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Abstract: In this paper, we obtained point estimation and interval estimation for Lindely distribution parameter and the acceleration
factor under step-stress accelerated life test with progressive first failure sample. In addition, mean square errors (MSEs) of the
maximum likelihood estimators (MLEs) are computed to assestheir performance.
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1 Introduction

Accelerated life tests (ALT) are used to estimate the lifetime of highly reliable products within a reasonable testing time.
The test products are run at higher than usual levels of stress (which includes temperature, voltage, pressure, etc.) toinduce
early failures. The test data obtained at the accelerated conditions are analyzed in terms of a suitable physical model,and
then extrapolated to stress to estimate the life distribution. The stress can be applied in different ways: commonly used
methods are constant stress, progressive stress and step-stress (see [1]). In the constant-stress ALT, the stress is kept at
a constant level throughout the life of test products, see for example, [2,3,4]. In the progressive-stress ALT, the stress
applied to a test product is continuously increasing in time, see for example, [5,6], considered the estimation problem
of the constant-stress accelerated life tests for extension of the exponential distribution under progressive censoring. [7]
obtained the optimal plans of constant-stress acceleratedlife tests for the Lindley distribution. [8] estimated the parameters
of Weibull distribution under step-stress acceleration, [9] estimated the parameters for power generalized Weibull under
step-stress acceleration, see olso [10,11]. The step-stress ALT, in which the test condition changes at a given time or upon
the occurrence of a specified number of failures, has been studied by several authors see for example, [12]. [13] obtained
the optimal simple step-stress ALT plans for the case where test products have exponentially distributed lives and are
observed continuously until all test products fail; [14] extended their results to the case of censoring.

Suppose that n independent groups with k items within each group are put on a life test.R1 groups and the group in
which the first failure is observed are randomly removed fromthe test as soon as the first failureY R

1;m,n,k has occurred,R2

groups and the group in which the second failure is observed are randomly removed from the test as soon as the second
failure occurredY R

2;m,n,k , and finally when the m-th failure YRm;m,n,k is observed, the remaining groupsRm, (m≤ n) are
removed from the test. ThenY R

1;m,n,k < ... < YR
m;m,n,k

are called progressively first-failure censored order statistics with the

progressive censored schemeR= (R1,R2, ...,Rm), wheren= m+
m

∑
i=1

Ri . If the failure times of then× k items originally
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in the test are from a continuous population with distribution functionF(y) and probability density functionf (y) , the
joint probability density function forY R

1;m,n,k,Y
R

2;m,n,k, ...,Y
R

m;m,n,k is given by [14] as follows:

f1,2,...,m(Y
R

1;m,n,k,Y
R

2;m,n,k, ...,Y
R

m;m,n,k)= A(n,m−1)km
m

∏
i=1

f (Y R
i;m,n,k)

[

1−F(Y R
i;m,n,k)

]k(Ri+1)−1
, (1)

0< x1< x2< ... < xm< ∞,

where

A(n,m−1) = n(n−R1−1)...(n−R1−R2− ...−Rm−1− (m−1)). (2)

The Lindley distribution was originally proposed by [15] in the context of Bayesian statistics, as a counter exampleof
fudicial statistics.

Assume that the random variable X representing the lifetimeof a product has Lindley distribution with parametersθ .
Lindley distribution has the following probability density function

f (x) =

[

θ 2(1+ x)e−θx

1+θ

]

, x> 0, θ > 0,

and cumulative distribution function

F(x) =

[

1−

(

1+
θx

1+θ

)

e−θx
]

, x> 0, θ > 0.

Lindely distribution has many real life applications see for example, [16] have introduced real data represent the
waiting times and fitting them. They proved that the Lindely distribution is better model than the exponential distribution.
They also found that the maximum likelihood has a standard error reduced than the exponential distribution.

2 Assumptions and test procedure

The following assumptions are used in the paper in the framework of step-stress partially accelerated life test (SSPALT) :

1.Suppose that n identical and independent groups with k items within each group are put on a life test and the lifetime
of each unit has Lindely distribution.

2.The test is terminated at the m-th failure, where m is prefixed (m≤ n ).
3.Each of the n× k units is first run under normal use condition. If it does not fail or removed from the test by a

precipiced time it is put under accelerated condition.
4.At the i-th failure a random number of the surviving groupsRi , i = 1,2, ...,m−1, and the group in which the failure

Y R
i;m,n,k has occurred are randomly selected and removed from the test. Finally, at the m-th failure the remaining

surviving groupsRm = n−m−

m−1

∑
i=1

Ri are all removed from the test and the test is terminated.

5.Let n1 be the number of failures before time at normal condition, and n2 be the number of failures after timeτ at
stress condition, with these notations the observed progressive first-failure censored data are

Y R
1;m,n,k < .... <YR

n1;m,n,k
< τ <YR

n1+1;m,n,k
< .... <YR

m;m,n,k
,

wheren= m+
m

∑
i=1

Ri .

6.The tampered random variable (TRV) model holds. It was proposed by [17]. According to the tampered random
variable model the lifetime of a unit under SSPALT can be written as :

Y =

{

T i f T ≤ τ,
τ + T−τ

β i f T > τ ,

where T is the lifetime of the unit under normal condition,τ is the stress change time andβ is the acceleration factor
( β > 1).

c© 2016 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.5, No. 3, 393-398 (2016) /www.naturalspublishing.com/Journals.asp 395

7.The probability density function of y after accelerationis give by

f (y) =































0 , y< 0

f1(y) =

[

θ 2(1+ y)e−θy

1+θ

]

, 0< y< τ

f2(y) =
θ 2β (1+(β (yi − τ)+ τ))e−θ(β (yi−τ)+τ)

1+θ
,

τ < y< ∞.

3 Parameters estimation

This section discusses the process of obtaining point and interval estimations of the parameters of Lindely distribution
based on progressive first-failure censored data under SSPALT.

3.1 Point estimation

Let yi =Y R
i;m,n,k be the observed values of the lifetime y obtained from a progressive first-failure censoring scheme under

SSPALT, with censored schemeR= (R1, ...,Rm), then the maximum likelihood function of the observations is:

L(θ ,β ) = Akm
n1

∏
i=1

f1(yi) [1−F1(yi)]
k(Ri+1)−1

m

∏
i=n1+1

f2(yi) [1−F2(yi)]
k(Ri+1)−1 (3)

The log likelihood function may have the form:

ℓ(θ ,β ) = logA+ logkm+
m

∑
i=1

logθ 2+
m

∑
i=n1+1

logβ −

m

∑
i=1

log(1+θ )+

n1

∑
i=1

log(1+ yi)+
n1

∑
i=1

(k(Ri +1)−1) log(1+
θyi

1+θ
)−

n1

∑
i=1

θyi(k(Ri +1))+

m

∑
i=n1+1

log(1+β (yi − τ)+ τ)+
m

∑
i=n1+1

(k(Ri +1)−1) log(1+
θ (β (yi − τ)+ τ)

1+θ
)−

m

∑
i=n1+1

θ (β (yi − τ)+ τ))(k(Ri +1)),

(4)

ℓ(θ ,β ) = logA+mlogk+2mlogθ +(m−n1) logβ −mlog(1+θ )+
n1

∑
i=1

log(1+ yi)+
n1

∑
i=1

(k(Ri +1)−1) log(1+
θyi

1+θ
)−

n1

∑
i=1

θyi(k(Ri +1))+

m

∑
i=n1+1

log(1+β (yi − τ)+ τ)+
m

∑
i=n1+1

(k(Ri +1)−1) log(1+
θ (β (yi − τ)+ τ)

1+θ
)−

m

∑
i=n1+1

θ (β (yi − τ)+ τ))(k(Ri +1)).

(5)

Obtaining the first derivatives w.r.t.θ and β as follows:

∂ℓ(θ ,β )
∂β

=
m−n1

β
+

m

∑
i=n1+1

yi − τ
(1+β (yi − τ)+ τ)

+

m

∑
i=n1+1

(k(Ri +1)−1)
θ (yi − τ)

((1+θ )+θ (β (yi − τ)+ τ))
−

m

∑
i=n1+1

θ (yi − τ)(k(Ri +1)),

(6)
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∂ℓ(θ ,β )
∂θ

=
2m
θ

−
m

1+θ
+

n1

∑
i=1

(k(Ri +1)−1)

(

yi

((1+θ )2+(1+θ )θyi)

)

−

n1

∑
i=1

yik(Ri +1)+
m

∑
i=n1+1

(k(Ri +1)−1)

(

(β (yi − τ)+ τ))
((1+θ )2+(1+θ )θ ((β (y− τ)+ τ))

)

− (β (yi − τ)+ τ))k(Ri +1).

(7)

Solving this system of non linear equations for the unknownsθ ,β numerically because they are very difficult to solve
them algebraically.

3.2 Interval estimation

In this subsection we obtain the confidence intervals of the parameters based on asymptotic distribution of the MLEs of
the unknown parametersΘ = (β ,θ ). The asymptotic distribution of the MLEs is given by [18]:
(

(

θ̂ −θ
)

,
(

β̂ −β
))

→ N
(

0, I−1(θ ,β
)

, whereI−1 is the variance covariance matrix of the unknown parameters

(θ ,β ).
Where

Ii j (Θ) =
−∂ 2ℓ(Θ)

∂θ ∂β
at θ = θ̂ . (8)

∂ 2ℓ(Θ)

∂θ 2 =−
2m
θ 2 +

m

(1+θ )2
+

n1

∑
i=1

(k(Ri +1)−1)

(

−yi(2(1+θ )+ yi (1+2θ )
((1+θ )2+(1+θ )θyi)

)

+

m

∑
i=n1+1

(k(Ri +1)−1)

(

−(β (yi − τ)+ τ))(2(1+θ )+ (1+2θ )(β (yi − τ)+ τ)
((1+θ )2+(1+θ )θ (β (yi − τ)+ τ)

)

.

(9)

∂ 2ℓ(Θ)

∂β 2 =−

(

m−n1

β 2

)

−

m

∑
i=n1+1

(yi − τ)2

(1+β (yi − τ)+ τ)2−

m

∑
i=n1+1

(k(Ri +1)−1)

(

θ 2(y− τ)2

((1+θ )+θ (β (yi − τ)+ τ))2

)

.

(10)

∂ 2ℓ(Θ)

∂θ ∂β
=

m

∑
i=n1+1

(k(Ri +1)−1)
((1+θ )+θ (β (yi − τ)+ τ)(yi − τ)−θ (yi − τ)(1+β (yi − τ)+ τ))

((1+θ )+θ (β (yi − τ)+ τ)2 −

m

∑
i=n1+1

(yi − τ)(k(Ri +1)).

(11)

3.3 Approximate confidence intervals

When the sample size is small, the normal approximation may be poor. However, a different transformation of the MLEs
can be used to correct the inadequate performance of the normal approximation. Based on the normal approximation of
the log-transformed MLEs ([19]) and the approximate 100(1−γ)% confidence interval forθ andβ , are respectively
given by:



















θ̂

exp





z1−
γ
2

√

I−1
11 (θ̂ )

θ̂





, θ̂ exp





z1−
γ
2

√

I−1
11 (θ̂ )

θ̂























, (12)
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β̂

exp





z1−
γ
2

√

I−1
11 (β̂ )

β̂





, β̂ exp





z1−
γ
2

√

I−1
11 (β̂ )

β̂























. (13)

4 Algorithm for simulation studies

In this section, simulation studies are conducted to investigate the performances of the MLEs in terms of their biases and
mean square errors (MSEs) for different values ofn,m andk . Also, 95% asymptotic confidence intervals based on the
asymptotic distribution of the MLEs are computed. Two progressive censoring schemes are considered:

scheme I:R1 = n−m,Rr = 0, r = 2,3, ...,m−1
scheme II:R1 = 0, R2 = n−m, Rr = 0, r = 3, ...,m−1
The estimation procedure is performed according to the following algorithm:

1.Specify the values ofn,m,k andτ.
2.Specify the values of the parametersθ andβ .
3.Generate a random sample of sizen× k from the random variable Y by using mathematica because it ishard to

generate data manually.
4.Use the tampered random variable (TRV) model to generate progressively first-failure censored data for givenn and

m
5.Use the progressive first failure censored data to computethe MLEs of the model parameters. The Newton Raphson

method is applied for solving the nonlinear system to obtainthe MLEs of the parameters.
6.Replicate the steps (3-5) N times.
7.Compute the average values of the parameters and the mean square errors (MSEs) of the parameters.
8.Estimate the asymptotic variances of the estimators of model parameters.
9.Compute the approximate confidence bounds with confidencelevel 95% for the two parameters of the model.

10.Steps 1-9 are done with different values ofn,m andk.

5 Numerical results

Average values of MLEs of the parameter, the associated MSEsand the associated approximate confidence intervals based
on 1000 simulations, when population parameters valuesθ =0.2 ,β =1.1 and stress change timeτ =0.5, N=1000.

Table 1: Values of MLEs of the parameter, MSEs and the confidence intervals
k n m c.s θ̂ mseofθ̂ β̂ mseofβ̂ 95% CI length ofθ̂ 95% CIof length ofβ̂
1 25 15 I 0.01163 0.03549 1.69911 0.47295 0.00851 0.49999

II 0.01042 0.03595 1.85151 0.78613 0.00762 0.52199
1 30 15 I 0.01165 0.03548 1.68662 0.48463 0.00853 0.49675

II 0.01025 0.03609 1.94816 0.89754 0.00749 0.5286
1 40 15 I 0.01179 0.03543 1.69187 0.46703 0.00862 0.50216

II 0.01014 0.04142 1.63068 0.47419 0.03383 0.50372
1 50 15 I 0.01168 0.03547 1.69525 0.48165 0.00854 0.49929

II 0.01446 0.03468 1.61327 0.45664 0.01056 0.49995
1 50 25 I 0.00712 0.03721 1.59506 0.41958 0.004 0.36635

II 0.00831 0.03676 1.43945 0.23919 0.00467 0.35349
1 60 15 I 0.01177 0.03544 1.6835 0.48442 0.0086 0.49597

II 0.0142 0.03453 1.6096 0.4427 0.01039 0.50299
1 60 30 I 0.00649 0.03885 1.2926 0.07771 0.00402 0.29344

II 0.00715 0.03723 1.35265 0.10685 0.00366 0.30662
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k n m c.s θ̂ mseofθ̂ β̂ mseofβ̂ 95% CI length ofθ̂ 95% CIof length ofβ̂
2 30 10 I 0.01023 0.03686 1.52751 0.34378 0.01004 0.60108

II 0.04453 0.00356 1.34308 0.39516 0.71822 0.68313
2 30 15 I 0.01881 0.11074 1.49999 0.25547 0.01421 0.4677

II 0.16135 0.13846 1.3264 0.6304 0.23747 0.44604
2 35 15 I 0.00849 0.03898 1.49921 0.24322 0.00666 0.46834

II 0.06889 0.06566 1.48206 0.51619 0.14009 0.47317
2 40 15 I 0.00986 0.0425 1.5019 0.25718 0.0083 0.46823

II 0.02779 0.04411 1.58064 0.4371 0.03244 0.49543
2 40 18 I 0.08332 0.53572 1.21296 0.13282 0.07289 0.36595

II 0.06779 0.14879 1.38538 0.27628 0.08194 0.41104
2 50 15 I 0.00831 0.0392 1.51422 0.26255 0.00733 0.47057

II 0.00727 0.03716 1.64046 0.4043 0.00531 0.50736

6 Conclusion

We estimated the parameter of lindely distributionθ̂ and the accelerating factor̂β by using maximum likelihood
technique under step stress acceleration with progressivefirst failure data. we used two different schemes (I and II) and
we conclouded the following:

1.The MSEs ofθ̂ are less than that of̂β .
2.Forτ = 0.5 as n increase the MSEsθ̂ andβ̂ decrease for fixedθ and the fixed censoring scheme.
3.The confidence interval length also decreases when n increases for the fixed censoring scheme.
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