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Abstract: An efficient numerical method is employed to approximate thenumerical solutions of some very functional, time-fractional
partial differential equations. Perturbation Iteration Algorithm applied on fractional PDEs can technically manipulate non-linear and
fractional terms pretty well. Similarly, the precision of its results are even better then that of different techniques. Explanatory figures
have been presented correlating the approximated and exactsolutions and substantiating the precision of results.
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1 Introduction

Fractional calculus is yet another subject of this era, attracting a large number of mathematical analysts who have been
dealing with this subject [1–3]. Different methods have been presented dealing with partial and ordinary differential
equations of fractional order. Some of them are proposed numerical solutions, e.g. Variational Iteration Method (VIM)
[4, 5], Homotopy Analysis method (HAM) [6, 7], and Adomian Decomposition Method (ADM) [8, 9], whereas, some
mathematical analysts even proposed analytical methods for time-fractional partial differential equation, such as Iteration
Method [10], Fourier transform method [11], Sumudu Transform Method [12], Greens Function Method [13] and Laplace
Transform Method [10–14].
Nonlinear fractional partial differential equations (FPDEs) are offshoots of established ordinary differential equations. If
first order derivative be replaced by a fractional order (single or multiple fractions) derivative, in basic PDE, a fractional
order PDE is acquired subsequently. Both, linear and non-linear FPDEs vitally contribute in the fields of social sciences,
engineering and many physical phenomena such as [15,16].
In this paper, the time-fractional advection, hyperbolic and Fisher partial differential equations have been numerically
solved, that have been worked out by a good number of scholars.The time-fractional diffusion equation as considered
by Wyss [17] through their solution in closed form in terms of H- function. In the work of Schneider and Wyss [18],
consideration of wave and fractional diffusion is found. Srivastava et al, numerically solved time fractional hyperbolic
telegraph equation by RDTM [19]. Fisher equation was initially designed by [20] for the breeding of a virile gene and
can be confronted by many chemical reactions such as the Brownian motion [21], chemical kinetics [22], auto catalytic
chemical reaction [23] etc. Neamaty [24] has analyzed time fractional PDEs by applying VIM, and alsogiven comparison
of their results with different results of other numerical techniques. The analytical area has been segmented as:

1.Employed definitions of fractional calculus.
2.Basic Theory of Perturbation Iteration Algorithm on FPDEs.
3.Numerical Examples
4.Conclusion
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2 Employed Definitions of Fractional Calculus

Most normally utilized definitions of fractional derivatives and integrals are Riemann-Liouville and Caputo sense,
therefore here is a brief introduction to these concepts.
Definition 2.1 The Riemann-Liouville fractional integral operator of orderα > 0, of a function∈Cµ , µ >−1, is defined

as

Jαy(t) =
1

Γ (α)

∫ t

0
(t − s)α−1y(s)ds; α > 0, (1)

J◦y(t) = y(t)

Some properties of the operatorJα , used in this text are:

JαJβ y(t) = Jα+β y(t); α,β ≥ 0,

Jα tm =
Γ (m+1)

Γ (m+α +1)
tα+m; m ≥−1.

Definition 2.2A real valued functiony(x), x > 0 is said to be in spaceCµ , µ ∈ R, if there exists a real numberp > µ , such

thaty(t) = t py1(t), wherey1(t) ∈C(0, inf), and it is said to be in the spaceCn
µ if and only if yn ∈Cµ , n ∈ N.

Definition 2.3 The fractional derivative ofy(t) in the Caputo sense is defined as

Dα y(t) = Jm−α Dmy(t); f or m−1< α ≤ m, m ∈ N, t > 0, and y ∈Cm
−1. (2)

Firstly, Caputo fractional derivative evaluates only an ordinary derivative then through fractional integral obtains the
required fractional derivative. This approach Riemann- Liouville fractional integral operator resembles very much the
integer order integration so is a linear operation.

Jα
(

Σn
i=1ciyi(t)

)

= Σn
i=1ciJ

α yi(t); where {ci}
n
i=1 are constants. (3)

3 Perturbation Iteration Algorithm (PIA)

Step I
Consider an initial value problem such as

Dα
t y+M(yxx,ytt ,yxt ,yx,yt ,y)+H(yxx,ytt ,yxt ,yx,yt ,y) = g(x, t); 0< α ≤ 1, t > 0, x ∈ R (4)

with initial condition ∂ k

∂ tk y(x,0) = yk(x); k = 0,1,2, ...,m− 1. Wherey = y(x, t), H is the linear operator,M is the
nonlinear operator andg(x, t) is the known analytic function.
Step II
Introducingε with nonlinear term yield

Dα y+ εM+H − g(x, t) = 0 (5)

HerePIA(1,1) will be considered, which means only one correction term in this expansion will be obtained by taking
n = 1, m = 1.
Step III
Consider the following fractional order differential equation.

F(Dα
t y,yxx,ytt ,yxt ,yx,yt ,y,ε) = 0. (6)

By applying PIA on Eq.7 as [25,26]. Only n correction terms in this perturbation expansion will be acknowledged

yn+1 = yn + ε(yn)c, (7)

whereε is the perturbation parameter. The developed PerturbationIteration Algorithm is given here asPIA(n,m); heren
are the terms involved in the expansion ,m is themth order derivative in the Taylor’s Series expansion providedn ≤ m,
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w.r.t ε then comparing the coefficient of same power ofε renders the unknown correction terms. Back substitution of
these results in Eq. (7)thus yields an algorithm for the solution of Eq. (4). Substituting Eq. (8) in Eq. (7), expanding in a
Taylor’s Series with first derivative only yields

F(Dα
t y,yxx,ytt ,yxt ,yx,yt ,y,0)+FDα y(D

α
t y,yxx,ytt ,yxt ,yx,yt ,y,0)ε

(

(Dα y)n

)

c
+

Fyxx(D
α
t y,yxx,ytt ,yxt ,yx,yt ,y,0)ε

(

(yxx)n

)

c
+Fytt (D

α
t y,yxx,ytt ,yxt ,yx,yt ,y,0)ε

(

(ytt )n

)

c
+

Fyxt (D
α
t y,yxx,ytt ,yxt ,yx,yt ,y,0)ε

(

(yxt )n

)

c
+Fyt (D

α
t y,yxx,ytt ,yxt ,yx,yt ,y,0)ε

(

(yt)n

)

c
+

Fyx(D
α
t y,yxx,ytt ,yxt ,yx,yt ,y,0)ε

(

(yx)n

)

c
+Fy(D

α
t y,yxx,ytt ,yxt ,yx,yt ,y,0)ε

(

(y)n

)

c
+

Fε(D
α
t y,yxx,ytt ,yxt ,yx,yt ,y,0)ε = 0.

(8)

All above derivatives will be taken atε = 0. First(y◦)c has been calculated by using initial conditiony◦(x, t) and Eq.(8).
Then we substitute(y◦)c into Eq. (7) to find y1. Iteration process is repeated using Eq.(7) and Eq.(8) until we obtain a
satisfactory result.

4 Numerical Examples

4.1 Example:

Table 1: Result Comparison of PIA and other numerical methods provided in [24] for Eq. (9)
x t VIM ADM HPM VHPIM PIA Exact

0.2

0.25 0.0503090 0.0500000 0.0499876 0.0499876 0.0500001 0.0500000
0.50 0.1006190 0.1000000 0.0999780 0.0999746 0.1000002 0.1000000
0.75 0.1509280 0.1500010 0.1499680 0.1499620 0.1500004 0.1500000
1.00 0.2012370 0.2000010 0.1999570 0.1999510 0.2000005 0.2000000

0.4

0.25 0.1018940 0.1000230 0.0995290 0.0996450 0.1000158 0.1000000
0.50 0.2037870 0.2000460 0.1990590 0.1992900 0.2000316 0.2000000
0.75 0.3056810 0.3000690 0.2985880 0.2989350 0.3000475 0.3000000
1.00 0.4075750 0.4000920 0.3981180 0.3985800 0.4000633 0.4000000

0.6

0.25 0.1530940 0.1504110 0.1471580 0.1456900 0.1502739 0.1500000
0.50 0.3061880 0.3008230 0.2943170 0.2913800 0.3005478 0.3000000
0.75 0.4592820 0.4512340 0.4414750 0.4370700 0.4508218 0.4500000
1.00 0.6123760 0.6016460 0.5886340 0.5827590 0.6010957 0.6000000

Consider the time-fractional advection partial differential equation

Dα
t y(x, t)+ y(x, t)yx(x, t) = x(1+ t2); t > 0, x ∈ R, 0< α ≤ 1 (9)

with initial condition;y(x,0) = 0. Applying perturbation parameterε on non-linear and fractional terms, time-fractional
advection equation becomes

Dα
t y(x, t)+ εy(x, t)yx(x, t) = εx(

1
ε
+ t2).

By applying PIA, the obtained corrected term is

yc(x, t) = Jα
(

−Dα
t y(x, t)− y(x, t)yx(x, t)+ x+ xt2

)

following iterations have been obtained

y◦(x, t) = 0,
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y1(x, t) = xtα
( 1

Γ (1+α)
+

2t2

Γ (3+α)

)

,

y2(x, t) = xtα
( 1

Γ (1+α)
+

2t2

Γ (3+α)
−

t2αΓ (1+2α)

Γ (1+α)2Γ (1+3α)
−

4t2+2αΓ (3+2α)

Γ (1+α)Γ (3+α)Γ (3+3α)

)

.

4.2 Example:

Table 2: Result Comparison of PIA and other numerical methods provided in [24] for Eq. (10)
t x VIM ADM HPM VHPIM PIA Exact

0.2

0.25 0.0434000 0.0433951 0.0434000 0.0432049 0.0434000 0.0434030
0.50 0.1736000 0.1735800 0.1736000 0.1728200 0.1735999 0.1736110
0.75 0.3906000 0.3905560 0.3906000 0.3888440 0.3905998 0.3906250
1.00 0.6944000 0.6943210 0.6944000 0.6912780 0.6943997 0.6944440

0.4

0.25 0.0317790 0.0315670 0.0317790 0.0299125 0.0317795 0.0318880
0.50 0.1271180 0.1262680 0.1271180 0.1196500 0.1271179 0.1275510
0.75 0.2860150 0.2841030 0.2860150 0.2692120 0.2860152 0.2869900
1.00 0.5084710 0.5050720 0.5084710 0.4786000 0.5084715 0.5084710

0.6

0.25 0.0236650 0.0220050 0.0236650 0.0188604 0.0236649 0.0244140
0.50 0.0946600 0.0880180 0.0946600 0.0754415 0.0946595 0.0976560
0.75 0.2129840 0.1980400 0.2129840 0.1697430 0.2129839 0.2197270
1.00 0.3786380 0.3520710 0.3786380 0.3017660 0.3786380 0.3906250

Consider the time fractional hyperbolic equations.

Dα
t y(x, t) =

(

y(x, t)yx(x, t)
)

x
; t > 0, x ∈ R, 1< α ≤ 2 (10)

with initial condition; y(x,0) = x2, yt(x,0) = −2x2. Applying perturbation parameterε on non-linear and fractional
terms, time-fractional hyperbolic equation becomes

Dα
t y(x, t)− ε

(

y(x, t)yx(x, t)
)

x
= 0.

By applyingPIA, the obtained corrected term is

yc(x, t) = Jα
(

−Dα
t y(x, t)+

(

y(x, t)yx(x, t)
)

x

)

−2x2t + x2
.

Iterations obtained by adding initial condition in corrected term are as follows

y◦(x, t) = x2(1−2t),

y1(x, t) = x2
(

1−2t+
6t

Γ (1+α)
−

24t1+α

Γ (2+α)
+

48t2+α

Γ (3+α)

)

,

y2(x, t) = x2
(

1−2t+
6t

Γ (1+α)
−

24t1+α

Γ (2+α)
+

48t2+α

Γ (3+α)
+

72t2α

Γ (1+2α)
−

288t1+2α

Γ (2+2α)

)

.

4.3 Example:

Consider the time-fractional Fisher’s equation

Dα
t y(x, t) = yxx(x, t)+6y(x, t)

(

1− y(x, t)
)

; t > 0, x ∈ R, 0< α ≤ 1, (11)
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Table 3: Result Comparison of PIA and other numerical methods provided in [24] for Eq. (11)
x t VIM ADM HPM VHPIM PIA Exact

0.1

0.25 0.3159400 0.3179480 0.3159400 0.3280190 0.3159398 0.3160420
0.50 0.2499260 0.2505000 0.2499260 0.2565130 0.2499257 0.2500000
0.75 0.1916060 0.1909640 0.1916060 0.1943030 0.1916059 0.1916890
1.00 0.1424110 0.1409790 0.1424110 0.1427150 0.1424105 0.1425370

0.2

0.25 0.4593200 0.4811990 0.4593200 0.5121930 0.4593203 0.4612840
0.50 0.3864500 0.3969410 0.3864500 0.4146970 0.3864505 0.3874560
0.75 0.3154780 0.3152660 0.3154780 0.3247160 0.3154775 0.3160420
1.00 0.2490920 0.2411750 0.2490920 0.2458810 0.2490923 0.2500000

0.3

0.25 0.5911790 0.6814400 0.5911790 0.6302750 0.5911793 0.6041950
0.50 0.5276350 0.5818610 0.5276350 0.5076430 0.5276353 0.5344470
0.75 0.4597190 0.4758330 0.4597190 0.4882980 0.4597193 0.4612840
1.00 0.3870250 0.3729170 0.3870250 0.3784720 0.3870253 0.3874560

with initial condition; y(x,0) = 1
(1+ex)2

. Applying perturbation parameterε on non-linear and fractional terms, then

time-fractional Fisher’s equation becomes

Dα
t y(x, t)− εyxx(x, t)−6εy(x, t)

(

1− y(x, t)
)

= 0.

By applyingPIA, the obtained corrected term is

yc(x, t) = Jα
(

−Dα
t y(x, t)+ yxx(x, t)+6y(x, t)−6y(x, t)2

)

.

Iterations obtained by adding initial condition in corrected term are as follows

y◦(x, t) =
1

(1+ ex)2 ,

y1(x, t) =
1

(1+ ex)2 −
tα

Γ (1+α)

( 6
(1+ ex)4 +

6e2x

(1+ ex)4 −
2ex

(1+ ex)3 +
6

(1+ ex)2

)

,

y2(x, t) =
1

(1+ ex)2 −
tα

Γ (1+α)

( 6
(1+ ex)4 +

6e2x

(1+ ex)4 −
2ex

(1+ ex)3 +
6

(1+ ex)2

)

−

t2α

(1+ ex)6Γ (1+2α)

(

50ex +150e3x+100e4x
)

−
600tαΓ (1+2α)

Γ (1+α)2Γ (1+3α)
.

5 Conclusions

In this work a powerful and easily manageable numerical method PIA has been applied on three different time space
fractional partial differential equations. This method uses Riemann-Liouville and Caputo definitions for fractional
integration and differentiation. Results obtained by PIA in this work has been compared by the approximated results
given in [24] by different methods such as VIM, HPM , ADM and VHPIM. Also itcan easily be observed that results of
this numerical method is more accurate and convergent than other numerical techniques especially comparison by VIM
shows the efficiency of PIA. It is recommended that this satisfactory method ought to be utilized vivaciously for other
complex dynamical systems.
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