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Abstract: In this article, we investigate upper and lower solutions toa system of coupled nonlinear fractional differential equations
with multi-point coupled boundary conditions. Using monotone type iterative techniques combined with the upper and lower solutions
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1 Introduction

During the last few decades a huge amount of work is devoted tothe study of fractional calculus. Being nonlocal in
nature fractional calculus serves as a tool of 21st century for analyzing many natural and scientific phenomena. Among
others, some of the recent fields in which fractional calculus proved to be efficient tool, are engineering sciences [1,2,3],
psychological and life sciences [4,5], food science [7], electrodynamics [8,9], diffusion processes [10], control systems
and dynamics [11,12], waves dynamics and marine sciences [13,14,15], solid mechanics [16,17] and Heat transform
models [18,19,20,21]. In addition to the above mentioned applications, there are several applications of fractional calculus
within different fields of mathematics itself. For example,the fractional operators are useful for the analytic investigation
of various spacial functions [22,23].

The extensive application of fractional calculus or specifically fractional differential equations(FDEs), motivates the
interest of many scientist around the globe to study different aspects of FDEs. Reviewing the current literature on FDEs
leads us to the conclusion that among others, numerical approximation of solutions, exitances results of positive solutions
and modeling applied problems in terms of FDEs are the most studied fields of fractional calculus. Consequently a huge
amount of work is available and is still growing.

Numerical approximation of solutions of FDEs are relatively difficult as compare to integer order differential
equations. Some recently developed spectral methods whichcan be successfully used to solve most of FDEs are given in
[24,25,26,27,28,29]. Numerically approximation of solution of coupled systemof FDEs can be found in [30,31,32,33,
34]. Iterative methods of monotone type are also used to develop numerical methods for initial and boundary value
problems of FDEs [53,54,55,56,57,58,59,60,61].

A numerical method will work only if the solution of the problem exists. In this regard, many authors devoted there
time to study the existence theory of positive solutions, for more details we refer the reader to [39,40]. Among others, some
of the well known approaches used in existence theory are classical fixed point theorems of Cone expansion and Banach
contraction mapping principles[41,42,43,44,45]. Some results on the impulsive boundary conditions can be found in [46].
Existence of multiple solutions for nonlocal boundary value problems is also discussed in [47]. More recently iterative
techniques (combined with upper and lower solution method)are extensively applied to study the existence of multiple
positive of different types of boundary value problems. Beyond simplicity, the brevity of such approach is its applicability
to large number of problems. For example, these techniques are successfully applied to develop conditions for existence
of multiple solutions for ordinary and FDEs[48,49,50,51,52].
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Recently, Xu and Liu [62], applied an iterative technique of monotone type coupled with upper and lower solution
method to develop sufficient conditions of multiple solutions to FDEs of the form























D
αu(t)+ f (t,v(t),I β v(t)) = 0, t ∈ [0,1],

D
β v(t)+g(t,u(t),I αu(t)) = 0, t ∈ [0,1],

I
3−αu(0) = D

α−2u(0) = u(1) = 0,

I
3−β v(0) = D

β−2v(0) = v(1) = 0,

where 2< α, β ≤ 3, f ,g : [0,1]×R×R→ R are nonlinear functions satisfying Caratheodory conditions whileD and
I are Riemann-Liouville differential and integral operatorrespectively. The above results motivates our interest to study
nonlocal multi point coupled boundary conditions of the more generalized problem given as











D
αu(t)+ f (t,u(t),v(t)) = 0, D

β v(t)+g(t,u(t),v(t)) = 0, 0< t < 1,

u(0) = v(0) = 0, u(1) =
m−2

∑
i=1

δiv(ηi), v(1) =
m−2

∑
i=1

λiu(ξi),
(1)

where 1< α,β ≤ 2, ηi ,ξi(i = 1,2, ...m−2)∈ (0,1), ∑m−2
i=1 δiηi < 1, ∑m−2

i=1 γiξi < 1, f ,g : (0,1)×R
2 →R

2 are nonlinear
continuous functions andD represents Caputo’s fractional derivative. We use varioustools of applied analysis to develop
sufficient conditions for existence of multiple solutions of the problem. These results are demonstrated with the help of
some test problems.

The rest of the article is organized as follows: In section 1,some preliminaries results of fractional calculus and
functional analysis are presented. Section 2 is devoted to main results of the paper. In section 3, we provide some test
examples which demonstrates our main results. The last section is devoted to a short conclusion.

2 Background Materials

The current portion of the article is related to some important definitions and well known results of fractional calculusand
functional analysis. The concerned background materials can be found in [2,3,35,48,49,50,51,52].

Definition 1.Letα > 0 and z: [a,+∞)→R. Then the fractional order integral of z(t) is defined by

I
α
a+z(t) =

∫ t

a

(t − s)1−αz(s)
Γ (α)

ds,

whereα ∈ R+ andΓ represents Gamma function. The above definition is meaningful for all function such that integral
exists.

Definition 2.Theα order derivative of a function z(t) on the interval[a,b] in Caputo’s sense is defined as

D
α
a+z(t) =

1
Γ (n−α)

∫ t

a
(t − s)n−α−1z(n)(s)ds,

where n= [α]+1 and[α] represents the integer part ofα.

Lemma 1.[41] If Dαz(t) = 0, be a differential equation, where z∈ C(0,1)
⋂

L(0,1), then in view of Definition(1), we
have

I
α
D

αz(t) = z(t)+C0+C1t +C2t
2+ ...+Cn−1t

n−1
,

for any Ci ∈ R, i = 0,1,2, ...,n−1.

Note: We denoteX =C2([0,1],R), Y =C([0,1],(0,∞)) through out this paper.

Definition 3.(x0,y0) ∈ X ×X is called lower solution of the CBVP(1) if










D
αu0(t)+ f (t,u0(t),v0(t))≥ 0, D

β v0(t)+g(t,u0(t),v0(t))≥ 0, 0< t < 1,

u0(0)≤ 0,v0(0)≤ 0, u0(1)≤
m−2

∑
i=1

δiv0(ηi), v(1)≤
m−2

∑
i=1

λiu0(ξi).
(2)

Similarly (µ0,ν0) ∈ X ×X is called an upper solution if it satisfies the inequalities in reversed order. Moreover we
assume that(x0,y0),(µ0,ν0) ∈ X ×X are ordered lower and upper solutions respectively of CBVP(1).
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We define the ordered sector

Θ = {(u,v) ∈ X ×X : (x0,y0)≤ (u,v)≤ (µ0,ν0), t ∈ [0,1]}. (3)

For further study, we make the following assumptions which will be use through out in this paper.

(A1) 0< ∑m−2
i=1 δi ∑m−2

i=1 λi < 1.
(A2) f ,g : [0,1]×R

2 →R.

(A3) f (t,u,v) is non-decreasing inv and there existU(t) ∈ Y such thatf (t,u1,v)− f (t,u2,v)≤−U(u1−u2), U ≥ 0.
(A4) g(t,u,v) is non-decreasing inu and there existV(t) ∈ Y such thatg(t,u,v1)−g(t,u,v2)≤−V(v1− v2), V ≥ 0.

Lemma 2.[53].Let h(t) ∈ X andγ(t) ∈ Y . If h(t) satisfies the inequality

−D
αh(t)≤−γ(t)h(t), t ∈ (0,1) such that h(0)≤ 0, h(1)≤ 0, (4)

then
h(t)≤ 0, for all t ∈ [0,1].

Lemma 3.(Comparison theorem) Let U(t),V(t) ∈ Y be given, assume that u(t),v(t) satisfy























−D
αu(t)≤−U(t)u(t), −D

β v(t)≤−V(t)v(t)t ∈ (0,1),

u(0)≤ 0,v(0)≤ 0, u(1)≤
m−2

∑
i=1

δiv0(ηi), v(1)≤
m−2

∑
i=1

λiu0(ξi),

then u(t)≤ 0,v(t)≤ 0, for all t ∈ [0,1].

(5)

Proof.For proof see the Lemma(3) of [53].

Note that ifU(t),V(t) ∈ Y satisfies

−D
αu(t) =−U(t)u(t), −D

β v(t) =−V(t)v(t), t ∈ (0,1),

u(0) = 0,v(0) = 0,u(1) =
m−2

∑
i=1

δiv(ξi),v(1) =
m−2

∑
i=1

λiu(ηi).

Thenwehave u(t) = v(t) = 0, for all t ∈ [0,1].

(6)

3 Main Results

Now we are in the position to develop our main results. The following lemma is important.

Lemma 4.Let y(t),w(t) ∈C[0,1], then the corresponding integral representation of(1) is given by

u(t) =
∫ 1

0
K11(t,s)y(s)ds+

∫ 1

0
K12(t,s)w(s)ds,

v(t) =
∫ 1

0
K21(t,s)w(s)ds+

∫ 1

0
K22(t,s)y(s)ds,

where

K11(t,s) = Gα(t,s)+
t ∑m−2

i=1 δiηi ∑m−2
i=1 λi

∆
Gα(ξi ,s), K12=

t ∑m−2
i=1 δi

∆
Gβ (ηi ,s),

K21(t,s) = Gβ (t,s)+
t ∑m−2

i=1 λiξi ∑m−2
i=1 δi

∆i
Gβ (ηi ,s), K22 =

t ∑m−2
i=1 λi

∆
Gα(ξi ,s),

∆ = 1−
m−2

∑
i=1

λiξi

m−2

∑
i=1

δiηi .

(7)
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The functionsGα(t,s),Gβ (t,s) are defined as

Gα(t,s) =



















t(1− s)α−1− (t− s)α−1

Γ (α)
0≤ s≤ t ≤ 1,

t(1− s)α−1

Γ (α)
0≤ t ≤ s≤ 1.

(8)

and

Gβ (t,s) =



















t(1− s)β−1− (t− s)β−1

Γ (β )
0≤ s≤ t ≤ 1,

t(1− s)β−1

Γ (β )
0≤ t ≤ s≤ 1.

(9)

Proof.Applications ofI α ,I β on both sides of (1), and using the corresponding homogenous boundary conditionsu(0)=
0,v(0) = 0,u(1) = 0,v(1) = 0, we obtain

uc(t) = tI αy(1)−I
αy(t) =

∫ 1

0
Gα(t,s)y(s)ds, vc(t) = tI β w(1)−I

β w(t) =
∫ 1

0
Gβ (t,s)w(s)ds, (10)

the equivalent system of integral equations correspondingto (1) is given by

u(t) = u(1)t +
∫ 1

0
Gα(t,s)y(s)ds, v(t) = v(1)t +

∫ 1

0
Gβ (t,s)w(s)ds, t ∈ [0,1]. (11)

Using the above estimates along with coupledm-point boundary conditions, we get

v(1) =
m−2

∑
i=1

λiu(ξi) =
m−2

∑
i=1

λiξiu(1)+
m−2

∑
i=1

λi

∫ 1

0
Gα(ξi ,s)y(s)ds, (12)

and

u(1) =
m−2

∑
i=1

δiv(ηi) =
m−2

∑
i=1

δiηiv(1)+
m−2

∑
i=1

δi

∫ 1

0
Gβ (ηi ,s)w(s)ds. (13)

Further simplification, and using∆ = 1−∑m−2
i=1 λiξi ∑m−2

i=1 δiηi , we get

u(1) = 1
∆

[

t(∑m−2
i=1 δiηi)∑m−2

i=1 λi
∫ 1

0 Gα(ξi ,s)y(s)ds+ t ∑m−2
i=1 δi

∫ 1
0 Gβ (ηi ,s)w(s)ds

]

, (14)

and

v(1) = 1
∆

[

t(∑m−2
i=1 λiξi)∑m−2

i=1 δi
∫ 1

0 Gβ (ηi ,s)w(s)ds+ t ∑m−2
i=1 λi

∫ 1
0 Gα(ξi ,s)y(s)ds

]

. (15)

Using (14) and (15) in (13) and (12), and using the values ofu(1),v(1) in (11), we get the desire results.

Now consider the following problem.






















D
αu(t)−U(t)u(t)+ y(t) = 0, t ∈ (0,1),1< α ≤ 2,

D
β v(t)−V(t)v(t)+w(t) = 0, t ∈ (0,1),1< β ≤ 2,

u(0) = v(0) = 0, u(1) =
m−2

∑
i=1

δiv(ξi),v(1) =
m−2

∑
i=1

λiu(ηi),

(16)

where U(t),V(t) ∈ Y .

We define an operatorT : X ×X → X ×X by

T (u,v) =

(

−

∫ 1

0
K11(t,s)U(s)u(s)ds−

∫ 1

0
K12(t,s)V(s)v(s)ds,

−

∫ 1

0
K21(t,s)V(s)v(s)ds−

∫ 1

0
K22(t,s)U(s)u(s)ds

)

+(µ ,ν),

where

µ =

∫ 1

0
K11(t,s)y(s)ds+

∫ 1

0
K12(t,s)w(s)ds, ν =

∫ 1

0
K21(t,s)w(s)ds+

∫ 1

0
K22(t,s)y(s)ds.

(17)

The following Lemma guarantees the unique solution of (16).
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Lemma 5.Let U(t),V(t) ∈ Y , then the unique fixed point for the operatorT is the corresponding unique solutions of
(16).

Proof.In view of Fredholm theorem the operator (17) is completely continuous also in view of Lemma (3) the operator
equationT (u,v) = (u,v) has only the zero solution. Hence the operator equations defined in (17), for (µ ,ν) ∈ X ×X

has a unique fixed point which is the unique solution of the problem.

Lemma 6.Assume that(A1)− (A4) holds. Then there exist a monotone sequences{(un,vn)} of ordered lower and
{(µn,νn)} of order upper solutions of(1) in sectorΘ such that

{(un,vn)}→ {(u0,v0)}, {(µn,νn)}→ {(µ0,ν0)} as n→ ∞,

where(u0,v0) is initial approximation of ordered lower solution and(µ0,ν0) is initial approximation of ordered upper
solution of (1).

Proof.Let us define a sequence by

D
αun+1(t)+ f (t,un(t),vn(t)) =U [un+1(t)−un(t)], t ∈ (0,1),

D
β vn+1(t)+g(t,un(t),vn(t)) =V[vn+1(t)− vn(t)], t ∈ (0,1),

un+1(0) = 0, vn+1(0) = 0,un+1(1) =
m−2

∑
i=1

δivn+1(ξi),vn+1(1) =
m−2

∑
i=1

λiun+1(ηi).

(18)

Then in view of Lemma (5) the above system has a unique solutions(un+1,vn+1). Usingn= 0 in (18) we get

D
αu1(t)+ f (t,u0(t),v0(t)) =U [u1(t)−u0(t)], t ∈ (0,1),

D
β v1(t)+g(t,u0(t),v0(t)) =V[v1(t)− v0(t)], t ∈ (0,1),

u1(0) = 0, v1(0) = 0,u1(1) =
m−2

∑
i=1

δiv1(ξi),v1(1) =
m−2

∑
i=1

λiu1(ηi).

(19)

To order to show that(u0,v0)≤ (u1,v1)≤ (µ0,ν0) we setφ(t) = u0(t)−u1(t), ψ(t) = v0(t)−v1(t) in (19), which implies

D
α φ(t) = D

α [u0(t)−u1(t)]≤−Uφ(t), D
β ψ(t) = D

β [v0(t)− v1(t)]≤−Vψ(t), t ∈ (0,1),

φ(0)≤ 0, ψ(0)≤ 0, φ(1)≤
m−2

∑
i=1

δiψ(ξi), ψ(1)≤
m−2

∑
i=1

λiφ(ηi).

Hence by lemma (3) D
α φ(t)≤−Uφ(t), D

β ψ(t)≤−Vψ(t)⇒ φ(t)≤ 0, ψ(t)≤ 0.

(20)

Henceu0(t) ≤ u1(t), v0(t) ≤ v1(t). Thus(u0,v0) ≤ (u1,v1), t ∈ [0,1]. Similarly settingφ(t) = u1(t)− µ1(t), ψ(t) =
v1(t)− ν(t) in (19), we get(u1,v1) ≤ (µ1,ν1), t ∈ [0,1]. Next to prove that(µ1,ν1) ≤ (µ0,ν0). Setting φ(t) = µ1(t)−
µ0(t), ψ(t) = ν1(t)−ν0(t), we can easily obtain thatµ1(t)≤ µ0(t), ν1(t)≤ ν0(t) we have(µ1,ν1)≤ (µ0,ν0). Thus after
collecting these relations, we have

(u0,v0)≤ (u1,v1)≤ (µ1,ν1)≤ (µ0,ν0).

Now we assume thatk> 1, and setφ(t) = uk−uk+1, ψ(t) = vk− vk+1 in system (18), implies that

D
α φ(t) = D

α [uk(t)−uk+1(t)]≤−Uφ(t), D
β ψ(t) = D

β [vk(t)− vk+1(t)]≤−Vψ(t), t ∈ (0,1),

φ(0)≤ 0, ψ(0)≤ 0, φ(1)≤
m−2

∑
i=1

δiψ(ξi), ψ(1)≤
m−2

∑
i=1

λiφ(ηi).
(21)

Thus, by Lemma (3) we haveφ(t) ≤ 0, ψ(t) ≤ 0. Henceuk ≤ uk+1, vk ≤ vk+1 ⇒ (uk,vk) ≤ (uk+1,vk+1). Similarly we
can prove that((uk+1,vk+1)≤ (µk+1,νk+1).

Now using the corresponding system of Fredholm integral equations we have

un+1 =
∫ 1

0
K11(t,s) f (s,un,vn)ds+

∫ 1

0
K12(t,s)g(s,un,vn)ds,

vn+1 =

∫ 1

0
K21(t,s)g(s,un,vn)ds+

∫ 1

0
K22(t,s) f (s,un,vn)ds.

(22)
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The above estimates implies that(u,v) is a solution of the system (22). Next we prove that(u0,v0),(µ0,ν0) are ordered
extremal solutions of (1). Assume that(x,y) be another solution different from(u0,v0),(µ0,ν0) such that for somen∈Z+,

we have(uk,vk) ≤ (xk,yk) ≤ (µk,νk), t ∈ [0,1]. We setφ(t) = uk+1 − xk, ψ(t) = vk+1 − yk, then by Lemma(2) and
Theorem(3), we haveφ(t) ≤ 0,ψ(t) ≤ 0, henceuk+1 ≤ xk, vk+1 ≤ yk for all t ∈ [0,1]. Similarly we can show thatxk ≤
µk+1, yk ≤ νk+1, ∀k∈ Z+. Thus(uk,vk)≤ (xk,yk)≤ (µk,νk), applying limitk→ ∞ we have(u0,v0)≤ (x0,y0)≤ (µ0,ν0),
hence maximal and minimal solutions follows in the sectorΘ . This completes the proof.

4 Examples

This section is devoted to study the following examples for upper and lower solutions to verify the aforementioned
techniques.

Example 1.Consider the following system of coupled boundary values problem with coupled boundary conditions






















































D
3
2 u(t)+ cos(t)−1−8u(t)+

t2

4
v2(t) = 0, t ∈ (0,1),

D
5
3 v(t)+e

t
2 +

u2(t)
2

− v2(t) = 0, t ∈ (0,1),

u(0) = v(0) = 0, u(1) =
m−2

∑
i=1

δiv(ηi), v(1) =
m−2

∑
i=1

λiu(ξi),

where
m−2

∑
i=1

λi <
1

100
,

m−2

∑
i=1

δi <
1
50

.

(23)

Since

f (t,u,v) = cos(t)−1−8u(t)+
t2

4
v2(t), g(t,u,v) = e

t
2 +

u2(t)
2

− v2(t),

taking (−1,−1) = (u0,v0) and (2,2) = (µ0,ν0) be initial approximation of ordered lower and upper solutions
respectively,then

D
3
2 u0(t)+ cos(t)−1−8u0(t)+

t2

4
v2

0(t) = cost −1+8+
t2

4
≥ 0, t ∈ (0,1),

D
5
3 v0(t)+e

t
2 +8u0(t)+

u2(t)
2

− v2
0(t) =

2e
t
2 −1
2

≥ 0, t ∈ (0,1),

u0(0)≤ 0, v0(0)≤ 0, u0(1)≤
m−2

∑
i=1

δiv0(ηi), v0(1)≤
m−2

∑
i=1

λiu0(ξi),

where
m−2

∑
i=1

λi <
1

100
,

m−2

∑
i=1

δi <
1
50

.

Similarly by taking(2,2) = (µ0,ν0),

D
3
2 µ0(t)+ cos(t)−1−8µ0(t)+

t2

4
ν2

0(t) = cost −17+ t2 ≤ 0, t ∈ (0,1),

D
5
3 ν0(t)+e

t
2 +8µ0(t)+

µ2(t)
2

−ν2
0(t) = e

t
2 −2≤ 0, t ∈ (0,1),

µ0(0)≥ 0, ν0(0)≥ 0, µ0(1)≥
m−2

∑
i=1

δiν0(ηi), ν0(1)≥
m−2

∑
i=1

λiµ0(ξi),

where
m−2

∑
i=1

λi <
1

100
,

m−2

∑
i=1

δi <
1
50

.

Hence it follows that(−1,−1), (2,2) are ordered lower and upper solutions respectively of (CBVP) (23). Also
assumptions(A2) and(A3) holds forU(t) = 8,V(t) = 1

4.

Moreover, we present another example as follow:
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Example 2.Let us take the another system of coupled differential equations of coupled boundary values problem














































D
5
3 u(t)+4t3[t −u(t)]3−4t3v2(t) = 0, t ∈ (0,1),

D
7
4 v(t)+6t3[t − v(t)]3−6t3u2(t) = 0, t ∈ (0,1),

u(0) = v(0) = 0, u(1) =
50

∑
i=1

δiv(ηi), v(1) =
50

∑
i=1

λiu(ξi),

where m= 52,
50

∑
i=1

λi <
1
10

,

50

∑
i=1

δi <
1
20

.

(24)

Since
f (t,u,v) = 4t3[t −u(t)]3−4t3v2(t), g(t,u,v) = 6t3[t − v(t)]3−6t3u2(t),

taking (−1,−1) = (u0,v0) and (1,1) = (µ0,ν0) be initial approximation of ordered lower and upper solutions
respectively,then

D
5
3 u0(t)+4t3[t −u0(t)]

3−4t3v2
0(t) = 4t3[(t +1)3−1]≥ 0, t ∈ (0,1),

D
7
4 v0(t)+6t3[t + v0(t)]

3−6t3u2
0(t) = 6t3[(t +1)3−1]≥ 0, t ∈ (0,1),

u0(0)≤ 0, v0(0)≤ 0, u0(1)≤
50

∑
i=1

δiv0(ηi), v0(1)≤
50

∑
i=1

λiu0(ξi),

where
m−2

∑
i=1

λi <
1
10

,

m−2

∑
i=1

δi <
1
20

.

Similarly by taking(1,1) = (µ0,ν0),

D
5
3 µ0(t)+4t3[t − µ0(t)]

3−4t3ν2
0(t) = 4t3[(t −1)3−1]≤ 0, t ∈ (0,1),

D
7
4 ν0(t)+6t3[t −ν0(t)]

3−6t3µ2
0(t) = 6t3[(t −1)3−1]≤ 0, t ∈ (0,1),

µ0(0)≥ 0, ν0(0)≥ 0, µ0(1)≥
50

∑
i=1

δiν0(ηi), ν0(1)≥
50

∑
i=1

λiµ0(ξi),

where
m−2

∑
i=1

λi <
1
10

,

m−2

∑
i=1

δi <
1
20

.

Hence it follows that(−1,−1), (1,1) are ordered lower and upper solutions respectively of (CBVP) (24). Also
assumptions(A2) and(A3) holds forU(t) = 4t3, V(t) = 6t3.

Acknowledgements:We are thankful to anonymous referees for their useful suggestions, which took the current
manuscript to a qualitative one.

5 Conclusions

Monotone iterative technique plays a vital role to investigate the approximate solutions of DEs. With the help of the said
technique, we successfully formed iterative sequences forthe corresponding upper and lower solutions for the problem
under consideration. From the constructions of the approximate sequences, it is clear that monotone iterative technique
is a powerful tools to study multiplicity of solutions for non-linear system of differential equations of fractional order.
The said technique can be similarly applied to find the approximate solutions for nonlinear partial fractional differential
equations.
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