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Abstract: A New Modified Generalized Linear Failure Rate Distribution (NMGLFRD) with five parameters which 

generalizes the exponential-Weibull distribution, generalized Rayleigh distribution, modified Weibull distribution, Weibull 

distribution, generalized exponential distribution, exponential distribution, modified generalized Linear failure rate 

distribution, generalized linear failure rate distribution and linear failure rate distribution is proposed. Various properties of 

this new distribution are considered and expressions for its moments and moments of the order statistics are obtained. We 

derive the cumulative distribution function, reliability function, hazard function and stress-strength reliability function. The 

estimation of the model parameters is performed by the maximum likelihood method. The use of the proposed model is 

illustrated by application to real data. 

Keywords: Modified generalized linear failure rate distribution, reliability function, hazard function, stress-strength reliability function.  

1 Introduction 

In many of the applied sciences such as finance, engineering and medicine, amongst others, analyzing and modeling 

lifetime data are crucial. Several lifetime distributions have been proposed in the literature (such as exponential, Rayleigh, 

Weibull, Modified generalized linear failure rate distribution) and used to model such kinds of data. Still there remain many 

important problems where the real data does not follow any of the standard or classical probability models. The quality of 

the procedures used in a statistical analysis depends heavily on the assumed probability model or a distribution. This is the 

reason why considerable effort has been expended in the development of large classes of standard probability distributions 

along with relevant statistical methodologies. Adamidis and Loukas [10] introduced the two parameter exponential-

geometric distribution with decreasing failure rate. Kus [6] introduced the exponential-Possion distribution with the 

decreasing failure rate and discussed its various properties. Jain et al. [12] introduced the generalized inverse generalized 

Weibull distribution and studied its properties. Adamidis et al. [11] proposed the extended exponential- geometric 

distribution which generalizes the exponential geometric distribution and discussed several of its statistical properties along 

with its reliability features. The hazard function of the extended exponential- geometric can be monotonic decreasing, 

increasing or constant.   

Reliability has always been a key role for the functionality of the system and safety of people using the products. Lots of 

research and applications have been carried out in order to understand and explore the applications and methodologies of 

reliability analysis for the product enhancements and many researchers have investigated statistically and stochastically 

complex phenomena of real systems to improve their reliability. Survival function (reliability function) and hazard function 

(failure rate function) are the most frequently used functions in reliability engineering and life time data. The hazard 

function of the exponential function is constant whereas the hazard functions of linear failure rate, Rayleigh and generalized 

exponential distribution (Gupta and Kunda, [13]) are monotonic. One of the most frequently used lifetime distribution is 

Weibull distribution introduced by Fisher and Tippett [14] which is very flexible in modeling lifetime distribution with 

monotone failure rate. For describing the lifetime of components with variable failure rate Swedish physicist Wallodi 

Weibull [16] used Weibull distribution to represent the distribution of the breaking strength of materials. Surles and Padgett 

[8] introduced generalized Rayleigh (two parameter Burr type X) and showed that it could be used in modeling strength 

data and lifetime data. Khan and Jan [4] discussed the stress-strength problem of the system where the strength follows 

finite mixture of two parameter Lindley distribution and stress follows exponential, Lindley distribution and mixture of 

two parameter Lindley distribution and obtained general expressions for the reliabilities of a system. Khan and Jan [3] 

obtained Bayes estimators of the parameters of the Geeta, Consul and Size-biased Geeta distributions and associated 

reliability function. Sarhan and Zaindin [2] introduced Modified Weibull Distribution with three parameters. This 

distribution generalizes generalized exponential distribution, exponential distribution, generalized Rayleigh distribution  
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and linear failure rate distribution. Sarhan and Kundu [1] introduced generalized linear failure rate distribution with can have 

decreasing, increasing and bath tub shaped hazard functions. Ezzatallah [5] introduced Modified generalized linear failure 

rate distribution. This distribution generalizes linear failure distribution, generalized exponential distribution, exponential 

distribution, generalized Rayleigh distribution, exponential Weibull distribution, Weibull distribution, generalized linear 

failure rate distribution and modified Weibull distribution. 

2   The New Modified Generalized Linear Failure Rate Distribution 

Let X be lifetime random variable whose probability density function with five parameters(𝛼, 𝛽, 𝛾, 𝛿, 𝜃) is  

 𝑓(𝑥, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃) = 𝜃𝛿(𝛼 + 𝛽𝛾𝑥𝛾−1)(𝛼𝑥 + 𝛽𝑥𝛾)𝛿−1 [1 − 𝑒−(𝛼𝑥+𝛽𝑥
𝛾)𝛿]

𝜃−1

𝑒−(𝛼𝑥+𝛽𝑥
𝛾)𝛿                                                     (2.1) 

;  𝑥 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0, 𝛾 ≥ 0, 𝛿 > 0, 𝜃 > 0 

By the introduction of fifth parameter ‘𝛿’ the above pdf is the generalization of Modified Generalized Linear Failure Rate 

Distribution given by Ezzatallah [5] and will be called new modified generalized linear failure rate distribution (NMGLFRD). 

 Figure 1, 2, 3 and 4 shows the possible shapes of the NMGLFRD for selected values of the parameters involved in 

the pdf. In fig. 1 for blue colour shape(𝛼 = 1.3, 𝛽 = 1.5, 𝛾 = 1.5, 𝛿 = 0.9, 𝜃 = 1.6), for red colour shape(𝛼 = 1.3, 𝛽 =
0.5, 𝛾 = 1.5, 𝛿 = 0.8, 𝜃 = 1.6) and for green colour shape(𝛼 = 1.3, 𝛽 = 0.5, 𝛾 = 2.5, 𝛿 = 0.4, 𝜃 = 1.6). In fig. 2 for blue 

colour shape (𝛼 = 1.3, 𝛽 = 0.7, 𝛾 = 1.5, 𝛿 = 0.6, 𝜃 = 1.6), for red colour shape (𝛼 = 1.3, 𝛽 = 0.5, 𝛾 = 1.5, 𝛿 = 0.5, 𝜃 =
1.6) and for green colour shape (𝛼 = 1.3, 𝛽 = 0.5, 𝛾 = 0.5, 𝛿 = 0.4, 𝜃 = 1.6). 

 
    Fig.  1:  Possible shapes of NMGLFRD                                Fig. 2: Possible shapes of NMGLFRD 

 
Fig. 3:  Possible shapes of NMGLFRD                             Fig. 4: Possible shapes of NMGLFRD 
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In fig.3 for blue colour shape(𝛼 = 0.7, 𝛽 = 0.5, 𝛾 = 0.9, 𝛿 = 2.1, 𝜃 = 1.4), for red colour shape(𝛼 = 0.7, 𝛽 = 0.5, 𝛾 =
0.9, 𝛿 = 2.1, 𝜃 = 1.6) and for green colour shape(𝛼 = 0.7, 𝛽 = 0.5, 𝛾 = 0.9, 𝛿 = 2.1, 𝜃 = 1.8) and in fig.4 for blue colour 

shape(𝑎 = 1.1, 𝛽 = 0.5, 𝛾 = 0.9, 𝛿 = 2.1, 𝜃 = 1.6), for red colour shape(𝛼 = 1.2, 𝛽 = 0.5, 𝛾 = 0.9, 𝛿 = 2.1, 𝜃 = 1.6) and 

for green colour shape(𝛼 = 1.3, 𝛽 = 0.5, 𝛾 = 0.9, 𝛿 = 2.1, 𝜃 = 1.6). 

For different values of parameters involved in NMGLFRD, the distribution has the following distributions as special cases.  

1. Exponential Weibull distribution (EWD), 𝛼 = 0, 𝛿 = 1 

𝑓(𝑥, 𝛽, 𝛾, 𝜃) = 𝜃𝛽𝛾𝑥𝛾−1[1 − 𝑒−𝛽𝑥
𝛾
]
𝜃−1
𝑒−𝛽𝑥

𝛾
      ; 𝑥 > 0, 𝛽, 𝛾, 𝜃 > 0 

2. Generalized Rayleigh distribution (GRD), 𝛼 = 0, 𝛾 = 2, 𝛿 = 1 

𝑓(𝑥, 𝛽, 𝜃) = 2𝜃𝛽𝑥[1 − 𝑒−𝛽𝑥
2
]
𝜃−1
𝑒−𝛽𝑥

2
      ; 𝑥 > 0, 𝛽, 𝜃 > 0 

3. Modified Weibull distribution (MWD), 𝜃 = 1, 𝛿 = 1 

𝑓(𝑥, 𝛼, 𝛽, 𝛾) = (𝛼 + 𝛽𝛾𝑥𝛾−1)𝑒−(𝛼𝑥+𝛽𝑥
𝛾)  ;   𝑥 > 0, 𝛼 ≥ 0, 𝛽, 𝛾 > 0 

4. Weibull distribution (WD), 𝛼 = 0, 𝛿 = 𝜃 = 1 

𝑓(𝑥, 𝛽, 𝛾) = 𝛽𝛾𝑥𝛾−1𝑒−𝛽𝑥
𝛾
  ;   𝑥 > 0, 𝛽, 𝛾 > 0 

5. Generalized Exponential distribution (GED),   𝛽 = 0, 𝛿 = 1 

𝑓(𝑥, 𝛼, 𝜃) = 𝛼𝜃[1 − 𝑒−𝛼𝑥]𝜃−1𝑒−𝛼𝑥   ; 𝑥 > 0, 𝛼, 𝜃 > 0 

6. Exponential distribution (ED),   𝛽 = 0, 𝛿 = 𝜃 = 1 

𝑓(𝑥, 𝛼) = 𝛼𝑒−𝛼𝑥   ;  𝑥 > 0, 𝛼 > 0 

7. Modified Generalized Linear Failure Rate Distribution (MGLFRD), 𝛿 = 1 

𝑓(𝑥, 𝛼, 𝛽, 𝛾, 𝜃) = 𝜃(𝛼 + 𝛽𝛾𝑥𝛾−1)[1 − 𝑒−(𝛼𝑥+𝛽𝑥
𝛾)]

𝜃−1
𝑒−(𝛼𝑥+𝛽𝑥

𝛾) 

; 𝑥 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0, 𝛾 ≥ 0, , 𝜃 > 0 

8. Generalized Linear Failure Rate Distribution(GLFRD) , 𝛾 = 2, 𝛿 = 1  

𝑓(𝑥, 𝛼, 𝛽, 𝜃) = 𝜃(𝛼 + 2𝛽𝑥)[1 − 𝑒−(𝛼𝑥+𝛽𝑥
2)]

𝜃−1
𝑒−(𝛼𝑥+𝛽𝑥

2)  

 ; 𝑥 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0, 𝜃 > 0 

9. Linear Failure Rate Distribution (LFRD), 𝛾 = 2, 𝜃 = 𝛿 = 1 

𝑓(𝑥, 𝛼, 𝛽) = (𝛼 + 2𝛽𝑥)𝑒−(𝛼𝑥+𝛽𝑥
2) ; 𝑥 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0 

3 Statistical Properties of the NGMLFRD 

In this section we study the statistical properties of the NGMLFRD, specifically distribution function, moments, moment 

generating function, quartile function, skewness and kurtosis.  

Let X follows NMGLFRD with parameters 𝛼, 𝛽, 𝛾, 𝛿, 𝜃 . In the sequel, the distribution of X will be referred to  

𝐹(𝑥, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃) and given as 

       𝐹(𝑥, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃) = [1 − 𝑒−(𝛼𝑥+𝛽𝑥
𝛾)𝛿]

𝜃

; 𝑥 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0, 𝛾 ≥ 0, 𝛿 > 0, 𝜃 > 0                                       (3.1) 

The possible shapes of the cdf for selected values of parameters involved in the distribution function are shown in Fig. 5 and 

6.  In fig.5 for blue colour shape(𝛼 = 1.4, 𝛽 = 1.9, 𝛾 = 1.6, 𝛿 = 1.5, 𝜃 = 1.7), for red colour shape(𝛼 = 1.3, 𝛽 = 2.4, 𝛾 =
1.4, 𝛿 = 1.3, 𝜃 = 1.5) and for green colour shape(𝛼 = 1.5, 𝛽 = 2.3, 𝛾 = 1.8, 𝛿 = 1.4, 𝜃 = 1.6) and in fig.6 for blue colour 

shape(𝛼 = 1.4, 𝛽 = 1.9, 𝛾 = 1.6, 𝛿 = 0.5, 𝜃 = 1.7), for red colour shape(𝛼 = 1.3, 𝛽 = 2.4, 𝛾 = 1.4, 𝛿 = 0.3, 𝜃 = 1.5) and 

for green colour shape(𝛼 = 1.5, 𝛽 = 2.3, 𝛾 = 1.8, 𝛿 = 0.4, 𝜃 = 1.6). 

In statistical analysis, moments are important and necessary. These can be used to study the most important features and 

characteristics of a distribution (e.g., dispersion, kurtosis and skewness). 
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Fig. 5: Possible shapes of cdf                                             Fig. 6: Possible shapes of cdf 

Theorem 3.1: If X has the NGMLFRD, then the 𝑘𝑡ℎ order moment about zero is given by 

𝑖)        𝜇(𝑘) =
𝜃Γ (

𝑘

𝛾𝛿
+ 1)

𝛽
𝑘
𝛾⁄

∑
(−1)𝑖(𝜃−1

𝑖
)

(1 + 𝑖)
𝑘

𝛾
+1

∞

𝑖=0

  ; 𝛼 = 0, 𝛽 > 0  

𝑖𝑖)    𝜇(𝑘) =
𝜃𝑘

𝛿
∑

(−1)𝑖

(1 + 𝑖)

∞

𝑖=0

(
𝜃 − 1

𝑖
) [∏∑

𝑊𝑖,𝑗
(𝜆)(0)

𝜆!

Γ (
𝑘+𝑝

𝛿
)

(𝛼(1 + 𝑖)
1

𝛿)
𝑘+𝑝

∞

𝜆=0

∞

𝑗=1

]         

;  𝛼 > 0, 𝛽 ≥ 0 𝑎𝑛𝑑 𝑝 = 𝜆𝑗(𝛾 − 1) + 𝜆𝛿 

Proof:  We know from the definition of the 𝑘𝑡ℎ moment of the random variable X with probability density function f (x)  is 

given by 

                                           𝜇(𝑘) = ∫ 𝑥𝑘𝑓 (𝑥)dx

∞

0

                                                                                     (3.2) 

Substituting (2.1) into (3.2), we get 

𝜇(𝑘) = ∫ 𝑥𝑘𝜃𝛿(𝛼 + 𝛽𝛾𝑥𝛾−1)(𝛼𝑥 + 𝛽𝑥𝛾)𝛿−1 [1 − 𝑒−(𝛼𝑥+𝛽𝑥
𝛾)𝛿]

𝜃−1

𝑒−(𝛼𝑥+𝛽𝑥
𝛾)𝛿

∞

0

𝑑𝑥 

Using, [1 − 𝑒−(𝛼𝑥+𝛽𝑥
𝛾)𝛿]

𝜃−1

= ∑ (−1)𝑖(𝜃−1
𝑖
)𝑒−𝑖(𝛼𝑥+𝛽𝑥

𝛾)𝛿∞
𝑖=0 , we obtains  

𝜇(𝑘) = 𝜃∑(−1)𝑖 (
𝜃 − 1

𝑖
) (

𝑘

1 + 𝑖
)

∞

𝑖=0

∫ 𝑥𝑘−1𝑒−(1+𝑖)(𝛼𝑥+𝛽𝑥
𝛾)𝛿

∞

0

𝑑𝑥 

i) For  𝛼 = 0, 𝛽 > 0 

𝜇(𝑘) =
𝜃Γ (

𝑘

𝛾𝛿
+ 1)

𝛽
𝑘
𝛾⁄

∑
(−1)𝑖(𝜃−1

𝑖
)

(1 + 𝑖)
𝑘

𝛾
+1

∞

𝑖=0

 

ii) For  𝛼 > 0, 𝛽 ≥ 0  

𝜇(𝑘) = 𝜃∑(−1)𝑖 (
𝜃 − 1

𝑖
) (

𝑘

1 + 𝑖
)

∞

𝑖=0

∫ 𝑥𝑘−1𝑒−(1+𝑖)𝛼
𝛿𝑥𝛿(1+

𝛽

𝛼
𝑥𝛾−1)

𝛿
∞

0

𝑑𝑥 
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𝜇(𝑘) = 𝜃∑(−1)𝑖 (
𝜃 − 1

𝑖
) (

𝑘

1 + 𝑖
)

∞

𝑖=0

[∏∫ 𝑥𝑘−1𝑒−(1+𝑖)𝛼
𝛿𝑥𝛿𝑒

−(1+𝑖)𝛼𝛿(𝛿𝑗)(
𝛽

𝛼
)
𝑗
𝑥𝑗(𝛾−1)+𝛿

∞

0

𝑑𝑥

∞

𝑗=1

] 

and by the definition of Taylor expansion 

𝜇(𝑘) = 𝜃∑(−1)𝑖 (
𝜃 − 1

𝑖
) (

𝑘

1 + 𝑖
)

∞

𝑖=0

[∏∫ 𝑥𝑘−1𝑒−(1+𝑖)(𝛼𝑥)
𝛿
∑
𝑊𝑖,𝑗
(𝜆)(0)

𝜆!
𝑥𝜆𝑗(𝛾−1)+𝜆𝛿

∞

𝜆=0

∞

0

𝑑𝑥

∞

𝑗=1

] 

𝜇(𝑘) = 𝜃∑(−1)𝑖 (
𝜃 − 1

𝑖
) (

𝑘

1 + 𝑖
)

∞

𝑖=0

[∏∑
𝑊𝑖,𝑗
(𝜆)(0)

𝜆!

∞

𝜆=0

∫ 𝑥𝑘−1𝑒−(1+𝑖)(𝛼𝑥)
𝛿
𝑥𝜆𝑗(𝛾−1)+𝜆𝛿

∞

0

𝑑𝑥

∞

𝑗=1

] 

𝜇(𝑘) = 𝜃∑(−1)𝑖 (
𝜃 − 1

𝑖
) (

𝑘

1 + 𝑖
)

∞

𝑖=0

[∏∑
𝑊𝑖,𝑗
(𝜆)(0)

𝜆!

∞

𝜆=0

∫ 𝑥𝑘+𝑝−1𝑒−(1+𝑖)(𝛼𝑥)
𝛿

∞

0

𝑑𝑥

∞

𝑗=1

] 

where, 𝑝 = 𝜆𝑗(𝛾 − 1) + 𝜆𝛿𝜇(𝑘) =
𝜃𝑘

𝛿
∑

(−1)𝑖

(1 + 𝑖)

∞

𝑖=0

(
𝜃 − 1

𝑖
) [∏∑

𝑊𝑖,𝑗
(𝜆)(0)

𝜆!

Γ (
𝑘+𝑝

𝛿
)

(𝛼(1 + 𝑖)
1

𝛿)
𝑘+𝑝

∞

𝜆=0

∞

𝑗=1

] 

That completes the proof. 

Theorem 3.2: The moment generating function of NMGLFRD is given by 

𝑖)      𝑀𝑋(𝑡) =∑∑
𝑡𝑟

𝑟!

𝜃Γ (
𝑟

𝛾𝛿
+ 1)

𝛽
𝑟
𝛾⁄

(−1)𝑖(𝜃−1
𝑖
)

(1 + 𝑖)
𝑟

𝛾
+1

∞

𝑖=0

  ; 𝛼 = 0, 𝛽 > 0 

∞

𝑟=0

                                         

𝑖𝑖)   𝑀𝑋(𝑡) = ∑∑
𝑡𝑟

𝑟!

𝜃𝑟

𝛿

(−1)𝑖

(1 + 𝑖)

∞

𝑖=0

(
𝜃 − 1

𝑖
) [∏∑

𝑊𝑖,𝑗
(𝜆)(0)

𝜆!

Γ (
𝑟+𝑝

𝛿
)

(𝛼(1 + 𝑖)
1

𝛿)
𝑟+𝑝

∞

𝜆=0

∞

𝑗=1

]

∞

𝑟=0

         

;  𝑎 > 0, 𝛽 ≥ 0 𝑎𝑛𝑑 𝑝 = 𝜆𝑗(𝛾 − 1) + 𝜆𝛿 

Proof: We know from the definition of the 𝑀𝑋(𝑡) of the random variable X with probability density function f (x) given by 

𝑀𝑋(𝑡) = ∫ 𝑒
𝑡𝑥𝑓 (𝑥)dx

∞

0

   = ∫∑
(𝑡𝑥)𝑟

𝑟!

∞

𝑟=0

𝑓(𝑥, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃)dx

∞

0

 

                = ∑
𝑡𝑟

𝑟!

∞

𝑟=0

∫ 𝑥𝑟𝑓(𝑥, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃)dx

∞

0

     =    ∑
𝑡𝑟

𝑟!

∞

𝑟=0

𝜇(𝑘)   

and by using theorem 3.1 proof is completed. 

3.1 Quartiles, Skewness and Kurtosis 

The 𝑞𝑡ℎ quartile of the NMGLFRD (2.1) is given by 

𝑞 = ∫ 𝜃𝛿(𝛼 + 𝛽𝛾𝑥𝛾−1)(𝛼𝑥 + 𝛽𝑥𝛾)𝛿−1 [1 − 𝑒−(𝛼𝑥+𝛽𝑥
𝛾)𝛿]

𝜃−1

𝑒−(𝛼𝑥+𝛽𝑥
𝛾)𝛿

𝑥𝑞

0

𝑑𝑥 

𝑞 = (1 − 𝑒−(𝛼𝑥𝑞+𝛽𝑥𝑞
𝛾
)
𝛿

)

𝜃

                                                                                               

If 𝛾 = 1 then 
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                                                                     𝑥𝑞 =
[𝑙𝑛 (1 − 𝑞

1

𝜃)
−1

]

1

𝛿

𝛼 + 𝛽
                                                                                               (3.1.1) 

If 𝛾 = 2 then 

                                                       𝑥𝑞 = −

𝛼 + √𝛼2 + 4𝛽 [𝑙𝑛 (1 − 𝑞
1

𝜃)
−1

]

1

𝛿

2𝛽
                                                                  (3.1.2) 

Substituting 𝑞 =
1

2
 in (3.1.1) and (3.1.2), we get the distribution median for 𝛾 = 1 and 𝛾 = 2. 

The Bowley’s skewness [7] is based on quartiles 

𝑆𝐾 =
𝑞0.75 − 2𝑞0.5 + 𝑞0.25

𝑞0.75 − 𝑞0.25
 

And the Moor’s kurtosis [9] is based on octiles 

𝐾𝑢 =
𝑞0.125 − 𝑞0.375 − 𝑞0.625 + 𝑞0.875

𝑞0.75 − 𝑞0.25
 

3.2 Distribution of order statistics 

Let 𝑋𝑖 , 𝑖 = 1, 2, … , 𝑛 be a random sample from the probability density function (2.1). Let 𝑌1 ≤ 𝑌2 ≤ ⋯ ≤ 𝑌𝑛 be the order 

statistics obtained from the sample, then probability density function of 𝑌𝑡 is given by 

      𝑔𝑡(𝑦) =
𝑛!

(𝑡 − 1)! (𝑛 − 𝑡)!
𝑓(𝑦, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃)[𝐹(𝑦, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃)]𝑡−1[1 − 𝐹(𝑦, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃)]𝑛−𝑡 

           =
𝑛!

(𝑡 − 1)! (𝑛 − 𝑡)!
𝑓(𝑦, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃)∑(

𝑛 − 𝑡

𝑙
)

𝑛−𝑡

𝑙=0

(−1)𝑙[𝐹(𝑦, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃)]𝑙+𝑡−1 

=∑
𝑛!

(𝑡 − 1)! (𝑛 − 𝑡)!
(
𝑛 − 𝑡

𝑙
)

𝑛−𝑡

𝑙=0

(−1)𝑙
𝑓(𝑦, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃(𝑡+𝑙))

𝑡 + 𝑙
                         

=∑𝑘𝑙(𝑛, 𝑡)𝑓(𝑦, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃(𝑡+𝑙))

𝑛−𝑡

𝑙=0

                                                                    

where,   𝑘𝑙(𝑛, 𝑡) =
𝑛(−1)𝑙(𝑛−1

𝑡−1
)(𝑛−𝑡

𝑙
)

𝑡 + 𝑙
 

Lemma 3.2.1: If 𝑋𝑖  , 𝑖 = 1, 2, … , 𝑛 is a random sample from NMGLFRD (𝛼, 𝛽, 𝛾, 𝛿, 𝜃). Then 𝑌𝑛 follows 

NMGLFRD  (𝛼, 𝛽, 𝛾, 𝛿, 𝑛𝜃).   

Lemma 3.2.2: Let 𝑌𝑖  denote the 𝑖𝑡ℎ  order statistics, then the 𝑘𝑡ℎ moment of  𝑌𝑖  (𝜇
(𝑘)) is given as follows 

i) 𝛼 = 0, 𝛽 > 0 

𝜇(𝑘) =
𝜃Γ (

𝑘

𝛾𝛿
+ 1)

𝛽
𝑘
𝛾⁄

∑∑
(−1)𝑖(

𝜃(𝑙+𝑡)−1

𝑖
)

(1 + 𝑖)
𝑘

𝛾
+1

∞

𝑖=0

𝑛−𝑡

𝑙=𝑜

 

ii) 𝛼 > 0, 𝛽 ≥ 0 

𝜇(𝑘) =
𝑘

𝛿
∑∑𝑘𝑙(𝑛, 𝑡)𝜃(𝑡+𝑙)

(−1)𝑖

(1 + 𝑖)

∞

𝑖=0

𝑛−𝑡

𝑙=0

(
𝜃 − 1

𝑖
) [∏∑

𝑊𝑖,𝑗
(𝜆)(0)

𝜆!

Γ (
𝑘+𝑝

𝛿
)

(𝛼(1 + 𝑖)
1

𝛿)
𝑘+𝑝

∞

𝜆=0

∞

𝑗=1

]  

; 𝑝 = 𝜆𝑗(𝛾 − 1) + 𝜆𝛿 

4 Reliability function 

Let variable T be the lifetime or time to failure of a component having probability density function (2.1) and distribution 

function (3.1). The probability that the component survives beyond sometime t is called the reliability 𝑅(𝑡, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃) of 

the component. Thus,  
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   𝑅(𝑡, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃) = P(T > 𝑡)                                                                                                  
       =  1 − 𝐹(𝑡, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃),          t > 0                           

                                                 = 1 − [1 − 𝑒−(𝛼𝑡+𝛽𝑡
𝛾)𝛿]

𝜃

;   𝑡 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0, 𝛾 ≥ 0, 𝛿 > 0, 𝜃 > 0 

From this expression it is clear for higher values of 𝜃, reliability decreases and also for constant 𝛿, 𝛾 and 𝜃, reliability 

increases when increase in the values of 𝛼 and 𝛽 take place at a particular period of time.  

Lemma 4.1: If in a parallel system the k components have NMGLFRD with reliability function 𝑅(𝑡, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃), then the 

reliability of the whole system is 𝑅(𝑡, 𝛼, 𝛽, 𝛾, 𝛿, 𝑘𝜃). 

The hazard rate function or failure rate of NMGLFRD is given by 

ℎ(𝑡, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃) =
𝑓(𝑡, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃)

𝑅(𝑡, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃)
                                                                                            

                             =
𝜃𝛿(𝛼 + 𝛽𝛾𝑡𝛾−1)(𝛼𝑡 + 𝛽𝑡𝛾)𝛿−1 [1 − 𝑒−(𝛼𝑡+𝛽𝑡

𝛾)𝛿]
𝜃−1

𝑒−(𝛼𝑡+𝛽𝑡
𝛾)𝛿

1 − [1 − 𝑒−(𝛼𝑡+𝛽𝑡
𝛾)𝛿]

𝜃
 

In fig. 7 the hazard function of NMGLFRD can be non-decreasing, non-increasing or bathtub shaped for particular values of 

the parameters involved in the hazard rate function, for example, for 𝛼 = 1.5, 𝛽 = 0.6, 𝛾 = 0.6, 𝛿 = 0.5, 𝜃 = 1.5, the hazard 

rate function is non-increasing (red curve), for 𝛼 = 0.5, 𝛽 = 0.6, 𝛾 = 1.2, 𝛿 = 1.1, 𝜃 = 1.2, the hazard rate function is non-

decreasing (green curve) and for 𝛼 = 0.8, 𝛽 = 0.1, 𝛾 = 3.2, 𝛿 = 0.7, 𝜃 = 1.3, the hazard rate function is bathtub shaped (blue 

curve).  

If 𝜃 = 1 and 𝛿 = 1 

ℎ(𝑡, 𝛼, 𝛽, 𝛾) = 𝛼 + 𝛽𝛾𝑡𝛾−1 

 In fig. 8, the graph of hazard rate function is a straight line (blue) parallel to time axis for γ = 1 i.e. constant. For γ = 2, the 

graph of hazard rate function is a straight line (red) with constant slope 2β i.e. increasing. For γ > 2, the graph of hazard rate 

function is a increasing curve (green) with positive slope.  

 
      Fig. 7: Shapes of hazard function of NMGLFRD           Fig. 8: Shapes of hazard function for 𝜃 = 1 and 𝛿 = 1 

The reversed hazard rate function of NMGLFRD is given by 

𝑟(𝑡, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃) =
𝑓(𝑡, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃)

𝐹(𝑡, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃)
                                                                           

      =
𝜃𝛿(𝛼 + 𝛽𝛾𝑡𝛾−1)(𝛼𝑡 + 𝛽𝑡𝛾)𝛿−1𝑒−(𝛼𝑡+𝛽𝑡

𝛾)𝛿

1 − 𝑒−(𝛼𝑡+𝛽𝑡
𝛾)𝛿

 

= 𝜃
𝑓(𝑡, 𝛼, 𝛽, 𝛾, 𝛿, 1)

𝐹(𝑡, 𝛼, 𝛽, 𝛾, 𝛿, 1)
= 𝜃𝑟(𝑡, 𝛼, 𝛽, 𝛾, 𝛿, 1)  

4.1 Stress –Strength Reliability  

The term “stress- strength reliability” refers to the quantity P(X > Y), where a system with random strength X is subjected 
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to a random stress Y such that a system fails, if the stress exceeds the strength. Suppose X and Y are two independent random 

variables both having the pdf (2.1) with parameters (𝛼, 𝛽, 𝛾, 𝛿, 𝜃1) and (𝛼, 𝛽, 𝛾, 𝛿, 𝜃2) respectively and let Y represents the 

‘stress’ which is applied to a certain appliance and X represents the ‘strength’ to sustain the stress, then the stress-strength 

reliability is denoted by  

R = P(Y < 𝑋) = ∫ P(Y < 𝑋 Y = y⁄ )fY(y)dy

∞

0

                                                                  

         = ∫(1 − 𝐹𝑋(𝑦, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃1))𝑓𝑌(𝑦, 𝛼, 𝛽, 𝛾, 𝛿, 𝜃2)𝑑𝑦

∞

0

                                                    

        = 1 − ∫ θ2δ(α + βγy
γ−1)(αy + βyγ)δ−1 [1 − e−(αy+βy

γ)δ]
θ1+θ2−1

e−(αy+βy
γ)δdy

∞

0

 

=
θ1

θ1 + θ2
                                                                                                                   

 
                 Fig. 9: Variation in R for constant Stress                     Fig. 10: Variation in R for constant Strength  

Fig. 9 shows with increase in strength parameter (θ2) and keeping stress constant the reliability of system increases, for 

example, for θ1 = 0.5, 0.7 and 0.9 the increase in reliability is shown by green, red and blue curves respectively. Also, fig. 

10 shows with increase in stress parameter (θ1) the reliability of the system decreases, for example, for θ2 = 0.5, 0.7 and 0.9 

the decrease in reliability is shown by green, red and blue curves respectively. 

5 Estimation 

Let  𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛 be a random sample of the NMGLFRD with unknown parameter vector 𝜑 = (𝛼, 𝛽, 𝛾, 𝛿, 𝜃)𝑇. The log 

likelihood for 𝑙 = 𝑙(𝜑; 𝑥) for 𝜑 is 

𝑙 = 𝑛𝑙𝑜𝑔𝜃 + 𝑛𝑙𝑜𝑔𝛿 +∑𝑙𝑜𝑔(𝛼 + 𝛽𝛾𝑥𝑖
𝛾−1
)

𝑛

𝑖=1

+ (𝛿 − 1)∑𝑙𝑜𝑔(𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾
)

𝑛

𝑖=1

+ (𝜃 − 1)∑𝑙𝑜𝑔 (1 − 𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖
𝛾
)
𝛿

)

𝑛

𝑖=1

−∑(𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾
)
𝛿

𝑛

𝑖=1

 

The score function 𝑈(𝜑) = (
𝜕𝑙

𝜕𝛼
 ,

𝜕𝑙

𝜕𝛽
 ,
𝜕𝑙

𝜕𝛾
 ,
𝜕𝑙

𝜕𝛿
 ,
𝜕𝑙

𝜕𝜃
)
𝑇

 has components 

𝜕𝑙

𝜕𝛼
=  ∑(𝛼 + 𝛽𝛾𝑥𝑖

𝛾−1
)
−1

𝑛

𝑖=1

+ (𝛿 − 1)∑
𝑥𝑖

(𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾
)

𝑛

𝑖=1

+ 𝛿(𝜃 − 1)∑
𝑥𝑖𝑒

−(𝛼𝑥𝑖+𝛽𝑥𝑖
𝛾
)
𝛿

(𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾
)
𝛿−1

(1 − 𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖
𝛾
)
𝛿

)

𝑛

𝑖=1

− 𝛿∑𝑥𝑖(𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾
)
𝛿−1

𝑛

𝑖=1
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𝜕𝑙

𝜕𝛽
=∑

𝛾𝑥𝑖
𝛾

(𝛼𝑥𝑖 + 𝛽𝛾𝑥𝑖
𝛾
)

𝑛

𝑖=1

+ (𝛿 − 1)∑
𝑥𝑖
𝛾

(𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾
)

𝑛

𝑖=1

 + 𝛿(𝜃 − 1)∑
𝑥𝑖
𝛾
𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖

𝛾
)
𝛿

(𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾
)
𝛿−1

(1 − 𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖
𝛾
)
𝛿

)

𝑛

𝑖=1

− 𝛿∑𝑥𝑖
𝛾
(𝛼𝑥𝑖 + 𝛽𝑥𝑖

𝛾
)
𝛿−1

𝑛

𝑖=1

 

𝜕𝑙

𝜕𝛾
= 𝛽∑

𝑥𝑖
𝛾(1 + 𝛾𝑙𝑜𝑔𝑥𝑖)

(𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾
)

𝑛

𝑖=1

+ 𝛽(𝛿 − 1)∑
𝑥𝑖
𝛾
 𝑙𝑜𝑔𝑥𝑖

(𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾
)

𝑛

𝑖=1

+ 𝛽𝛿(𝜃 − 1)∑
𝑥𝑖
𝛾
 𝑙𝑜𝑔𝑥𝑖𝑒

−(𝛼𝑥𝑖+𝛽𝑥𝑖
𝛾
)
𝛿

(𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾
)
𝛿−1

(1 − 𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖
𝛾
)
𝛿

)

𝑛

𝑖=1

− 𝛽𝛿∑𝑥𝑖
𝛾
 𝑙𝑜𝑔𝑥𝑖  (𝛼𝑥𝑖 + 𝛽𝑥𝑖

𝛾
)
𝛿−1

𝑛

𝑖=1

 

𝜕𝑙

𝜕𝛿
=
𝑛

𝛿
+∑𝑙𝑜𝑔(𝛼𝑥𝑖 + 𝛽𝑥𝑖

𝛾
)

𝑛

𝑖=1

+ (𝜃 − 1)∑
𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖

𝛾
)
𝛿

(𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾
)
𝛿
𝑙𝑜𝑔(𝛼𝑥𝑖 + 𝛽𝑥𝑖

𝛾
)

(1 − 𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖
𝛾
)
𝛿

)

𝑛

𝑖=1

−∑(𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾
)
𝛿
𝑙𝑜𝑔(𝛼𝑥𝑖 + 𝛽𝑥𝑖

𝛾
)

𝑛

𝑖=1

 

𝜕𝑙

𝜕𝜃
=
𝑛

𝜃
+∑𝑙𝑜𝑔 (1 − 𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖

𝛾
)
𝛿

)

𝑛

𝑖=1

 

The maximum likelihood estimate (MLE) �̂� of 𝜑 can be obtained by solving non-linear equations 𝑈(�̂�) = 0. These equations 

cannot be solved analytically but statistical software can be used to solve them numerically, for example, through the R-

language or any iterative methods such as the BFGS (Broyden-Fletcher-Goldfarb-Shanno), NR (Newton-Raphson), NM 

(Nelder-Mead), BHHH (Berndt-Hall-Hall-Hausman), L-BFGS-B (Limited-Memory Quasi-Newton code for Bound-

Constrained Optimization) and SANN (Simulated-Annealing).  

The observed 5 × 5 information matrix for the interval estimation and hypothesis testing for parameters in 𝜑 is given by 

𝐾 = 𝐾(𝜑) = −

(

  
 

𝐾𝛼,𝛼    𝐾𝛼,𝛽   𝐾𝛼,𝛾    𝐾𝛼,𝛿   𝐾𝛼,𝜃
          𝐾𝛽,𝛽   𝐾𝛽,𝛾    𝐾𝛽,𝛿    𝐾𝛽,𝜃
                     𝐾𝛾,𝛾    𝐾𝛾,𝛿   𝐾𝛾,𝜃
                               𝐾𝛿,𝛿    𝐾𝛿,𝜃
                                         𝐾𝜃,𝜃 )

  
 

 

𝐾(𝜑) is observed and not the expected information matrix because the expressions turn out to be very complicated for writing 

the elements of the expected information matrix. The expressions for the elements of K are given in appendix. Under certain 

regularity conditions (fulfilled for parameters in the interior of the parameter space but not on the boundary), 

√𝑛(�̂� − 𝜑)~𝑁5(0, 𝐼(𝜑)
−1 ) 

𝐼(𝜑) is the expected information matrix used for construction of tests of hypotheses and appropriate confidence regions for 

the parameters and can be replaced by the observed information matrix 𝐾(𝜑). The asymptotic normality is useful for testing 

goodness of fit of GIGW distribution versus some of its sub models. 

6 Application 

In this section we compare the results of fitting the New Modified Generalized Linear Failure Rate Distribution 

(NMGLFRD), Exponential Weibull distribution (EWD), Generalized Rayleigh distribution (GRD), Modified Weibull 

distribution (MWD), Weibull distribution (WD), Generalized Exponential distribution (GED), Exponential distribution (ED), 

Modified Generalized Linear failure rate distribution (MGLFRD), Generalized Linear failure rate distribution (GLFRD), and 

Linear failure rate distribution (LFRD) to the data set studied by Meeker and Escobar [13], which gives the times of failure 

and running times for a sample of devices from a eld-tracking study of a larger system. At a certain point in time, 30 units 

were installed in normal service conditions. Two causes of failure were observed for each unit that failed: the failure caused 

by normal product wear and failure caused by an accumulation of randomly occurring damage from power-line voltage 

spikes during electric storms. The times are:  

2.75, 0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10, 3.00, 1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 0.02, 2.61, 2.93, 0.88,  2.47, 
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0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45, 2.66. 

In order to compare the distribution models, we consider criteria like −2log(L), AIC (Akaike Information Criterion), BIC 

(Bayesian Information Criterion) and CAIC (Corrected Akaike Information Criterion) for the data set. The better 

distribution corresponds to smaller −2l, AIC and CAIC values: 

AIC =  2k − 2log(L), BIC = k(logn) − 2log(L) and CAIC =  AIC + 
2k(k + 1)

n − k − 1
  

Where, 𝑛 the sample size, 𝑘 is the number of parameters in the statistical model, and 𝑙  is the maximized value of the log-

likelihood function under the considered model. 

Table 1: The ML estimates, standard error, AIC, BIC and CAIC of the models based on data set 

Model −𝟐𝒍𝒐𝒈(𝑳) Estimates St. Error AIC BIC CAIC 

NMGLFRD  

 

69.34327 

�̂� = 0.101539 

�̂� = 0.019350 

𝛾 = 3.138587 

�̂� = 5.431130 

𝜃 = 0.116232 

0.0111931 

0.0714287 

3.3239828 

0.0098645 

0.0281048 

 

 

79.34327 

 

 

86.34926 

 

 

81.84327 

EWD  

80.07011 
�̂� = 0.003129  
𝛾 = 4.992084 

𝜃 = 0.184281  

0.0022435 

0.6304445 

0.0406443 

 

86.07011 

 

90.2737 

 

86.99319 

GRD 87.56398 �̂� =  0.139866 

𝜃 = 0.485812 

0.0413616 

0.1027996 

91.56398 94.36637 92.00842 

MWD  

77.09773     
�̂� = 0.246418 

�̂� = 0.007050 

𝛾 =  4.474707 

0.0735728 

0.0039493 

0.5997677 

 

83.91758 

 

87.30132 

 

84.84066 

WD 92.31747    �̂� = 0.449800 

𝛾 =  1.265047 

0.1156533 

0.2044284 

96.31747 99.11986 96.76191 

GED 93.91389 �̂� = 0.616110 

𝜃 = 1.154287 

0.1369297 

0.2733672 

97.91389 100.7163 98.35833 

ED 94.27007 �̂� = 0.564864  0.1031293 96.27007 97.67127 96.41293 

MGLFRD  

91.12194 
�̂� = 0.726295  

�̂� = 2.581178 

𝛾 = 0.064292 

𝜃 = 27.92919 

0.1714571 

1.5422796 

0.0522157 

43.760853 

 

99.12194 

 

104.7267 

 

100.7219 

GLFRD  

86.86245 
�̂� =  0.130047 

�̂� = 0.131477 

𝜃 = 0.721135 

0.1542428 

0.0452863 

0.2398295 

 

92.86245 

 

97.06604 

 

93.78553 

LFRD 87.94711 �̂� =  0.274949  

�̂� = 0.116322 

0.1205749 

0.0488434 

91.94711 94.7495 92.39155 

 

 
Fig. 11: The estimated NMGLFRD density superimposed on the histogram for the data set. 

Table 1 shows parameter MLEs to each one of the two fitted distributions for data set, values of −2𝑙𝑜𝑔(𝐿), AIC, BIC and 

AICC. The values in Table 1 indicate that the New Modified Generalized Linear Failure Rate Distribution model performs 

signicantly better than its sub-models used here for fitting data set. Also, it can be easily seen in figure 9 that fitted density 
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for the New Modified Generalized Linear Failure Rate model is closer to the empirical histogram.  

7 Conclusion 

A new model so called the New Modified Generalized Linear Failure Rate Distribution (NMGLFRD) has been introduced. 

It is shown that various existing distribution can be obtained from this new distribution. We have derived some mathematical 

properties and plots of pdf, cdf and hazard functions are presented to show the versatility of new distribution. It is observed 

that NMGLFRD can have non-increasing, non-decreasing and bathtub shaped hazard function which are quite desirable for 

data analysis purposes. The model parameters are estimated by maximum likelihood. We prove that the proposed model can 

be superior to some models generated from other know families in terms of model fitting by means of an application to a real 

data set.  
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𝛾)𝛿−1

(1 − 𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖
𝛾)𝛿)

𝑛

𝑖=1

− 𝛽𝛿∑ 𝑥𝑖
𝛾
𝑙𝑜𝑔𝑥𝑖 𝑙𝑜𝑔(𝛼𝑥𝑖 + 𝛽𝑥𝑖

𝛾)

𝑛

𝑖=1

(𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾)𝛿−1 

+𝛽𝛿(𝜃 − 1)∑
𝑥𝑖
𝛾
𝑙𝑜𝑔𝑥𝑖  𝑙𝑜𝑔(𝛼𝑥𝑖 + 𝛽𝑥𝑖

𝛾
)𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖

𝛾)
𝛿

(𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾
)
𝛿−1

[1 − (𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾
)
𝛿
− 𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖

𝛾)
𝛿

]

(1 − 𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖
𝛾)
𝛿

)
2

𝑛

𝑖=1

− 𝛽∑𝑥𝑖
𝛾
 𝑙𝑜𝑔𝑥𝑖  (𝛼𝑥𝑖 + 𝛽𝑥𝑖

𝛾
)
𝛿−1

𝑛

𝑖=1

 

𝐾𝛾𝜃 =
𝜕
2
𝑙

𝜕𝛾𝜕𝜃
= 𝛽𝛿∑

𝑥𝑖
𝛾
 𝑙𝑜𝑔𝑥𝑖𝑒

−(𝛼𝑥𝑖+𝛽𝑥𝑖
𝛾)𝛿(𝛼𝑥𝑖 + 𝛽𝑥𝑖

𝛾)𝛿−1

(1 − 𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖
𝛾)𝛿)

𝑛

𝑖=1

 

𝐾𝛿,𝛿 =
𝜕
2
𝑙

𝜕𝛿2
= −

𝑛 

𝛿2
−∑(𝛼𝑥𝑖 + 𝛽𝑥𝑖

𝛾)𝛿(𝑙𝑜𝑔(𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾))

2

𝑛

𝑖=1

+ (𝜃 − 1)∑
𝑒
−(𝛼𝑥𝑖+𝛽𝑥𝑖

𝛾)𝛿(𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾)𝛿(𝑙𝑜𝑔(𝛼𝑥𝑖 + 𝛽𝑥𝑖

𝛾))
2

[1 − (𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾)𝛿 − 𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖

𝛾)𝛿]

(1 − 𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖
𝛾)𝛿)2

𝑛

𝑖=1

 

𝐾𝛿,𝜃 =
𝜕
2
𝑙

𝜕𝛿𝜕𝜃
=∑

(𝛼𝑥𝑖 + 𝛽𝑥𝑖
𝛾)𝛿𝑙𝑜𝑔(𝛼𝑥𝑖 + 𝛽𝑥𝑖

𝛾)𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖
𝛾)𝛿

(1 − 𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖
𝛾)𝛿)

𝑛

𝑖=1

 

𝐾𝜃,𝜃 =
𝜕
2
𝑙

𝜕𝜃2
= −

𝑛

𝜃2
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