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1 Introduction

Let {Xn,n≥ 1} be a sequence of independent and identically distributed random variables with cdfF(x) and pdf f (x). Let
Xj :n denote thejth order statistic of a sample(X1,X2, . . . ,Xn). Assume thatk> 0, n∈ N, n≥ 2, m̃= (m1,m2, . . . ,mn−1) ∈

Rn−1, Mr = ∑n−1
j=r mj such thatγr = k+n− r +Mr > 0 ∀ r ∈ {1,2, . . . ,n−1}.

ThenX(r,n,m̃,k), r = 1,2, . . . ,n, are called generalized order statistics if their joint pdfis given by

f X(1,n,m̃,k),...,X(n,n,m̃,k)(x1,x2, . . . ,xn) = k
(n−1

∏
r=1

γr

)(n−1

∏
i=1

(

1−F(xi)
)mi

f (xi)
)

.

(

1−F(xn)
)k−1

f (xn), (1)

on the coneF−1(0+)< x1 ≤ x2 ≤ . . .≤ xn < F−1(1) of Rn.
For convenience, let us define X(0,n,m̃,k) = 0. It can be seen that for
m1 = · · · = mn−1 = 0, k= 1, i.e.,γi = n− i +1;1≤ i ≤ n−1, we obtain the joint pdf of the ordinary order statistics. In a
similar manner, choosing the parameters appropriately, some other models such askth upper record values
(m1 = . . . = mn−1 = −1, k ∈ N, i.e.,γi = k,1 ≤ i ≤ n − 1), sequential order statistics(mr =
(n− r +1)αr − (n− r)αr+1−1; r = 1, . . . ,n−1, k= αn; α1,α2, . . . ,αn > 0, i.e.,γi = (n− i+1)αi; 1≤ i ≤ n−1), order
statistics with non-integral sample size
(m1 = . . . = mn−1 = 0, k = α −n+1 with n−1< α ∈ R, i.e.,γi = α − i +1;1≤ i ≤ n−1) [Rohatgi and Saleh (1988),
Saleh, Scott and Junkins (1975)], Pfeifer’s record values
(mr = βr −βr+1−1, r = 1, . . . ,n−1 and k= βn; β1,β2, . . . ,βn > 0, i.e.,γi = βi ;1≤ i ≤ n−1) and progressively type-II
right censored order statistics(mi ∈ N0, k∈ N) can be obtained [cf. Kamps (1995a,b), Kamps and Cramer (2001)].

We may now consider two cases:
Case I: m1 = m2 = . . .= mn−1 = m.

Case II: γi 6= γ j , i 6= j, i, j = 1,2, . . . ,n−1.
For Case I, therth generalized order statistic will be denoted byX(r,n,m,k). The pdf ofX(r,n,m,k) is given by

f X(r,n,m,k)(x) =
cr−1

(r −1)!

(

1−F(x)
)γr−1

f (x)gr−1
m

(

F(x)
)

, x∈ R, (2)
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and the joint pdf ofX(r,n,m,k) andX(s,n,m,k), 1≤ r < s≤ n, is given by

f X(r,n,m,k),X(s,n,m,k)(x,y) =
cs−1

(r −1)!(s− r −1)!

[

1−F(x)
]m

f (x)gr−1
m

(

F(x)
)

.

[

hm(F(y))−hm(F(x))
]s−r−1[

1−F(y)
]γs−1

f (y), x< y, (3)

where

cr−1 =
r

∏
j=1

γ j , γ j = k+(n− j)(m+1), r = 1,2, . . . ,n,

gm(x) = hm(x)−hm(0), x∈ [0,1),

hm(x) =

{

− 1
m+1(1− x)m+1, if m 6=−1

− log(1− x), if m=−1

(cf. Kamps, 1995a,b).
For the sake of convenience, let us denote, under Case I,

E[X(r,n,m,k)]i = µ (i)
(r,n,m,k)

and

E[{X(r,n,m,k)}i{X(s,n,m,k)} j ] = µ (i, j)
(r,s,n,m,k) .

For Case II, therth generalized order statistic will be denoted byX(r,n,m̃,k). The pdf ofX(r,n,m̃,k) is given by

f X(r,n,m̃,k)(x) = cr−1 f (x)
r

∑
i=1

ai(r)(1−F(x))γi−1
, x∈ R, (4)

and the joint pdf ofX(r,n,m̃,k) andX(s,n,m̃,k),1≤ r < s≤ n, is given by

f X(r,n,m̃,k),X(s,n,m̃,k)(x,y) = cs−1

{ s

∑
i=r+1

a(r)i (s)
(1−F(y)

1−F(x)

)γi
}{ r

∑
i=1

ai(r)(1−F(x))γi

}

.
f (x)

1−F(x)
f (y)

1−F(y)
, x< y, (5)

where

cr−1 =
r

∏
i=1

γi , γi = k+n− i +Mi, r = 1,2, . . . ,n,

ai(r) =
r

∏
j( 6=i)=1

1
(γ j − γi)

, 1≤ i ≤ r ≤ n

and a(r)i (s) =
s

∏
j( 6=i)=r+1

1
(γ j − γi)

, r +1≤ i ≤ s≤ n,

(cf. Kamps and Cramer (2001)).
For the sake of convenience, let us denote, under Case II,

E[X(r,n,m̃,k)]i = µ (i)
(r,n,m̃,k)

and

E[{X(r,n,m̃,k)}i{X(s,n,m̃,k)} j ] = µ (i, j)
(r,s,n,m̃,k) .
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Further, it can be easily proved that

ai(r) = (γr+1− γi) ai(r +1),

cr−1 =
cr

γr+1
,

and
r+1

∑
i=1

ai(r +1) = 0. (6)

Also, for m1 = m2 = . . .= mn−1 = m, it can be shown that

r

∑
i=1

ai(r)(1−F(x))γi =
(1−F(x))γr

(r −1)!
gr−1

m (F(x)), (7)

and

s

∑
i=r+1

a(r)i (s)
(1−F(y)

1−F(x)

)γi
=

1
(s− r −1)!

(1−F(y)
1−F(x)

)γs
( 1

1−F(x)

)(m+1)(s−r−1)

.

[

hm(F(y))−hm(F(x))
]s−r−1

. (8)

Several authors like Kamps and Gather (1997), Keseling (1999), Cramer and Kamps (2000), Ahsanullah (2000), Pawlas
and Szynal (2001), Ahmed and Fawzy (2003), Athar and Islam (2004), Ahmed (2007), Khan et al. (2007), Khan et al.
(2010) and Saran and Pandey (2004, 2009) have done some work on generalized order statistics. In this paper, we have
established certain recurrence relations for single and product moments of generalized order statistics from Lindley
distribution.

The Lindley distribution was first introduced in the literature by Lindley (1958) in connection with the Fiducial distribution
and Bayes theorem. The probability density function (pdf) of Lindley distribution is given by

f (x) =
θ 2

1+θ
(1+ x)e−θx

, x> 0, θ > 0 (9)

and the cumulative distribution function (cdf) is given by

F(x) = 1−
1+θ +θx

1+θ
e−θx

, x> 0, θ > 0. (10)

One can observe from eqs. (9) and (10) that the characterizing differential equation for Lindley distribution is given by

(1+θ +θx) f (x) = θ 2(1+ x)[1−F(x)]. (11)

2 Recurrence Relations for Single Moments

Theorem 1.Let Case II be satisfied, i.e.,γi 6= γ j , i 6= j, i, j = 1,2, . . . ,n−1. For Lindley distribution as given in(9) and
k≥ 1, n∈ N, 1≤ r ≤ n, p= 0,1,2, . . . ,

(1+θ )µ (p)
(r,n,m̃,k)+θ µ (p+1)

(r,n,m̃,k) =
θ 2 γr

p+1

[

µ (p+1)
(r,n,m̃,k)− µ (p+1)

(r−1,n,m̃,k)

]

+
θ 2 γr

p+2

[

µ (p+2)
(r,n,m̃,k)− µ (p+2)

(r−1,n,m̃,k)

]

. (12)

Proof.In view of (4), we have

(1+θ )µ (p)
(r,n,m̃,k)+θ µ (p+1)

(r,n,m̃,k) = cr−1

∫ ∞

0
xp
( r

∑
i=1

ai(r)
(

1−F(x)
)γi−1)

(1+θ +θx) f (x)dx.

Now, on application of (11), we get

(1+θ )µ (p)
(r,n,m̃,k)+θ µ (p+1)

(r,n,m̃,k) = θ 2[L0(x)+L1(x)], (13)

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


432 J. Saran et al.: Moment properties of generalized order...

where

Lb(x) = cr−1

∫ ∞

0
xp+b

r

∑
i=1

ai(r)
(

1−F(x)
)γi

dx, b= 0,1.

Integrating by parts treatingxp+b for integration and rest of the integrand for differentiation, we get

Lb(x) =
cr−1

(p+b+1)

∫ ∞

0
xp+b+1

r

∑
i=1

ai(r)γi

(

1−F(x)
)γi−1

f (x)dx. (14)

Further, on using (6) and simplifying, the above equation yields:

Lb(x) =
cr−1 γr

(p+b+1)

[

µ (p+b+1)
(r,n,m̃,k) − µ (p+b+1)

(r−1,n,m̃,k)

]

. (15)

Forb= 0,1, substituting the expression ofLb(x) obtained in (15) into the equation (13) and then simplifying the resultant
expression, we obtain the desired relation in (12).

Remark.One can observe that by puttingm1 = m2 = . . .= mn−1 = m in (4) and using (7), the recurrence relation for single
moments of generalized order statistics from Lindley distribution, for Case I, can easily be deduced from Theorem1, and
is given in the following corollary.

Corollary 1.Let Case I be satisfied, i.e., m1 = m2 = . . . = mn−1 = m. For Lindley distribution as given in(9) and k≥
1, n∈ N, m∈ R, 1≤ r ≤ n, θ > 0, i = 0,1,2, . . . ,

(1+θ )µ (i)
(r,n,m,k)+θ µ (i+1)

(r,n,m,k) =
γrθ 2

i +1

[

µ (i+1)
(r,n,m,k)−µ (i+1)

(r−1,n,m,k)

]

+
γr θ 2

i +2

[

µ (i+2)
(r,n,m,k)− µ (i+2)

(r−1,n,m,k)

]

. (16)

Remark.Under the assumptions of Corollary1, with k = 1,m= 0, we shall deduce the recurrence relation for single
moments of ordinary order statistics from Lindley distribution, which is in agreement with the corresponding result
obtained by Athar et al. (2014, Remark 2.1, p.4).

Remark.Puttingk= 0,m=−1 in Corollary1, we obtain the recurrence relation for single moments of upper record values
from Lindley distribution.

3 Recurrence Relations for Product Moments

Theorem 2.Let Case II be satisfied, i.e.,γi 6= γ j , i 6= j, i, j = 1,2, . . . ,n−1. For Lindley distribution as given in(9) and
k≥ 1, n∈ N, 1≤ r < s≤ n, s− r ≥ 2, p,q= 0,1,2, . . . ,

(1+θ )µ (p,q)
(r,s,n,m̃,k)+θ µ (p,q+1)

(r,s,n,m̃,k) =
θ 2 γs

q+1

[

µ (p,q+1)
(r,s,n,m̃,k)− µ (p,q+1)

(r,s−1,n,m̃,k)

]

+
θ 2 γs

q+2

[

µ (p,q+2)
(r,s,n,m̃,k)−µ (p,q+2)

(r,s−1,n,m̃,k)

]

, (17)

and, for1≤ r ≤ n−1,

(1+θ )µ (p,q)
(r,r+1,n,m̃,k)+θ µ (p,q+1)

(r,r+1,n,m̃,k) =
θ 2 γr+1

q+1

[

µ (p,q+1)
(r,r+1,n,m̃,k)− µ (p+q+1)

(r,n,m̃,k)

]

+
θ 2 γr+1

q+2

[

µ (p,q+2)
(r,r+1,n,m̃,k)−µ (p+q+2)

(r,n,m̃,k)

]

. (18)
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Proof.In view of (5), we have for 1≤ r < s≤ n, s− r ≥ 2 andp,q= 0,1,2, . . . ,

(1+θ )µ (p,q)
(r,s,n,m̃,k)+θ µ (p+1,q)

(r,s,n,m̃,k) = cs−1

∫ ∞

0
xp
{ r

∑
i=1

ai(r)
(

1−F(x)
)γi

} f (x)
1−F(x)

I(x)dx, (19)

where

I(x) =
∫ ∞

x
yq
{ s

∑
i=r+1

a(r)i (s)
(1−F(y)

1−F(x)

)γi
}

(1+θ +θy) f (y)dy.

Now, on employing (11), we get
I(x) = θ 2[E0(x)+E1(x)], (20)

where

Ed(x) =
∫ ∞

x
yq+d

{ s

∑
i=r+1

a(r)i (s)
(1−F(y)

1−F(x)

)γi
}

dy, d = 0,1. (21)

Integrating by parts treatingyq+d for integration and rest of the integrand for differentiation, we obtain

Ed(x) =
1

q+d+1

∫ ∞

x
yq+d+1

{ s

∑
i=r+1

a(r)i (s)
[1−F(x)]γi

γi [1−F(y)]γi−1
}

f (y)dy.

Substituting the expressions forE0(x) and E1(x) in (20), and then putting the resulting value ofI(x) in (19) and
simplifying, it leads to (17). Likewise, (18) can be easily established.

Remark.On puttingmi = mj = m in (5) and using (7) and (8), the recurrence relations for product moments of generalized
order statistics from Lindley distribution, for Case I, canbe deduced from Theorem2, and is given in the following
corollary.

Corollary 2.Let Case I be satisfied, i.e., m1 = m2 = . . . = mn−1 = m. For Lindley distribution as given in(9) and k≥
1, n∈ N, m∈ R, 1≤ r < s≤ n, s− r ≥ 2, i, j = 0,1,2, . . . ,

(1+θ )µ (i, j)
(r,s,n,m,k)+θ µ (i, j+1)

(r,s,n,m,k) =
θ 2 γs

j +1

[

µ (i, j+1)
(r,s,,n,m,k)− µ (i, j+1)

(r,s−1,n,m,k)

]

+
θ 2 γs

j +2

[

µ (i, j+2)
(r,s,n,m,k)−µ (i, j+2)

(r,s−1,n,m,k)

]

, (22)

and, for1≤ r ≤ n−1,

(1+θ )µ (i, j)
(r,r+1,n,m,k)+θ µ (i, j+1)

(r,r+1,n,m,k) =
θ 2 γr+1

j +1

[

µ (i, j+1)
(r,r+1,n,m,k)− µ (i+ j+1)

(r,n,m,k)

]

+
θ 2 γr+1

j +2

[

µ (i, j+2)
(r,r+1,n,m,k)−µ (i+ j+2)

(r,n,m,k)

]

. (23)

Remark.Under the assumptions of Corollary2, with k = 1,m= 0, we shall deduce the recurrence relations for product
moments of ordinary order statistics from Lindley distribution, which are in agreement with the corresponding results
obtained by Athar et al. (2014, Remark 2.1, p.4) .

Remark.Puttingk = 0,m= −1 in Corollary2, we obtain the recurrence relations for product moments of upper record
values from Lindley distribution.
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