J. Stat. Appl. Pro5, No. 2, 265-272 (2016) %N =¥\ 265

Journal of Statistics Applications & Probability
An International Journal

http://dx.doi.org/10.18576/jsap/050207

A Stochastic Model of Some Endemic Infections: Case
Study Based on the Medical Records of Gbagada
General Hospital, Lagos State, Nigeria.

E. B. Nkemnole * and R. O. Osunkeye *

Department of Mathematics, University of Lagos, Nigeria

Received: 29 Oct. 2015, Revised: 24 May 2016, Accepted: 2p 2046
Published online: 1 Jul. 2016

Abstract: This research investigates the endemic level and (knowlefigpersistence time of endemic diseases in a populatiog as
Stochastic Model such as Markov process which is a contmtime and discrete state space that requires the Monte Sianidation

for the desired results to be gotten. It assesses some draetive research in efficient procedures for simulationealth sector and
addresses the influence of gender as regards to the average particular disease dies out. There is also an emphatiie @verage
population to be infected on a monthly basis. The data usetthif®study is obtained from the medical records that ruosfdanuary
2012 through December 2012 of General Hospital Gbagadad State which comprises of children from ages 0 to 12yeatsadults

from ages 13years and above. The Monte Carlo simulatioredssut shows the trend line and equations of the data. Ecapanalysis
showed a significant relationship between gender and pensistime of endemic diseases in a population.
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1 Introduction

Disease is an abnormal condition that affects the body ofrganism. It is often constructed as a medical condition
associated with specific symptoms and signs. It may be cawsedernal dysfunctions, such as autoimmune disease. In
humans, disease is often used more broadly to refer to angitmom that cause pain, dysfunction, distress, social
problems, or death to the person afflicted or similar probfemthose in contact with the person. In this sense, it
sometimes includes injuries, disabilities, disordersidsgmes, infections, isolated symptoms, deviant behayimd
atypical variations of structure and function, while in etltontexts and for other purposes these may be considered in
distinguishable categories. Diseases usually affectlpengt only physically, but also emotionally as contractargl
living with diseases can alter ones perspective of life et {personality.

World Health Organization (WHO}] reported that infectious disease crisis of global prapog is today threatening the
ground-breaking accomplishments that have been recondedrid health thereby increasing life expectancy. Infacsi
diseases are now the worlds biggest killer of children anthgaadults. They account for more than 13 million deaths a
year one in two deaths in developing countries. Over themaxt alone, 1500 people will die from an infectious disease-
over half of them are children under five. The rest will mostiyworking-age adults.

This report argues that we have a window of opportunity to endkamatic progress against ancient diseases, and to
establish an early warning system to protect us from new aedpected diseases. If this is left undone, the result will b
the emergence of increased-drug-resistant bacteria amskgithat will pose a major challenge to science, econanids
politics. The spread of infectious disease through a pajounlanay be modeled as a stochastic process. When infection
persists in the population for a long time, the disease tteabe endemic.

Endemic diseases are ones that are always present in a cotyymsoally at a low, more or less constant frequency.
Malaria, arthritis, and high blood pressure are exampledelic diseases are in most communities around the wotld (al
the time).Cholera is a strictly epidemic disease; it cormebgoes but doesn’t stay in a community for extended periods.
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In addition, there is a form Typhus (there are actually famfs, spread by different bugs which bite people) called
"endemic typhus”. Endemic typhus is carried by fleas. Wheealinds on a human, it may defecate as it feeds. When
the person scratches the itchy spot where the flea was fegdabacteria-laden faeces are scratched into the skig, thu
causing infection. The causative bacteria are called Riiketyphus. Endemic typhus occurs most commonly in warm,
coastal regions. An infection is said to be endemic in a pamn when that infection is maintained in the population
without the need for external inputs. For example, chickeng endemic in Nigeria likewise malaria. For an infectibatt
relies on person-to-person transmission to be endemib, @arson who becomes infected with the disease must pass it
on to one other person on average. Assuming a completelgstilsie population, that means that the basic reproduction
number) of the infection must equal 1. In the population witme immune individuals, the basic reproduction nuniger
multiplied by the proportion of susceptible individualstire populatiorS must equals 1. This takes account probability
of each individual to whom the disease may be transmittedladigtbeing susceptible to it, effectively discounting the
immune sector the population. For the disease to be in amand¢eady state:

RoxS=1 (1)

In this way, the infection neither dies nor does the numbénfeicted people increases exponentially, then the irdacti
is said to be in an endemic steady state. An infection thatssés an epidemic will eventually either die out (with the
possibility of it resurging in a theoretically predictalzigclical manner) or reach the endemic steady state, depgodi
the number of factors, including the virulence of the dises®d its mode of transmission .If a disease is in endemidtea
state in a population, the relation above allows us to eséintieeRyof a particular infection.

2 Literature Review

Mathematical modeling of infectious diseases has a lorgftyissee, in particularZ]. Early modeling contributions for
infectious disease spread were often used for specificgise@he starting point is generally taken to be a papeBby [
on the prevention of smallpox by inoculation; an account isfrhodel-based analysis of data can be found4il][
modeled the transmission of malaria. One of the first moreegdiresearch was conducted §}.[Later important
contributions were made byJand [8], both also considering stochastic models.

Early models were often deterministic with questions sushls it possible that there is a big outbreak infecting a
positive fraction of the community?, How many will get infed if the epidemic takes off?, What are the effects of
vaccinating a given community fraction prior to the arrivéthe disease?, What is the endemic level? As problems were
resolved, the simple models were generalized in severad weayards making them more realistic. Some such extensions
were for example to allow for a community where there areedéht types of individual, allowing for non-uniform
mixing between individuals (i.e. infectious individualsrt infect all individuals equally likely), for example due
social or spatial aspects, and to allow seasonal variations

Another generalization of the initial simple determirdistipidemic model was to study stochastic epidemic models. A
stochastic model is of course preferable when studying dl smamunity. But, even with a large community, which
deterministic models primarily are aimed for, some add#ioquestions can be raised when considering stochastic
epidemic models: What is the probability of a major outbfeadnd for models describing an endemic situation: How
long is the disease likely to persist (with or without intemtion)? Later stochastic models have also shown to be
advantageous when the contact structure in the communitigits small complete graphs; households and other local
social networks being common examples. Needless to sadydedérministic and stochastic epidemic models have their
important roles to play and deterministic and stochastid@®are used for epidemiological modeling however, the
focus in the present paper is on stochastic model. The sttclmodel is a Markov population process with continuous
time and discrete state space.

[9b] averred that stochastic models should be established addtfor several endemic infections with demography.
Approximations of quasi-stationary distributions and whds to extinction are derived for stochastic versions of
Susceptible and Infected (Sl), Susceptible Infected Ssie (SIS), Susceptible Infected Recovered (SIR), and
Susceptible Infected Recovered Susceptible (SIRS) moddie approximations are valid for sufficiently large
population sizes. Conditions for validity of the approxiinas are given for each of the models. These are also
conditions for validity of the corresponding determindstnodel. It is noted that some deterministic models are
unacceptable approximations of the stochastic modelslanga range of realistic parameter values.

For him, SIS model without demography is an univariate mod@lké stochastic version of this model is a finite-state
birth-death process with an absorbing state at the oridie. Joal of the mathematical analysis of this model is to find
approximations of the quasi-stationary distribution afithe time to extinction. He used the Kolmogorov equation by
introducing four parameters, namely the expected populatizeéN in case where there are no infected individuals, the
contact ratg3 , the death rate per susceptible individugaland an additional death ratg such that the death rate per
infected individual isu + (1. Among theseN is a large positive integes andu are positive, angi; is non-negative.
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In addition to the four parameteis, 3 p and u; introduced, he useghto denote the recovery rate per infected
individual. The SIS model takes the form of a bivariate Markopulation process. The Kolmogorov forward equations
for the state probabilities are:

Pi(t) = P{S(t) =s I(t) =i} )
This can be written as

Psli(t) = M(s— 1,i)Ps_11i(t) + pi(s+ 1,i)Ps+17i(t) + Ma(s,i + 1)Ps,i+1(t) +wvi(s—1)i + 1)Ps_11i+1(t) +Vvo(s—1)i +
1)Ps-1ji+a(t) — k(s )Psj

where,

K(s,1) = Ax(s,1) 4+ pa(s,i) + Ha(s,i) +va(s,i) + va(s,i) 3)

[9a] also formulated a stochastic SIR model with demography.mbdel is a Markov population process with three
state variablesS$, |, andR, standing for the number of susceptible, infected, andvexaal individuals, respectively. The
recovered individuals are assumed permanently immunediti@ukl infections. He used five basic parameters as for the
SIS model namely: the expected population $izé all individuals are susceptible, and the death rate pscaptible or
removed individualu, the additional death rate per infected individua) the contact rat@, and the recovery rate per
infected individualy;.

The state probabilities are defined by:

Pir(t) = P{S(t) =sI1(t) =,R(t) =r} 4)
The Kolmogorov forward equation for these probabilities ba written as

Péir(t) = )\1(5— 17 iar)Psfl,i,r(t) + I-ll(s‘f' 17 iar)PSJrl,i,r(t) + [.12(S,i + 17 r)Ps,iJrl,r(t)

+ u3(s,i,r+ 1)P&i,r+1+V2(S+ 1i— 1)Ps+1,i—l,r(t) +v3(s—1,i+ 1)P3,i+1’r,1(t) —k(s,i,r)Psir

wherek(s,i,r) = Aw(S,1,r) + Hu(S, ) + H2(Si,1) +Va(Si,1) + Va(Si,T)

2.1 Satistics as Regard Infections

[10] maintained that the reporting interval of infectious dsesis often determined as a time unit in the calendar
regardless of the epidemiological characteristics of tleeabe. No guidelines have been proposed to choose the
reporting interval of infectious diseases. His study ainadtranslating coarsely reported epidemic data into the
reproduction number and clarifying the ideal reportingeimtl to offer detailed insights into the time course of an
epidemic. He derived a corrected expression for this gtyaatid proposes simple algorithms to estimate the effective
reproduction number as a function of time, adjusting theorépg interval to the generation time of a disease and
demonstrating a clear relationship among the generaitio@-tlistribution, reporting interval and growth rate of an
epidemic.

[17] is of the view that the statistical method to determine #y@orting interval is density estimation, which may suggest
a stochastic model for this project. To interpret the timarse of an endemic, case notifications are used to estimate a
key variable that characterizes transmissibility witheirfhe effective reproduction number at tim&;, defined as the
average defined as the average number of secondary case@peyase at time (for t > 0), is a useful measure to
inform about the transmission potential of a disease anidatidns of the expected number of secondary transmissions
and of control efforts required to curb the epidemic. Altgbuhe most precise reporting interval (e.g. reporting in a
continuous time scale) would certainly yield the most idieétrpretation of the transmission dynamics, it is often
impractical to get data and analyze on an hourly or dailyshasi

[12] proffered that a global malaria eradication effort willjtere massive changes to complex web of interconnected
biological systems. The optimal path to eradication isimsically unpredictable because of the potential for ptaas

and vectors to evolve, the waxing and waning of human immgumihd behavioral changes in human and vector
populations. The range of conditions that favor malariagnaission are so varied and diverse that decisions and plans
cannot be based solely on the evidence that has been acduiraddomized control traits conducted in only few
settings. To succeed, eradication will require a stratplgio that is constantly updated with the surveillance, riaoimg,

and evaluation data. Moreover, planning processes invebrae sort of conceptual model, and this model will
necessarily consider many potential sources of unceytdRational quantitative mathematical models provide et

way to synthesize information, quantify uncertainty, arttapolate current knowledge. Such models can providieatit
quantitative insights that are not otherwise possible.

The objective of this study is to investigate the endemiellend knowledge of persistence time of endemic diseases in a
population by the use of Stochastic Model such as Markoves®avith continuous time and discrete state space with a
view to determining the proportions of population infectel equally know the duration until the disease dies out. The
outline of the remainder of this article is organized asoiol: Section 3 describes the data and discusses the method of
analysis. Results of our analysis are presented in Sectiwhife Section 5 concludes.
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3 Data and M ethodology

3.1 Data

The data used for this study is obtained from the medicalrceod the General Hospital Gbagada, Lagos State,
comprising of children from age O to 12years and adults frge B3 years and above. Research was carried out on the
following: Diseases of children from the age 0 to 12 yearscitinclude: Neonatal jaundice (NNJ), Neonatal sepsis
(NNS), Bronchopneumonia (BPN), Plasmodiasis (PD), Gasteritis (GN), Malaria; diseases of adults from the age of
13 years and above which include: Critical Cardiac Fail@€R) Cardiovascular (CV), Chronic Kidney Disease (CKD),
Hyperglycemia (HG), Appenditis, Oral sepsis (OS).

3.2 Method

The study utilizes the Markov population process with cmmbius time and discrete state space. In a continuous time
Markov chain (CTMC), time is continuous, but the state Malgas discrete. Markov chain can be thought of as a directed
graph of states of the system. The difference is that, rdktear transitioning to a new (possibly the same) state at each
time step, the system will remain in the current state forsoamdom; exponentially distributed, amount of time anathe
transition to a different state. According to [13], the CTM@idemic processes are defined on a continuous time scale,
t € [0,0), but the state§(t), | (t) andR(t) are discrete random variable i.e

S(t),1(t),R(t) € {0,1,2,...N}

Here, the stochastic process depends on the collectionsofedé random variables and their associated probability
functions,P(t) = (po(t), ..., pn(t))T

In our study, attempt was made in formulating the CTMC basedhe SIR epidemic models to the Diseases. To

numerically compute a sample path of a CTMC model, we usedattethat the intervene time has an exponential

distribution. This follows from the Markov property.

The probability distribution function (PDF) of an exponiahdistribution is given by:

{/\e“, x>0

0, x<0 ©)

f(x) =

The cumulative distribution function (CDF) of an exponahdistribution is

1-e? x>0
f — ) -
9 {o, x<0 ©6)

LetU =F(x)
Makex the subject of formula,

-1
A

U deni)tes the generated random numbers.
A= —

mean

X= log(1—u) (7

ThusX = —71 log(RAND(0,1)) (8)

Consequently, the Microsoft Office Excel Package with thendddCarlo simulation add-in was used to carry out Monte
Carlo simulation for the diseases-data thereby generatingple paths and the probability distribution associatid w
CTMC SIR epidemic models. The output gives the trend lineteemt equation, that isz 11.43% %91 hjstogram and
cross tabulation which explains the average, minimum, mari and standard deviation for both the duration of time the
diseases die out and the population to be infected.
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4 Study Results

Running the simulation on Monte Carlo add-in package on d&ioft Excel with 1000 repetitions, that is, 1000 sample
spaces into the future prior to the original data gotten ftbemedical record of the General Hospital, Gbagada; the
results are presented on Figures 1-12 and Tables 1-2 shdew béth its respective summary statistics for Male and
Female infected adults and Male and Female infected childre

Table 1 is a presentation of the approximate average daysatbesease would die out in a male and female patient

respectively: Appendicitis (12, 11); CCF (15, 12); CVD (27); Chronic Kidney Disease (11, 10); Hyperglycemia (12,
12); Oral sepsis (11, 9).

Table 1. Estimates of Duration of Diseases in infected Male and Femaults with corresponding infections
Table 1

Statistics APPD CCF CVD CKD HG oS

M F M F M F M F M F M F
Average 12.196 10.647| 19.816 12.447| 26.936 16.622| 11.236 10.332| 10.704 9.331| 12.455 12.204
Std. Dev. | 0.4365 1.2944| 3.1748 1.4836| 12.7936 0.456| 1.8731 0.4539| 0.2430 5.1005| 1.5597 0.4441
Maximum | 13.005 12.063| 45.449 24.065 114.000 19.632 25.442 14.892| 12.791 18.189| 26.903 12.682
Minimum 11.442 3.481| 12.280 11.117| 14.432 16.144| 9.585 9.924 | 10.470 0.024| 11.181 9.915
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Fig. 1. Graphical representation of Duration of Diseases in if@dflale and Female adults with corresponding infections.

Table 2 is a presentation of the approximate average daya tiaease would die out in a male and female children

respectively: neo natal jaundice (7, 6); neo natal sepsis7]5 bronchopneumonia (5, 4); Plasmodiasis (3, 3);
Gastroenteritis (4 , 4); Malaria (2, 5).

Table 2: Estimates of Duration of Diseases in infected Male and Ferlaildren with corresponding infections

Table 2
Statistics NNJ NNS BPN PLASM GN MALARIA
M F M F M F M F M F M F
Average 6.674 5.929 5.081 6.990 | 4.508 3.591 2.603 2.755 | 3.793 4.279 | 4.664 9.915
Std. Dev. | 1.3846 0.5989| 0.4443 0.9296| 0.1473 0.4296| 0.1498 0.1563| 0.0916 0.2244| 1.899 0.3861
Maximum 8.338 6.601 7.841 8.071 5.441 7.096 3.547 3.964 3.888 4515 | 3.081 5.082
Minimum 0.755 2975 | 4.656 2.499 4363 3.221 2.460 2.610 | 3.361 2.836 | 1.822 2.321
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4.1 Forecast

The above procedure is used to forecast the average papulatbe infected with the diseases on a monthly basis which
is categorized into the children category of ages 0 to 12yaad adults from ages 13 years and above. The results are
presented on Tables 3-4 shown below with its respective samstatistics. The observed and predicted monthly
incidence are plotted and displayed in Figures 8-16 (reel tapresents predicted disease while blue line represents
observed disease).

Table 3 is a presentation of the forecast on the average gi@uko be infected on a monthly basis in male and female
adults respectively: Appendicitis (1, 1); Critical CardiBailure (2, 2); cardiovascular disease (2, 2); Chronicnigid
Disease (2, 1).

Table 3: Estimates of forecast on Male and Female adults to be irfetith the diseases on a monthly basis
Table 3
Statistics APPD CCF CVvD CKD
M F M F M F M F
Average 1.491 0.915 1.509 2.211 2.080 1.671 1.643 1.271
Std. Dev. | 0.2238 0.2665| 0.0909 0.1604| 0.0063 0.0294| 0.0787 0.2912
Maximum 3.306 1.410 2.438 3.301 2.087 1.876 1.724 4523
Minimum 1.294 0.000 1.426 2.060 | 2.039 1.642 1.248 1.040
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5 Conclusion

There has been a huge increase in world’s population whigalggmeans there’s huge increase in medical supplies at
various hospitals. Sadly, in some areas of the world, theicakdenters either uses old medical equipment which serves
few patients and some equipment are not available to taockhe sliseases.

The study is centered on the investigation of endemic lewédllanowledge of persistence time of endemic diseases in a
population by the use of Stochastic Model such as Markoves®avith continuous time and discrete state space with a
view to determining the proportions of population infectet time until the disease dies out. The data from medical
records of General Hospital Gbagada are used for the stueyha¥e focused on presenting results for a fairly simple
stochastic epidemic model; the reasons being that evemijplsimodels results are far from trivial. The Microsoft Odfic
Excel Package with the Monte Carlo simulation add-in wa$izeti to carry out Monte Carlo simulation for the
diseases-data thereby generating sample paths and thepitgldistribution associated with the CTMC SIR epidemic
model. The output is an indication that there was a signifieesociation between gender and duration in which a
disease dies out, and also between diseases and populétinal® and female to be infected on a monthly basis
respectively.

With this research, we recommend that government shoulelaxad to make available more medical supplies to medical
institutes and liaise with developed country in gettingcsplést in medical fields so as to get the work done as soon as
possible, lastly, government should give study grants tdioa¢ doctors to get medical trainings because going by the
results of the research, we draw out that there is going tonb&xponential increase in population to be infected with
various diseases compared to what has been experienceripdst.
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