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Abstract: In this article, we investigate upper and lower solutions ®ystem of coupled nonlinear fractional differential eipres
with multi-point coupled boundary conditions. Using maoae type iterative techniques combined with the upper andrisolutions
method, some necessary and sufficient conditions are gmetko guarantee existence of multiple solutions of thelpmobThe main
result is demonstrated by analyzing two test problems.
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1 Introduction

During the last few decades a huge amount of work is devotedetstudy of fractional calculus. Being nonlocal in
nature fractional calculus serves as a tool of 21st centurgralyzing many natural and scientific phenomena. Among
others, some of the recent fields in which fractional calspitoved to be efficient tool, are engineering sciente? 3],
psychological and life science4,p], food scienceT], electrodynamics§, 9], diffusion processeslf], control systems
and dynamics11,12], waves dynamics and marine scienc#8§, 14,15], solid mechanics16,17] and Heat transform
models [L8,19,20,21]. In addition to the above mentioned applications, theessaweral applications of fractional calculus
within different fields of mathematics itself. For examgles fractional operators are useful for the analytic ingeston

of various spacial function2p,23].

The extensive application of fractional calculus or spealfy fractional differential equations(FDESs), motivatie
interest of many scientist around the globe to study diffeespects of FDEs. Reviewing the current literature on FDEs
leads us to the conclusion that among others, numericabappation of solutions, exitances results of positive tiohs
and modeling applied problems in terms of FDEs are the modtesd fields of fractional calculus. Consequently a huge
amount of work is available and is still growing.

Numerical approximation of solutions of FDEs are relajveifficult as compare to integer order differential
equations. Some recently developed spectral methods whithe successfully used to solve most of FDEs are given in
[24,25,26,27,28,29]. Numerically approximation of solution of coupled systeffFDEs can be found in30,31,32,33,

34]. Iterative methods of monotone type are also used to dpwelonerical methods for initial and boundary value
problems of FDEs3,54,55,56,57,58,59,60,61].

A numerical method will work only if the solution of the prah exists. In this regard, many authors devoted there
time to study the existence theory of positive solutionspfore details we refer the reader 89[40]. Among others, some
of the well known approaches used in existence theory assick fixed point theorems of Cone expansion and Banach
contraction mapping principle$], 42,43,44,45]. Some results on the impulsive boundary conditions cambed in 46).
Existence of multiple solutions for nonlocal boundary waproblems is also discussed #7]. More recently iterative
techniques (combined with upper and lower solution metlaod)extensively applied to study the existence of multiple
positive of different types of boundary value problems. &sy simplicity, the brevity of such approach is its appliigb
to large number of problems. For example, these techniqeesuacessfully applied to develop conditions for existenc
of multiple solutions for ordinary and FDE&], 49,50,51,52].
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Recently, Xu and Liu§2], applied an iterative technique of monotone type couplé@t wpper and lower solution
method to develop sufficient conditions of multiple solagdo FDEs of the form

2°u(t) + f(t,v(t), 7Pv(t)) =0, te]0,1],
2Pv(t) +g(t,ut), #%(t)) =0, tel0,1],
7379(0) = 2°2u(0) = u(1) =0,
737Py(0) = 2P~2v(0) = v(1) =0,
where 2< a, 8 <3, f,g:[0,1] x R x R — R are nonlinear functions satisfying Caratheodory condgiwhile ¥ and

# are Riemann-Liouville differential and integral operatespectively. The above results motivates our intereduidys
nonlocal multi point coupled boundary conditions of the emgeneralized problem given as

Z9U(t) + f(t,u(t),v(t) =0, ZPv(t)+g(t,ult),v(t) =0, O<t<1,

m-2 m-2 (1)
u(0) =v(0) =0, u(l)= ; av(m), v(1) = ; Aiu(éi),

where 1< a,B <2, n;,&(i =1,2,..m—2) € (0,1), s™2&n <1, s™2yé& < 1, f,9:(0,1) x R2 — R? are nonlinear
continuous functions an@ represents Caputo’s fractional derivative. We use variools of applied analysis to develop
sufficient conditions for existence of multiple solutiorfstloe problem. These results are demonstrated with the Help o
some test problems.

The rest of the article is organized as follows: In sectiosdme preliminaries results of fractional calculus and

functional analysis are presented. Section 2 is devotedaio nesults of the paper. In section 3, we provide some test
examples which demonstrates our main results. The lasbeéstdevoted to a short conclusion.

2 Background Materials

The current portion of the article is related to some impartkefinitions and well known results of fractional calcudunsl
functional analysis. The concerned background materaise foundin2,3,35,48,49,50,51,52).

Definition 1.Leta > 0 and z: [a,+) — R. Then the fractional order integral of2 is defined by

tt—9 2y

jaof%z(t) :/a ,—(a)

wherea € R, andl” represents Gamma function. The above definition is meardifgfall function such that integral
exists.

ds

Definition 2.Thea order derivative of a function(g) on the intervala, b] in Caputo’s sense is defined as

D, 2(t) =
where n= [a] + 1 and[a] represents the integer part of.

Lemma 1[41] If 2%z(t) = 0O, be a differential equation, wherezC(0,1)(L(0,1), then in view of Definitior{1), we
have
I492(t) = z(t) + Co+ Cit + Cot® + ...+ Cy_1t" L,
foranyGeR, i=0,1,2,....n—1.
Note: We denote2” = C?([0,1],R), Z = C([0,1], (0,)) through out this paper.
Definition 3.(Xp,Yo) € 2" x £ is called lower solution of the CBV@) if

2%uo(t) + f(t,uo(t),vo(t)) >0, ZPwo(t) +g(t,uo(t),vo(t)) >0, 0<t<1,

m-2 m-2 2
Up(0) < 0,vp(0) <0, up(1) < Zx Avo(ni), v(1) < Zx Aito(&i). @

Similarly (uo,vo) € 2" x 2" is called an upper solution if it satisfies the inequalitiesréversed order. Moreover we
assume thatxp, yo), (Lo, Vo) € £ x 2 are ordered lower and upper solutions respectively of CB1jP
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We define the ordered sector
0= {(U,V) EXXZ: (XanO) < (U,V) < (U07V0)7t € [07 1]} (3)

For further study, we make the following assumptions whidhhle use through out in this paper.

(A1) 0< M 2E M 2N < 1.
(A2) f,9:[0,1] x R* = R.
(Ag) f (t u,Vv) is non-decreasing imand there existl (t) € # such thatf (t,u,v) — f(t,uz,v) < —U(ug—up), U > 0.
(A1) g(t,u,v) is non-decreasing in and there exist (t) € # such thag(t,u,vi) — g(t,u,v2) < —V(vi —v2), V > 0.
Lemma 2[53].Let h(t) € 2" andy(t) € . If h(t) satisfies the inequality

—2%h(t) < —y(t)h(t),t € (0,1) suchthat 10) <0, h(1) <0, 4)

then
h(t) <0, forallt € [0,1].

Lemma 3(Comparison theorem) Let (t),V(t) € # be given, assume thafty, v(t) satisfy
— 2%(t) < —U(tu(t), —2Pv(t) < —V(t)v(t)t € (0,1),
u(0) <0,v(0) <0, u(1) < Ezdv()(m), V(1) < Efmuo(fi), ()
then (t) <0,v(t) <0, forallt € [0,1].

ProofFor proof see the Lemm@) of [53).

Note that ifU (t),V (t) € # satisfies
—2%(t) = U (t)u(t), —@BV( t)=-V(t)v () €(0,1),
u(0) =0,v(0 Zldv (&), ZlAunl (6)

Thenwehave (t) = v(t) =0, forallt € [0,1].

3 Main Results

Now we are in the position to develop our main results. Thiefahg lemma is important.

Lemma 4Let y(t),w(t) € C[0,1], then the corresponding integral representation(f is given by

u(t) = /O C it 9y(9ds+ /0 C At W(S)ds

1 1
= [ st 9weds+ | Aaalt9y(sds
0 0

where
m-2 em=24. m-2

St = Fa(t,s)+ BLOMIE g (6 ) gy = 2ELAg ) @
m_ZAii TTZ m—2/\I

Hoa9) = (1,9 + DAL ET g o)y Z'A (.9,

m-2 m—-2
A=1- i;)\ifi i; ani.
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The function, (t,s),%3(t,s) are defined as

t(1—s)";_1—(t—$)"’_1 0<s<t<l,
Ga(t,s) = _ (@) @
% 0<t<s<1
and B-1 p-1
t(1—9) r(;)(t—s) 0<s<t<1,
gg(t,S) = t1 B-1 (9)
% 0<t<s<l

Proof Applications of.#?,.# P on both sides ofk), and using the corresponding homogenous boundary consiitj0) =
0,v(0) = 0,u(1) = 0,v(1) = 0, we obtain

Ue(t) = t.7%y(1) / Ga(t,5)y Ve(t) = t7Pw(1) — 7Pw(t) / Gt 9W(s)ds  (10)
the equivalent system of integral equations corresportgid is given by
u(t) = u(L)t + /0 et 9y(9ds vt = v(Dt+ /O l% (t,9W(9)ds t € [0,1]. (11)
Using the above estimates along with coupiegoint boundary conditions, we get
m—2 m—2 m—2 1
D=3 AUE) = 3 AGUD+ 5 A JRAGENCLE (12)
and
m—2 m—2 m—2 1
=3 avin) =3 anviv+ y 8 JEAUIEIELE (13)
Further simplification, and usingg =1 — 3" 2)\ &y 23 ni, we get
U(2) =  [t(E28m) 52N o Ga (§,9)Y(9ds+t 528 I3 Fp(mi,sw(s)ds] (14)
and
V(1) = £ [UEM2AE) 528 I3 Dp(mi W(S)ds+ LS, J3 Ya (&, 9)Y(9)ds) (15)

Using (14) and 5) in (13) and (12), and using the values of1),v(1) in (11), we get the desire results.
Now consider the following problem.
2%(t) —U(tu(t)+yt)=0,t € (0,1),1<a <2,
ZPv(t) =V (t)v(t) +w(t) =0,t € (0,1),1< B <2,

(16)
u(0) =v(0) Zdva ZAunl
whereU(t),V(t) e #.
We define an operato? : 2" x 2" — Z x 2 by
7(u,v) ( / a(t,9U (S)u(s)ds— /1,%/12(t,s)V(s)v(s)ds
/ (L, s)V s)ds— / Ho(t,8)U (s)u(s)ds) +(U,v), (17)

where

p= [ At sydst [ At mas v= [ At gweds+ [ Aot 9y(sis

The following Lemma guarantees the unique solutionl®j (

(@© 2016 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl2, No. 1, 31-39 (2016) www.naturalspublishing.com/Journals.asp NS = 35

Lemma5Let U(t),V(t) € #, then the unique fixed point for the operatért is the corresponding unique solutions of
(16).

Proofln view of Fredholm theorem the operatdr7 is completely continuous also in view of Lemn) (he operator
equation7 (u,v) = (u,v) has only the zero solution. Hence the operator equationsetkfin (L7), for (u,v) € 2" x Z
has a unique fixed point which is the unique solution of théomm.

Lemma 6 Assume tha{A;) — (A4) holds. Then there exist a monotone sequerces,vn)} of ordered lower and
{(tn,vn)} of order upper solutions ofl) in sector® such that

{(uh7Vn)} - {(Uo,Vo)}, {(Ilna Vn)} - {(IJOa VO)} as n— o,

where (up, Vo) is initial approximation of ordered lower solution ar{glp, vo) is initial approximation of ordered upper
solution of (1).

ProofLet us define a sequence by
P U1 () + F(t,Un (1), V(1)) = Ulunea(t) —un(t)],  te (0,2),
PPy (t) +9(t, Un(t), V(1) =V [V (t) —Va(t)],  te (0,1),

(18)
m-2 m-2
Un4+1(0) =0, Vn41(0) = O,Un41(1) = zl AVni1(&i),Vnt1(1) = Zl Ailing1(Ni)-
Then in view of LemmaZ) the above system has a unique solutis 1, Vn4+1). Usingn = 0 in (18) we get
2%uy(t) + f(t,ug(t),vo(t)) =UJus(t) —up(t)], te(0,1),
ZPvi(t) +g(t, uo(t), Vo (1)) —V[vl(t) —Vo(t)], te(0,1), (19)

m—-2
u1(0) =0, v1(0) = 0,uy(1 Zi avi(éi),vi(1) = Zi Aju(ni).

To order to show thafiio, Vo) < (U1, V1) < (Ho, Vo) We Setg(t) = Ug(t) — Ux(t), W(t) =vo(t) —va(t) in (19), which implies
7 0(t) = 7 [uo(t) — wa(V)] < ~Up(t), ZPP(t) = ZP[wolt) —va(t)] < ~Vip(t), t € (0,1),
9(0) <0, Y(0) <0, (1 ; SW(E), WD) < Tiwmi). (20)
Hence by lemma3) 79 ¢(t) < -Ug(t), 2P y(t) < -Vy(t) = ¢(t) <O, Y(t) <O

Henceuo(t) < ug(t), vo(t) < vi(t). Thus(ug,Vo) < (ug,vi), t € [0,1]. Similarly setting@(t) = uy(t) — pa(t), Y(t) =
vi(t) — v(t) in (19), we get(us,v1) < (H1,v1), t € [0,1]. Next to prove thafus,vi) < (Ho, Vo). Setting ¢(t) = pa(t) —
Ho(t), Y(t)=vi(t) — vo(t), we can easily obtain thak (t) < uo(t), vi(t) < vo(t) we have(u, vi) < (o, Vo). Thus after

coIIectlng these relations, we have

(Uo, Vo) < (U1, v1) < (M1, V1) < (Mo, Vo).

Now we assume th&t> 1, and sep(t) = Ux — Ux;1, Y(t) = Vk — Vi1 In system 18), implies that
29(t) = 2 [ug(t) — Uy (t)] < —Ua(t), ZPw(t) = 2P wi(t) — i (t)] < —Vu(t), t € (0,1),

m-2 m-2 (21)
®(0) <0, Y(0) <0, 9(1) < 21 (&), Y1) < 21 Aip(ni)-
Thus, by Lemmag3) we havegp(t) <0, @¢(t) < 0. Henceuk < Uk:1, Vk < Vkr1 = (Uk, Vk) < (Ukg1,Vke1)- Similarly we

can prove tha(Uc:1,Vkr1) < (Hit1, Vk+1)
Now using the corresponding system of Fredholm integrahqas we have

1 1
Uni1 = / J11(t,9) (S, Un, vn)ds+ / H12(t,5)9(S, Un, Vn)ds,

1 1
Voi1= /o H31(t, S)9(S. Un, Vi) dS+ /O H3a(t, ) £ (S, Un, Vn)ds
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The above estimates implies that V) is a solution of the systen2®). Next we prove thafuo, Vo), (Mo, Vo) are ordered
extremal solutions ofl). Assume thatx,y) be another solution different frofiip, Vo), (Mo, Vo) such that for somae Z*,
we have(uk,Vk) < (%, Yk) < (Uk, W), t € [0,1]. We setp(t) = U1 — Xk, Y(t) = Vi1 — Yk, then by LemmaZ) and
Theorem8), we havep(t) <0, (t) <0, henceaug, 1 < Xk, Vi1 < Yk for all t € [0,1]. Similarly we can show that <
Hir1, Yk < Vka1, Vke ZT. Thus(ug, vk) < (X, Yk) < (Uk, Vk), applying limitk — o we have(ug, Vo) < (Xo,Yo) < (Mo, Vo),
hence maximal and minimal solutions follows in the se@oiThis completes the proof.

4 Examples

This section is devoted to study the following examples fpper and lower solutions to verify the aforementioned
techniques.

Example 1Consider the following system of coupled boundary valuedlgm with coupled boundary conditions

23u(t) +cogt) — 1— 8u(t) + gvz(t) =0,t<(0,1),

9%@+é+%@—%@:046@n,
(23)

m-2 m-—2
UO) =0 =0, U= &u(m), UL = 3 Au(&),

m—2 1 m—2 1
where A < —, G < =—.
ié; ' 100 ié; 50

Since

f(t,u,v) = coqt) — 1—8u(t) +§v2(t), g(t,u,v) = e+ @ —VA(1),

taking (—1,—1) = (up,vo) and (2,2) = (U, Vo) be initial approximation of ordered lower and upper solusio
respectively,then

t2
5(t) = cost—1+8+z >0,te(0,1),

4
2(t 2es —1
u<(t) v%t ez

>0,te(0,1),

m-2 m-2

up(0) <0, vp(0) <0, up(1) < 21 Avo(ni), vo(1) < 21 Aiug(&i),
i= =
m-2 1 m-2 1
where Al < —, G < =—.
iz; '~ 100 ié; 50
Similarly by taking(2,2) = (uo, Vo),
2

@%uoay+coiw——1—8ud04—%v§@):cos-—17+t2§0,te(QlL

5 t U3 (t) P t
P3v(t) +e2 +8up(t) + > vi(t)=e2—-2<0,te(0,1),

m-2 m-2

Ho(0) >0, vo(0) >0, Ho(1) > Zi dvo(ni), vo(1) > Zi Aito(&i),

m—2 1 m—2 1
where Al < —, G < =—.
iz; ' 100 ié; 50

Hence it follows that(—1,—1), (2,2) are ordered lower and upper solutions respectively of (CBYA). Also
assumption$Ay) and(Ag) holds forU (t) =8,V(t) = 2.

Moreover, we present another example as follow:
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Example 2.et us take the another system of coupled differential éqnabf coupled boundary values problem
23u(t) + 43t —u(t)]® — 43A(t) = 0, t € (0,1),

5
3
7
2

Zav(t) + 663t — v(t)]2 - 6t3u%(1) = 0, t € (0,1),
50 50
u0)=v(0)=0, u@)= _Z&V(m), V(1) = _ziAiu(Ei), (24)

50 1 50 1
wherem=52$ Ai<-—, Y d< ==
i; 10 i; 20

Since

f(t,u,v) =4[t —u(t)]2 — 4t32(1), g(t,u,v) = 6t3[t — v(t)]® — 6t3u?(t),

taking (—1,—1) = (up,vo) and (1,1) = (Lo, Vo) be initial approximation of ordered lower and upper solugio
respectively,then

P3ug(t) + 43t — up(t)]® — 4t3Z(t) = 4t3[(t + 1)~ 1] > 0, t € (0,1),
Dvo(t) + B3]t + vo(t)]® — 6t3U2(t) = 6t3[(t + 1)3— 1] > 0, t € (0, 1),
50 50

uo(0) <0, vo(0) <0, up(1) < _;de(m), vo(1) < _;Aiuo(fi),

m—2 1 m—2 1
where A< —, G < —.
i; ' 10 i; 20

Similarly by taking(1,1) = (Lo, Vo),
23 po(t) + 431t — po(t))® — 43V3(t) = 4%t~ 1)°~ 1) <0, t € (0,1),
t—

Dhvo(t) + 663t — vo(t)]® — Bt3ud(t) = 6t3[(t— 1)3— 1] < 0, t € (0,1),
50 50
Ho(0) > 0, vo(0) >0, po(1) > _Zlde(m), vo(1) > _ZAiﬂo(Ei),

m—2 1 m—2 1 -
where A< —, G < =—.
i; ' 10 i; 20

Hence it follows that(—1,—1), (1,1) are ordered lower and upper solutions respectively of (CBY). Also
assumptiongA;) and(Ag) holds forU (t) = 4t3, V(t) = 6t3.

Acknowledgements: We are thankful to anonymous referees for their useful ssigges, which took the current
manuscript to a qualitative one.

5 Conclusions

Monotone iterative technique plays a vital role to investigthe approximate solutions of DEs. With the help of thd sai
technique, we successfully formed iterative sequencethéocorresponding upper and lower solutions for the problem
under consideration. From the constructions of the appraté sequences, it is clear that monotone iterative teakniq
is a powerful tools to study multiplicity of solutions for ndinear system of differential equations of fractionadler.
The said technique can be similarly applied to find the apprate solutions for nonlinear partial fractional diffetieh
equations.
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