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Abstract: An efficient numerical method is employed to approximatenimerical solutions of some very functional, time-frantb
partial differential equations. Perturbation Iteratiolyérithm applied on fractional PDEs can technically matapel non-linear and
fractional terms pretty well. Similarly, the precision ¢$ results are even better then that of different technidgbeglanatory figures
have been presented correlating the approximated and &atibns and substantiating the precision of results.
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1 Introduction

Fractional calculus is yet another subject of this eraaeting a large number of mathematical analysts who have been
dealing with this subjectl-3]. Different methods have been presented dealing with gdaatid ordinary differential
equations of fractional order. Some of them are proposecenical solutions, e.g. Variational Iteration Method (VIM)
[4, 5], Homotopy Analysis method (HAM){, 7], and Adomian Decomposition Method (ADM83,[9], whereas, some
mathematical analysts even proposed analytical methaodisrfe-fractional partial differential equation, such geration
Method [LQ], Fourier transform method [l], Sumudu Transform Method P], Greens Function Method B] and Laplace
Transform Method10-14].

Nonlinear fractional partial differential equations (FPE) are offshoots of established ordinary differentialatpns. If
first order derivative be replaced by a fractional orderdkdror multiple fractions) derivative, in basic PDE, a fiangl
order PDE is acquired subsequently. Both, linear and neerli FPDEs vitally contribute in the fields of social sciesice
engineering and many physical phenomena such 24 §).

In this paper, the time-fractional advection, hyperbohel &isher partial differential equations have been nuradyic
solved, that have been worked out by a good number of schbhardime-fractional diffusion equation as considered
by Wyss [L7] through their solution in closed form in terms of H- funetidn the work of Schneider and Wyss&{],
consideration of wave and fractional diffusion is foundiv&stava et al, numerically solved time fractional hypdibo
telegraph equation by RDTMLP)]. Fisher equation was initially designed 3 for the breeding of a virile gene and
can be confronted by many chemical reactions such as therBmovmotion R1], chemical kinetics22], auto catalytic
chemical reactiond3] etc. Neamaty24] has analyzed time fractional PDEs by applying VIM, and g@s@n comparison

of their results with different results of other numeriadhniques. The analytical area has been segmented as:

1.Employed definitions of fractional calculus.

2.Basic Theory of Perturbation Iteration Algorithm on FRDE
3.Numerical Examples

4.Conclusion
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2 Employed Definitions of Fractional Calculus

Most normally utilized definitions of fractional derivaéig and integrals are Riemann-Liouville and Caputo sense,
therefore here is a brief introduction to these concepts.
Definition 2.1 The Riemann-Liouville fractional integral operator of erdr > 0, of a functionc C,,, u > —1, is defined

as
mezféﬁéh—QGW@$;a>o, M)

J°y(t) = y(t)
Some properties of the operatlt, used in this text are:

J93Py(t) = 3% Py(t); a,B >0,
(m+1) ta+m
F(m+a+1)

Definition 2.2 A real valued functiory(x), x > O is said to be in spad®,, 1 € R, if there exists a real number> 1, such
thaty(t) =tPy(t), wherey, (t) € C(0,inf), and it is said to be in the spac® if and only ify" € Cy, n€ N,
Definition 2.3 The fractional derivative of(t) in the Caputo sense is defined as

JatM = Com>—1.

D%(t) =J3™9DMy(t); form—1<a<m meN,t>0, andyeC™;. (2)

Firstly, Caputo fractional derivative evaluates only adioary derivative then through fractional integral obtathe
required fractional derivative. This approach Riemanrouville fractional integral operator resembles very muuoé t
integer order integration so is a linear operation.

J¢ (Zi“:lciyi (t)) =3",cJ%;(t); where{ci}{'; arecongtants. (3)

3 Perturbation Iteration Algorithm (PIA)

Step |
Consider an initial value problem such as

DEY+ M (Y, Vit , Yo, Yoo Y- Y) 4 H (Vo Vit Vs Yo YY) = 9(xt); 0<a <1,t>0,xeR 4)

with initial condition %}y(x,O) =w(x); k=0,1,2,....,m—1. Wherey = y(x,t), H is the linear operatoi is the
nonlinear operator anglx,t) is the known analytic function.

Step Il

Introducinge with nonlinear term yield

DY +eM+H-—g(x,t)=0 (5)

HerePIA(1,1) will be considered, which means only one correction termhia expansion will be obtained by taking
n=1m=1.

Step Il

Consider the following fractional order differential edioa.

F (DY, Yo, Vit Yt Yo, Y ¥ €) = 0. ©)
By applying PIA on Eq.7 as?b, 26]. Only n correction terms in this perturbation expansion will bersmkledged

Yn+1=Yn+E(Yn)c, (7

whereg is the perturbation parameter. The developed Perturblgeation Algorithm is given here &l A(n,m); heren
are the terms involved in the expansiom js them" order derivative in the Taylor's Series expansion providedm,
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w.r.t € then comparing the coefficient of same powerakenders the unknown correction terms. Back substitution of
these results in Eq7)thus yields an algorithm for the solution of E¢)(Substituting Eq.&) in Eq. (7), expanding in a
Taylor’s Series with first derivative only yields

F(Df'y,yxx,yn,yxt,yx,yt,y,0)+Foay(Dt"y,yxx,yn,yxt,yx,yt,y,0)8(( “Y)n ) +
(

s((
Fyx(DtayayXXaytt7th7yXayt7y70)€((
Fe (DY, Yox, it Yt » Yo Yt Y5 0)€ =

Frooe (DEY, Yoox, it Vs » Yo Wi, ¥ 0) €

)€ (Yxo)n ) + Py (DE'Y, Ysox, Yt Yt Y Y, ¥ O ( Yit) )
Fyse (DFY: Vi, Vit Vs Y Yt ¥, 0) € (Y )n ) + R (DY, Yo, Vit Yt Yics Yt Y4 0 8( ) ) @8)
x)

n)C"' Fy(D'Y, Yiox, Vit Y Vi Y, 5 0 e((y )

All above derivatives will be taken &= 0. First(y, ). has been calculated by using initial conditipiix,t) and Eq.8).
Then we substitutéy, )¢ into Eq. (7) to find y;. Iteration process is repeated using Efgnd Eq.8) until we obtain a
satisfactory result.

4 Numerical Examples

4.1 Example:

Table 1: Result Comparison of PIA and other numerical methods pealid [24] for Eq. (9)

X t VIM ADM HPM VHPIM PIA Exact
0.25 0.0503090 | 0.0500000 | 0.0499876 | 0.0499876 | 0.0500001 | 0.0500000
0.2 0.50 0.1006190 | 0.1000000 | 0.0999780 | 0.0999746 | 0.1000002 | 0.1000000
' 0.75 0.1509280 | 0.1500010 | 0.1499680 | 0.1499620 | 0.1500004 | 0.1500000
1.00 0.2012370 | 0.2000010 | 0.1999570 | 0.1999510 | 0.2000005 | 0.2000000
0.25 0.1018940 | 0.1000230 | 0.0995290 | 0.0996450 | 0.1000158 | 0.1000000
0.4 0.50 0.2037870 | 0.2000460 | 0.1990590 | 0.1992900 | 0.2000316 | 0.2000000
’ 0.75 0.3056810 | 0.3000690 | 0.2985880 | 0.2989350 | 0.3000475 | 0.3000000
1.00 0.4075750 | 0.4000920 | 0.3981180 | 0.3985800 | 0.4000633 | 0.4000000
0.25 0.1530940 | 0.1504110 | 0.1471580 | 0.1456900 | 0.1502739 | 0.1500000
0.6 0.50 0.3061880 | 0.3008230 | 0.2943170 | 0.2913800 | 0.3005478 | 0.3000000
’ 0.75 0.4592820 | 0.4512340 | 0.4414750 | 0.4370700 | 0.4508218 | 0.4500000
1.00 0.6123760 | 0.6016460 | 0.5886340 | 0.5827590 | 0.6010957 | 0.6000000

Consider the time-fractional advection partial diffeiahéquation
DIy(x,t) +y(x,t)yx(xt) =x(1+1?); t>0,xeR 0<a<1 9)

with initial condition;y(x,0) = 0. Applying perturbation parameteron non-linear and fractional terms, time-fractional
advection equation becomes

1
DEY(x.t) + £y(x yx(x) = £x(Z +17).
By applying PIA, the obtained corrected term is

Ye(x,t) = 3 (= DEYOXE) — y(x (x,t) +x+x7)

following iterations have been obtained

yO (th) = 07
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u 1 22
yaxt) =xt (I’(1+a)+l'(3+a))’
a 1 2t? 291 (14 2a) 424201 (34-2a)
ya(xt) =xt (I’(1+a)+l'(3+a)_I'(1+a)21'(1+3a)_I'(1+a)l'(3+a)l'(3+30))'

4.2 Example:

Table 2: Result Comparison of PIA and other numerical methods pealid [24] for Eq. (10)

t X VIM ADM HPM VHPIM PIA Exact
0.25 0.0434000 | 0.0433951 | 0.0434000 | 0.0432049 | 0.0434000 | 0.0434030
0.2 0.50 0.1736000 | 0.1735800 | 0.1736000 | 0.1728200 | 0.1735999 | 0.1736110
' 0.75 0.3906000 | 0.3905560 | 0.3906000 | 0.3888440 | 0.3905998 | 0.3906250
1.00 0.6944000 | 0.6943210 | 0.6944000 | 0.6912780 | 0.6943997 | 0.6944440
0.25 0.0317790 | 0.0315670 | 0.0317790 | 0.0299125 | 0.0317795 | 0.0318880
0.4 0.50 0.1271180 | 0.1262680 | 0.1271180 | 0.1196500 | 0.1271179 | 0.1275510
' 0.75 0.2860150 | 0.2841030 | 0.2860150 | 0.2692120 | 0.2860152 | 0.2869900
1.00 0.5084710 | 0.5050720 | 0.5084710 | 0.4786000 | 0.5084715 | 0.5084710
0.25 0.0236650 | 0.0220050 | 0.0236650 | 0.0188604 | 0.0236649 | 0.0244140
0.6 0.50 0.0946600 | 0.0880180 | 0.0946600 | 0.0754415 | 0.0946595 | 0.0976560
' 0.75 0.2129840 | 0.1980400 | 0.2129840 | 0.1697430 | 0.2129839 | 0.2197270
1.00 0.3786380 | 0.3520710 | 0.3786380 | 0.3017660 | 0.3786380 | 0.3906250

Consider the time fractional hyperbolic equations.
Dfy(x,t) = (y(x,t)yx(x,t)) ; >0, xeR 1<a<2 (10)
X

with initial condition; y(x,0) = x?, y;(x,0) = —2x?. Applying perturbation parameter on non-linear and fractional
terms, time-fractional hyperbolic equation becomes

DFY(x.t) & (Y0 t)yx(x 1)) =0,

By applyingPI A, the obtained corrected term is

Yolx.t) = 3% (= DEY(x ) + (Y y(x1)) ) =2+
Iterations obtained by adding initial condition in coredtterm are as follows
Yo (X, 1) =x3(1—2t),

6t 24tl+a 4&2-&-6{
t) =x(1—2t -
yaxt) =x ( it I'(2+a)+l'(3+a))’

) 6t 24Il+a 4&2+a 7220( 28&1+2a
t)= 1-2t - - :
y2(x,t) = x ( +r(1+a) r(2+a)+l'(3+a) +I’(1+2a) /'(2+2a))

4.3 Example:
Consider the time-fractional Fisher’s equation

DEY() = Y(x,t) + 60 1) (1-y(x1) )5 t>0,xeR 0<a<1, (11)
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Table 3: Result Comparison of PIA and other numerical methods pealid [24] for Eq. (11)

X t VIM ADM HPM VHPIM PIA Exact
0.25 0.3159400 0.3179480 0.3159400 0.3280190 0.3159398 0.3160420
01 0.50 0.2499260 0.2505000 | 0.2499260 0.2565130 0.2499257 0.2500000
’ 0.75 0.1916060 0.1909640 0.1916060 0.1943030 0.1916059 0.1916890
1.00 0.1424110 0.1409790 0.1424110 0.1427150 0.1424105 0.1425370
0.25 0.4593200 0.4811990 | 0.4593200 0.5121930 0.4593203 0.4612840
0.2 0.50 0.3864500 0.3969410 0.3864500 0.4146970 0.3864505 0.3874560
’ 0.75 0.3154780 0.3152660 0.3154780 0.3247160 0.3154775 0.3160420
1.00 0.2490920 0.2411750 | 0.2490920 0.2458810 0.2490923 0.2500000
0.25 0.5911790 0.6814400 | 0.5911790 0.6302750 0.5911793 0.6041950
0.3 0.50 0.5276350 0.5818610 0.5276350 0.5076430 0.5276353 0.5344470
' 0.75 0.4597190 0.4758330 | 0.4597190 0.4882980 0.4597193 0.4612840
1.00 0.3870250 0.3729170 0.3870250 0.3784720 0.3870253 0.3874560

with initial condition; y(x,0) = m. Applying perturbation parameter on non-linear and fractional terms, then

time-fractional Fisher’s equation becomes

DYy(x,t) — eyxx(X,t) — BeY(X,t) (1 — y(x,t)) =0.

By applyingPI A, the obtained corrected term is

Yelx,t) = 3% (= DEY(X.E) + Yclx,1) + BY(X,1) — By(x,1)?).

Iterations obtained by adding initial condition in cormdtterm are as follows

1
yO(th):m,

V(1) = 1 ( 6 6>  2¢ L_6 )
(1+e92 Ml4+a)\(1+e)*  (1+e9* (1+e93  (1+e)2

pxty= L ( 6 . 6 2 6 )_
(1+e9)2 Tl+a)\(1+e)*  (1+e9)* (1+e)3  (1+e92
t2a y . 6009 (1+ 2a)

(A5 95T (1 20) (50e" + 15087+ 1008") Fl+a?r(i+3a)

5 Conclusions

In this work a powerful and easily manageable numerical n@tRlA has been applied on three different time space
fractional partial differential equations. This methodesisRiemann-Liouville and Caputo definitions for fractional
integration and differentiation. Results obtained by PihAthis work has been compared by the approximated results
given in [24] by different methods such as VIM, HPM , ADM and VHPIM. Alsocién easily be observed that results of
this numerical method is more accurate and convergent ttiear noumerical techniques especially comparison by VIM
shows the efficiency of PIA. It is recommended that this &atiery method ought to be utilized vivaciously for other
complex dynamical systems.
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