = H1(a,b),hb = H1(b,a),ha = H3(a,b) and
hb = H3(b,a). Therefore,(a,b) is a common coupled
coincidence point of the pair(H1,h),(H2,h) and(H3,h).
By Lemma1, we get

ha= H1(a,b) = H2(a,b) = H3(a,b)

= H1(b,a) = H2(b,a) = H3(b,a) = hb. (3.12)

Since the sequences{ha3n−1}, {hb3n} and{ha3n+1} are
the subsequences of the sequence{han}, so all are
G-convergent toa. By the same process, we may show
that {hb3n−1}, {hb3n} and {ha3n+1} are converges tob.
From condition (3.2), we have

∫ G(ha3n,ha,ha)

0
ϕ(t)dt =

∫ G(H1(a,b),H2(a,b),H3(a3n−1,b3n−1))

0
ϕ(t)dt

≤ α1

∫ G(ha,ha,ha3n−1)

0
ϕ(t)dt+α2

∫ G(hb,hb,hb3n−1)

0
ϕ(t)dt

+ α3

∫ G(ha,ha,ha)

0
ϕ(t)dt+α4

∫ G(hb,hb,hb)

0
ϕ(t)dt

+ α5

∫ G(ha,ha3n−1,ha3n−1)

0
ϕ(t)dt+α6

∫ G(hb,hb3n−1,hb3n−1)

0
ϕ(t)dt

+ α7

∫ G(ha3n−1,ha,ha)

0
ϕ(t)dt+α8

∫ G(hb3n−1,hb,hb)

0
ϕ(t)dt.
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Lettingn→ ∞, also asG is continuous, we get

∫ G(a,ha,ha)

0
ϕ(t)dt ≤ (α1+α7)

∫ G(ha,ha,a)

0
ϕ(t)dt

+(α2+α8)
∫ G(hb,hb,b)

0
ϕ(t)dt

+ α5

∫ G(ha,a,a)

0
ϕ(t)dt+α6

∫ G(hb,b,b)

0
ϕ(t)dt.

Further, we can show that
∫ G(b,hb,hb)

0
ϕ(t)dt ≤ (α1+α7)

∫ G(hb,hb,b)

0
ϕ(t)dt+(α2+α8)

∫ G(ha,ha,a)

0
ϕ(t)dt

+ α5

∫ G(hb,b,b)

0
ϕ(t)dt+α6

∫ G(ha,a,a)

0
ϕ(t)dt.

By using Proposition5(iii), we have
∫ G(a,ha,ha)

0
ϕ(t)dt

+
∫ G(b,hb,hb)

0
ϕ(t)dt ≤ (α1+α2+α7+α8)

∫ [G(ha,ha,a)+G(hb,hb,b)]

0
ϕ(t)dt

+ (α5+α6)

∫ [G(ha,a,a)+G(hb,b,b)]

0
ϕ(t)dt

≤ (α1+α2+2α5+2α6+α7+α8)
∫ [G(ha,ha,a)+G(hb,hb,b)]

0
ϕ(t)dt.

Since 0≤ α1+α2+α3+α4+2α5+2α6+α7+α8 < 1,
so the last inequality happens only ifG(a,ha,ha) = 0 and
G(b,hb,hb) = 0. Hencea= ha andb= hb. From (3.12),
we havea= ha= hb= b, thus, we get
ha= H1(a,a) = H2(a,a) = H3(a,a) = a.
For uniqueness, letp0 ∈ Y with assumption thatp0 6= a
such that
p0 = hp0 = H1(p0, p0) = H2(p0, p0) = H3(p0, p0).
Once again using the condition (3.2) and Proposition
5(iii), we have

∫ G(p0,p0,a)

0
ϕ(t)dt =

∫ G(H1(p0,p0),H2(p0,p0),H3(a,a))

0
ϕ(t)dt

≤ α1

∫ G(hp0,hp0,ha)

0
ϕ(t)dt+α2

∫ G(hp0,hp0,ha)

0
ϕ(t)dt

+ α3

∫ G(hp0,hp0,hp0)

0
ϕ(t)dt+α4

∫ G(hp0,hp0,hp0)

0
ϕ(t)dt

+ α5

∫ G(hp0,ha,ha)

0
ϕ(t)dt+α6

∫ G(hp0,ha,ha)

0
ϕ(t)dt

+ α7

∫ G(ha,hp0,hp0)

0
ϕ(t)dt+α8

∫ G(ha,hp0,hp0)

0
ϕ(t)dt

≤ (α1+α2+2α5+2α6+α7+α8)
∫ G(p0,p0,a)

0
ϕ(t)dt.

Since 0≤ α1+α2+α3+α4+2α5+2α6+α7+α8 < 1,
we get
∫ G(p0,p0,a)

0
ϕ(t)dt <

∫ G(p0,p0,a)

0
ϕ(t)dt,

which gives a contradiction. Thus,H1, H2, H3 andh have
a unique common fixed point.

Corollary 3.2Let (Y,G) be a G-metric space. Let
H1,H2,H3 : Y×Y → Y and h: Y → Y be mappings such
that

∫ G(H1(a,b),H2(p,q),H3(r,c))

0
ϕ(t)dt

≤ α1

∫ G(ha,hp,hr)

0
ϕ(t)dt+α2

∫ G(hb,hq,hc)

0
ϕ(t)dt (3.13)

for all a,b,c, p,q, r ∈ Y, where ai ≥ 0, i = 1,2, and
α1 +α2 < 1. Also ϕ : [0,+∞) → [0,+∞) is a Lebesgue
integrable mapping which is summable, non-negative and
such that for eachε > 0,

∫ ε
0 ϕ(t)dt > 0. Assume that

H1,H2,H3 and h satisfies the following conditions:
(i)
H1(Y×Y)⊂ h(Y),H2(Y×Y)⊂ h(Y),H3(Y×Y)⊂ h(Y);
(ii) h(Y) is G-complete;
(iii ) h is G-continuous and continuous with H1,H2,H3.
Then there exists a unique a∈ Y such that
ha= H1(a,a) = H2(a,a) = H3(a,a) = a.

Example 3.3Suppose Y= [0,1]. Define G: Y×Y×Y →
R+ by

G(a,b,c) = |a−b|+ |b− c|+ |c−a|

for all a,b,c ∈ Y. Then(Y,G) is a complete G-metric
space. Define a map
H1,H2,H3 : Y×Y →Y
by

H1(a,b) = H2(a,b) = H3(a,b) =
a+b

8

for all a,b ∈ Y. Also, define h: Y → Y by ha= a
2 and

ϕ(t) = t
2 for some t∈Y. Then H(Y×Y)⊆ hY.

Thus the condition of Corollary3.2 holds, in fact,
∫ G(H1(a,b),H2(p,q),H3(r,c))

0
ϕ(t)dt ≤

∫ G( a+b
8 ,

p+q
8 ,

r+c
8 )

0
ϕ(t)dt

=
1
4

∫ G(ha,hp,hr)

0
ϕ(t)dt+

1
4

∫ G(hb,hq,hc)

0
ϕ(t)dt.

By subadditivity, we have

=
1
4

∫ [G(ha,hp,hr)+G(hb,hq,hc)]

0
ϕ(t)dt.

Thus we see that the condition(3.13) of Corollary 3.2 is
satisfied withα1 = α2 =

1
4. So, we may say that H1,H2,H3

and h have a common fixed point. Further,0 is the unique
common fixed point for all maps H1,H2,H3 and h.
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Corollary 3.4Let (Y,G) be a G-metric space. Let H: Y×
Y →Y and h: Y →Y be four mappings such that

∫ G(H(a,b),H(p,q),H(r,c))

0
ϕ(t)dt

≤ α1

∫ G(ha,hp,hp)

0
ϕ(t)dt+α2

∫ G(hb,hq,hq)

0
ϕ(t)dt

+ α3

∫ G(hp,hr,hr)

0
ϕ(t)dt+α4

∫ G(hq,hc,hc)

0
ϕ(t)dt

+ α5

∫ G(hr,ha,ha)

0
ϕ(t)dt+α6

∫ G(hc,hb,hb)

0
ϕ(t)dt (3.14)

for all a,b,c, p,q, r ∈ Y, whereαi ≥ 0, i = 1,2, . . . ,6 and
α1 + α2 + 2α3 + 2α4 + α5 + α6 < 1. Also
ϕ : [0,∞) → [0,∞) is a Lebesgue integrable mapping
which is summable, non-negative and such that for each
ε > 0,

∫ ε
0 ϕ(t)dt > 0. Suppose that H and h satisfy the

below conditions:
(i) H(Y×Y)⊆ hY;
(ii) hY is G-complete;
(iii ) h is G-continuous and commutes with H.
Then there exists a unique a∈ Y such that
ha= H(a,b) = a.

Example 3.5Suppose Y = [0,1]. Define
G : Y×Y×Y → R+ by

G(a,b,c) = |a−b|+ |b− c|+ |c−a|

for all a,b,c ∈ Y. Then(Y,G) is a complete G-metric
space. Define a mapping H: Y×Y →Y by

H(a,b) =
ab
8

for all a,b ∈ Y. Also, define a map g: Y → Y by ha= a
andϕ(t) = t for t ∈Y.
Then the condition of Corollary3.4 holds, in fact,

∫ G(H(a,b),H(p,q),H(r,c))

0
ϕ(t)dt =

∫ G( ab
8 ,

pq
8 ,

rc
8 )

0
ϕ(t)dt

=
1
16

∫ G(ha,hp,hp)

0
ϕ(t)dt+

1
16

∫ G(hb,hq,hq)

0
ϕ(t)dt

+
1
16

∫ G(hp,hr,hr)

0
ϕ(t)dt+

1
16

∫ G(hq,hc,hc)

0
ϕ(t)dt

+
1
16

∫ G(hr,ha,ha)

0
ϕ(t)dt+

1
16

∫ G(hc,hb,hb)

0
ϕ(t)dt.

Clearly we see that the condition(3.14) of Corollary 3.4
is satisfied withα1 = α2 = α3 = α4 = α5 = α6 =

1
16. So,

H and h have a unique common fixed point. Moreover,0 is
the unique common fixed point for all the mappings H and
h.

4 Conclusion

In this paper we use the idea of A. Branciari [6], about
integral type contraction to produce new common
coupled coincidence fixed point results in generalized
metric spaces.
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