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1 Introduction 2 Preliminaries

The study of BCK-algebra was initiated by Imai and Iseki | this section, we gather some basic notions relevant to

in 1966 as a generalization of the concept of set-theoreti¢|osure operation on ideals which will need in the next
difference and propositional calculi and also for the first sections.

time, E. H. Moore in 1910 §] introduced closure
operation on a set. After that many researchers havé®efinition 2.1[10] An algebra (X;*,0) of type (2,0) is
worked on closure operation, see for exam@g![8,9]. called a BCl-algebra if it satisfies the following
Finally in 2012 , N. Epestein published a papdrdbout  conditions: for any x, y, £ X,
closure operation on commutative algebra. The closurdBCI-1: ((xxY) * (X*2)) x (zxy) =0
operation open a new ideas in commutative algebra. Sinc8CI-2: xx 0= X
ordered algebra have been used in many branches d@CI-3: xxy=0and yxx= 0imply x=y
mathematics and as far as we know, there is no article on We call the binary operationx on X the x
closure operation in this area in general, so this paper isnultiplication on X, and the constant 0 of X the zero
the first step of using closure operation in (a special)element of X. We often write X instead(f; x,0) for a
ordered algebra, and hoping that this manuscript operBCl-algebra in brevity.
another new ideas for future researches in algebra
structures. Proposition 2.710] Suppose that (X;*,0) is a

The structure of the article is as follows: first we BCl-algebra. Define a binary relatiost on X by which
introduce the notion of closure operations and providex <y if and only if xxy = 0 for any xy € X. Then
some examples. Then we give some lemmas andX;<)is a partially ordered set with O as a minimal
theorems that help us to make some more closurelement.
operations. Also we consider some closure operations on
Noetherian BCK-algebras and we use this notion on aDefinition 2.3[10] Given a BCl-algebra X, if it satisfies
quotient BCK-algebra and obtain some results. Moreoveithe condition
by considering different type of ideals we prove someBCK-1:0xx=0for all x € X, which means thd < x. for
related results. each xe X.

We call this algebra a BCK-algebra.
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Definition 2.4[10] Given an element a in BCl-algebra X,
the set
A(a) = {xe X|x<a}

is called initial section of X determined by a.

Definition 2.5[ 7] A BCK-algebra X is called bounded if

Theorem 2.167] Let X be a lower BCK-semilattice. Then
X is commutative if and only if@) N A(b) = A(aAb) for
any a, be X where a\b=bx (bxa) and A.) is an initial
section of X.

Definition 2.17710] Suppose(X;*,0) and (X’;’,0') are
two BCK-algebra. A mapping fX — X’ is called a

there exists the greatest element of X, with respect to thééomomorphism from X into”Xf, for any x, ye X

ordered relation<.

Definition 2.6[10] A partially ordered se{X; <) is called

a lower semilattice if any two elements in X have the
greatest lower bound. It is called an upper semilattice if

each pair of elements in X has its least upper bound.
Given a BCK-algebra X, if it with respect to its BCI-

f(xxy) = f(x) " f(y)

If, in addition,the mapping f is onto, then f is called an
epimorphism. The mapping is called an isomorphism if it
is both an epimorphism and one-to-one.

Definition 2.1810] An equivalence relation relatiofl on

ordering < forms a lower semilattice, then the algebra X & BCl-algebra X is called a congruence on X if it is of the
is called a lower BCK-semilattice. Similarly we can define Substitution property:

an upper BCK-semilattice.
In a lower BCK-semilattice we denote\y = glb{x,y}.

Definition 2.7[ 10] A subset A of a BCl-algebra X is called
an ideal of X if

(i) 0eA.

(i) x € Aand y«x € Aimply ye A for any xy € X.

Note that X and{0} are ideals of X, and they are called
the trivial ideals of X.

Theorem 2.§7] Let A be an ideal of a BCK-algebra X.
Then for any xy € X, x€ A and y< x imply that ye A.

Definition 2.9[10] Anideal A of a BCl-algebra X is called
closed if A is closed under themultiplication on X.

Definition 2.1/ 10] Let S be a subset of a BCl-algebra X.

We call the least ideal of X, containing S, the generated

ideal of X by S, denoted by S> or (S§. An ideal A of

a BCK-algebra X is said to be finitely generated if there

is a finite subset S of X such thatA< S>. The ideal<
a> generated by one generator a is also callegrancipal
idealof X.

Definition 2.11]7] A BCK-algebra X is called
commutative if x (xxy) = y* (yxx) for any xy € X.

Theorem 2.127] A BCK-algebra X is commutative if and
only if (X; <) is a lower semilattice with Xy = yx (y* X)
for any x, ye X.

Definition 2.137] A BCK-algebra X is said to be
Noetherian if each ideal of X is finitly generated.

Definition 2.14[ 7] Given a BCK-algebra X, we say that

X satisfies the ascending chain condition, abbreviated b
ACC, if there does not exists an infinite properly ascending

chainly C 1, C ...in %

Theorem 2.1%7] In a BCK-algebra X, the following are
equivalent:

(i) X is Noetherian,

(ii) X satisfies ACC,.

X~ y(8),u~Vv(0)imply x«u~ y*v(0)

for any x, vy, u, ve X. Denote% for the quotient set
{6«x € X}. If B is a congruence on X, the operatieron
% given by6x x 8, = 6.y is well-defined. The(%, *, 6o)

is an algebra which call the quotient algebra of X
induced by6.

Theorem 2.191Q] Let f : X — X’ be an epimorphism. If
Ajis an ideal of X, then () is an ideal of X.

3 Closure Operation

In this section, we define closure operation on ideals and
by given some theorems we construct and present some
different closure operations.

Definition 3.1By an operatiorfd” on the set of all ideals
of a BCK-algebra X (denoted hyx), we mean a function
d: 9x — Fx. For simplicity of notation for any & %x
we write d A) = AY.

Definition 3.2Let X be a BCK-algebra. Then a closure
operation "cl” on the set.#x , is an operation
cl : #x —s Fx such that A— A° satisfies the following
conditions:

(i) AC AY for all A € .#x (Extension).

(i) A% = (A for all A € .#x (Idempotence).

(iii) if A and B are in.#x and BC A. Then B' C A%
(Order-preservation).

Example 3.3 et X be the set{0,1,2,3,4}. Define a

)})inary operationx on X by the following Cayley table

A WNE O *
A WNEF OO
A WNOO|IF
A wooonMN
A ONRFLOW
O WOOoOOoh
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Then X is a lower BCK-semilattice with 8 ideals. The Example 3.9n Example 3.3 let
following figures describe the Hasse diagrams ofy = {{0},{0,3},{0,1},{0,1,3},{0,1,2}}. Then

elements and ideals of X.
4

{0,1,2,3,4}
/ AN
{0, 1|, 2,3} {Oﬁ‘17274}
{0,1.3} \ {0,1,2}
{03} \ /{071}

{0}

Define cl on ideals as follows:
({oh® = {0}, ({0,3})® = {0,1,3}.({0,1,3})° = {0,1.3},({0,1})® = {0,1,2},({0,1,2})* = {0,1,2}
({0,1,2,3}))” = {0,1,2,3,4},({0,1,2,4})" = {0,1,2,3,4} and ({0,1,2,3,4})° = {0,1,2,3,4}.
It is easy to check thdtl” is a closure operation.

Definitlion 3.4We say that an ideal A it?x is cl-closed, if
A=A",

Note that &' is cl-closed for any ideal A of X, by Definition
3.2.

Example 3.9n Example 3.3 the ideals
{0,1,3},{0,1,2},{0,1,2,3,4} are cl— closed ideals.

Theorem 3.62% is the intersection of all cl-closed ideals
containing A.

ProofThe proof is straightforward.

Definition 3.7Let A and B are two arbitrary ideals of a
lower BCK-semilattice X. Define:

AANB=<{xAylxe Aye B} >.
For an element x X, we have x.B= {x} AB=< {xA
yly € B} >.

Definition 3.8Let X be a lower BCK-semilattice arglC
#%. Then we say tha¥ is A-closed if AAB € 5, for any
two ideals ABe 5

Sy C #x and clearlyy is a A-closed subset. Because for
any two elements of like {0,1,3},{0,1,2}, we have
{0,1,3} A{0,1,2} = {0,1} and{0,1} € 5.

Remark 3.1Qi) From the above definition we get that:
AZ = ANA=< {XAYXYEA} >and B=A2NA, ...

(ii) In a lower BCK-semilattice (specially, in a
commutative BCK-algebra), we have C A® C A® C A,
because a commutative BCK-algebar is a lower
BCK-semilattice and Xy = x (xxy) < x, for any
X,y € X.

Definition 3.11Let A and B are ideals of a lower BCK-
semilattice X. Define the residuated quotient ideal A by B,
as follows:

(A:x B):=<{xe X|xABCAAB} >.

Also, (A :x B®) = Shen(Aix B") =< {x € X] there exists
n, xAB"C AAB"} >.

Example 3.12n Example3.3let A= {0,1,3} and B=
{0,1,2}. Then by using the Examp®&9 and the Hasse
diagram of elements in Exam@e3we have:

{xe X|xn{0,1,2} € {0,1}} = {0,1,3}.

Thus,
(A:x B) =< {xe X|xn{0,1,2} € {0,1}} >=< {0,1,3} >={0,1,3}.

Proposition 3.13.et X be a BCK-algebra and cl be a
closure operation on%x. Let {Aq}q4cn be a subset of
#x. Then:

(i) If every Ay isa”cl — closed, then so i1 Aq.

(i) NgAY is "cl — closed.

(i) (Fa AD” = (Ta Ad)®.
ProofLet {Aq }qen be as above. Then:

() For any B € A we haveNgAq C Ag, Thus

(NaAg)® C A%' = Ag. Since this hold for any ; we have

(NaAg)® C NgAg.

(ii) We prove(NgenAS)® = NgenAS. Since for each
a in A; we have(AZ)d = AY: so AY is a "cl — closed
ideal. Hence (2) follows directly from part (1).

(iiiy First we prove(yq4Aq)% C (T4 AS)Y. By the
extension propertyA; C AS for each a € A. So
SaAa C o AY becausey Ay =< Ag, UAg, U ... >
whereas, a»,... are in/A. Hence the conclusion follows
from order-preservation.

Conversly, for any B in A we have
As C SaAa € (3aAq)® and by using order-preservation
and idempotence properties,
AY C (TaAa)® C ((TaAd)™)® for all B e A. Thus

YaAY C (TaAa)l.

In the following we mention a theorem which says
that: a given closure operation is equivalent with a
collection 3 of ideals such that the intersection of any
subcollection is irfy .
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Theorem 3.14.et x be the set of all closure operations
on Zx and @ be the set of all subsets ofx which are

closed under intersection. Then there is a one-to-one

correspondence betwegnand .

ProofSuppose €I” is a closure operation oK. Let § be
the class of &l — closed ideals. That is,A ¢ 3 If and
only If A= A%. By Proposition3.13 the intersection of
any subcollection of ideals i§l is also iny .

Conversly, suppose th&gt is a collection of ideals for
which the intersection of any subcollection is ynh For
any idealA, letA% = N{B|AC B,B ¢ s }. Then we have:
(i) AC A%,

(i) By using (i) A% C (A®)Y. Now suppose that
x € (A B ey andA C B. By definitionA®, A C B.
Sox € B. SinceB is arbitrary,x e N{B[AC B,B € Y }.
Thereforg(A®)¢ C A%,

(iii) For ideals A and B ofX such thatA C B we have

N{KIACK.Ke Y} Cn{KBCK.Ke Y}
Thus,A% C B,

Example 3.1%i) The identity operation, sending each
ideal to itself, is a closure operation on X.

Remark 3.18\ote that for the above closure operation, we
have:

(i) A% is the smallest closed ideal of X containing A.
(i) A= A% if and only if A is a closed ideal.

Theorem 3.1910] Suppose that X
BCK-semilattice. Then

is a lower

<X>N<KY>=<XAY>

Theorem 3.2(7] Let X be a lower BCK-semilattice. Then
X is commutative if and only if@&) N A(b) = A(aAb) for
any a, be X where a\b= b= (bxa) and A.) is an initial
section of X.

Theorems3.19and 3.20 help us to have a following
theorem.

Theorem 3.21 et X be a bounded lower BCK-semilattice
with 1 as the greatest element. Define glx — .#x such
that for each ideal A of X; A=nN{BJACB,Bc 5 }.

(i) If 3 is the set of all principal ideals containing A.
Then”cl” is a closure operation.

(i) If 5 is the set of all initial sections containing A
and X is a commutative. Thénl” is a closure operation.

Proof(i) Since(1] =X, 3 #0.
(1) Obviously,A C A°,

(ll) The indiscrete Operation, Sending each ideal to X, |S(2) By using Theorens_lg the intersection of principa|

also a closure operation on X.

Theorem 3.16 onsider a bounded lower
BCK-semilattice X with 1 as the greatest element. Defin
AP = N{P € Spe¢X);A C P}. Then the operation
cl:Ix — Ix; A—— AP is a closure operation.

ProofBy Stone-lemma (Theorem 1.4.19 ofl()]),
N{P|P € Spe¢X),A C P} is not empty. Also for each
ideal A of X;

(i) Clearly,AC AP,

(i) AP = (AP)P. The proof is similar to the proof of
Theoren.14

(iii) For any two ideal#\ andB such thatA C B; we have
AP C BP. Hence the operatiod : Ix — Ix; A— AP is
a closure operation.

Theorem 3.171.et X be a bounded lower BCK-semilattice
with 1 as the greatest element and defirfe-AN{l| I is
closed ideal and AC 1}. Then the operation cl.#x —
#x such that A— A% is a closure operation.

ProofSinceX is a closed ideal containing, the above set
is not empty.
(i) Obviously,A C A%,

ideals is a principal ideal. Therefor@®)® = A%,
(3) The proof of order-preservation is similar to the proof
of Theoren3.14

&ii) By using the TheorerB.2Q the proof is the same as of

the proof of part (i).

Theorem 3.2Buppose that B is an ideal of a BCK-algebra
X. Define cl: #x — .#x such that for each ideal A of X;
A% = A+B=< AUB >. Then’cl” is a closure operation.

Proof(i) AC A%,
(ii)I (A = (A+B)Y =<<AUB>UB>=<AUB>=
A%,

(i) For any two idealsA; andA; of X. If A; C Ay, then
ALUBC AyUB. So< AjUB >C< AyUB >. Thus,A{' C

AS.

Theorem3.23et B be an ideal of a lower
BCK-semilattice X. Define cl.%x — % such that for

each ideal A of X, & = (A:x B). Then”cl” is a closure
operation.

Proof(i) For every elemenain A,
aABCAAB=<{aAnBla ecABeB}>.
Which means thah C A°,

(il) Because of the intersection of closed ideals, is closed

ideal too. Therefore,
(AC|)C| _ Acl.

(iii) For any two ideal#\ andB of X, if B C AthenB® C
A% (the proof is similar to the proof of TheoreBnl4).

(i) Suppose thaa € (A®)%, thenaAB C A% AB. Now
if g€ A% be an arbitrary element, thgm B C AAB. So
A" AB C AAB. ThereforeaAB C AAB anda e A%,

(iii) For each idealg\; , Ay of X. If A1 C Ay andac (A1 :x
B) =A% thenac X,aAnBC A; AB. SinceA; ABC A;AB,
we haveaAB C Ay ABandae (A :x B) = A%,
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Theorem 3.24.et A and B be two ideals of a lower Definition 3.28Let cl; and chb be two closure opertions

BCK-semilattice X. Consider:
(A :x B®) = Unen(A :x B") =< {x € X]| there exists
nxAB" C AAB"} >. Define cl: # — x such that
for each ideal A of X, & = (A:x B®). Then”cl” is a

closure operation.

ProofThe proof is similar to the proof of TheoreBn23

Theorem 3.2% et ¢ : X3 — X be a BCK-epimorphism
and”cl” be a closure operation onXFor each ideal A

of Xy, define & = ¢ —1((¢(A))?). Then"cl” is a closure

operation on X.

Proof(i) Since "cl” is a closure operationy (A) C ¢ (A)°.
So ¢ H($(A) C ¢ HP(A)). Also AC ¢ H$(A)),
thus A C ¢ 1(¢(A)%) = A%, This prove the extension
properti.

(i) From extension property we know thaf" C (A®")e!,

if a e (A then a e ¢ L(p(A")) and
¢(a) € (@A), Also
O(A%) =9 (9L (P(A)) C d(A)®. Hence

9(a) € ((9(A))” = (#(A)°.

Soa € ¢ L(p(A))° =AY,

(iii) Let AC B. Then¢ (A) C ¢(B). Since tl” is a closure
operation, d(AY  C  ¢(B). Hence,
¢ L(9(A)) C (¢ (B)%). Thereforea® C B

Suppose thax andX’ are two BCK-algebra. We know
from [10] that if f : X — X’ is an epimorphism and is
an ideal ofX, thenf(A) is an ideal ofX’. This help us for
the next theorem.

Theorem 3.2@et ¢ : X3 — X be a BCK-epimorphism
and”cl” be a closure operation oni1XFor each ideal A

of X, define &= ¢((¢~1(A))®). Then”c” is a closure

operation on X.

Proof.The proof is similar to the proof of TheoreBn25

Lemma 3.271et {cl) }»cn be an arbitrary collection of

closure operations on ideals of a BCK-algebra X. Thenngetherian

A% = M, A% defines a closure operation.

Proof Suppose thaA is an ideal ofX.

For each\ € A sinceA C A%, AC N, 1 A% . ThusA C
A% and the extension property holds.

For idempotence, suppose tlat (A®)°. Then for every
A € A, we havea € (A®)% . SinceA C A®» andcl,
preserve order, we get thate (A%)h C (A% ) = AC,
Hencea € Nep A% = A% andA® = (A9,

Let A andB are two arbitrary ideals of such thatA C B.
Since for each\ € A, cl, is a closure operatioAr C
BYr. HenceNycp A% € Nyep BYA. ThusA® € BY and
we have order-preservation property.

on a BCK-algebra X. Then we writescK cl, if for every
ideal A, A1 C A%z,

Lemma 3.2%Buppose thatA, }, 4 be a family of ideals
such that for everyi; andA, in A, there exists somg € A
such that A, C Ag fori =1,2. Then A= ca Ay is an
ideal.

ProofThe proof is straightforward.

Lemma 3.3Qet {cl)} cn be a direct set of closure

operations, that is for any\1,A> € A, there exists some

u € A such that ¢ < ¢, for i=1,2. Moreover, assume

that every ideal of X s finitly generated. Then
A% = J,en A% defines a closure operation.

ProofBy Lemma3.29 A% is an ideal and every ideal &f
is finitely generated, sA% =< aj, a,...,a, >. Sinceg; €
A% (i=1,2,...,n), for each i=1,2,...,n there exiats A such
thata; € A% Now by assumption there exists such
thatcly, < clg (i=1,2,...,n). SoA™ C A%8. Hencea; €
A%B . Therefored® C A%6. On the other hand, by definition
of AY, A% C A%, HenceA® = A%s . Extension and order-
preservation properties are clear.

Idempotence: for any ided|, by above argument there
existsA; andA; in A such thatA® = A% and (A =
(A% Hence

(ACI)CI _ (ACI)Cl’\l _ (ACIAZ)CIM.
By assumption, there exiftin A such thatl), <clg. So
(AClAz)ClAl g (ACIB)CIB :ACIB

Now from A% = (J, .1 A%, we haveA®s C A®. Thus
(Acl)cl C AC|.

Also by extension propertyd® C (A%)°. Therefore
(Acl)cl _ Acl_

Remark 3.31Since in Noetherian BCK-algebra every
ideal is finitely generated, the above result is true for
every Noetherian BCK-algebra.

Theorem 3.32et £ be a A-closed set of ideals of a
lower BCK-semilattice X. Define
& . S — Fx such that for each ideal A of X;
AS = Sce(Aix K). Then&” is a closure operation.

ProofFirst for each ideaK in &, defineAK = (A :x K).
By Theorem3.23 (—)K is a closure operation or¥x.
Now we show that{(—)K;K € &} is a direct set of
closure operations. To this end I&g and K, be in &.
Then Ki A Ky is in & and AKt C AKirKz - Also,
Afz C ANz Now sinceAs = [Jycg (Aix K), by Lemma

3.30 (—)¢ is a closure operation axfy.

Remark 3.33Ve call the above closure operation as the
&-closure of an ideal A.
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Example 3.38uppose that X be a BCK-algebra as in
Example3.3 and Puté = {{0},{0,1},{0,3}}. clearly &

is a A-closed subset of ideals of a Noetherian lower
BCK-semilattice X. For ideal A= {0} we have

AS =< (Ao ix {0}) U (Agix {0,1}) U (Ao x {0.3}) > .

But (Ao :x {0}) = {x € X | xA {0} C AgA {0}} = X. By
routine verification, for any ideal A of X we have
Al = Ykes(A:x K) = X. Thusé is an indiscrete closure
operation.

Proposition3.33.et X be a BCK-algebra and
d: x — Fx be an operation which it satisfies the

extension and order-preservation conditions. Let S be thé!
set of all closure operations on X defined by the property

that ce S if and only if A& C AC for all ideal A of X (It
means that & ¢). Then by Lemma&.27 the assignment

A A® = NeesAS is itself a closure operation.
ProofBy Lemma3.27it is straightforward.

Lemma 3.361° is the smallest closure operation lying
above d.

ProoflLet e be a closure operation artl< e. Then for
each idealA of X, A C A®. Sincee € S, we have
A® = N gAC C AC,

We inductively define a new closure operation Xn
and show that iX is a Noetherian, then it is equivalent to
ds.

Definition 3.37Suppose that X be a BCK-algebra and d

{0,1,2,3,4}

/ AN
{0,1,2} {0,1,3}
{0,2} \ /{07 1}

{0}

Define d on ideals as follows:
0})4={0,2},({0,2})4 = {0,1,2},({0,1,2})4 = {0,1,2,3,4},({0,1})4 = {0,1,2}
({0,1,3}) = {0,1,2,3,4} and ({0,1,2,3,4})4 = {0,1,2,3,4}

d is an operation on ideals of X, which satisfies the
extension and order-preservation conditions. For the
ideal {0,1} of X we have.

({0,117 = {0,1,2},({0,11)% = (({0,11)%)? = ({0,1,2})* = {0,1,2,3,4}

({0,11)% = (({0,1)%)? = {0,1,2,3,4}9 = {0,1,2,3,4}

Similarly, we have{0,1})%" = {0,1,2,3,4} foralln > 3
and,

({0,1H)* = [ J({0.1))*" = {0,1,2,3,4}

n>1

Theorem 3.39et X be a Noetherian BCK-algebra. Then
for each ideal A of X;
(i) d* is a closure operation on X.

(i) Ad” = A

Proof(i) Sinced has extension property, for each idéal

be an operation on the set of ideals of X, which satisfiesve have A C Ad.n Now by induction for each natural
the extension and order-preservation conditions. We defin@umber nA C A%". HenceA C J,A?" = A%". Therefore

inductively d for a natural number n as follows:
Suppose @ d! and for a natural number n (& 2),
A — (Adnfl)d_
Moreover, for an ideal A of X, we letA = =, AT

Example 3.38 et X be the set0,1,2,3,4}. Define a
binary operation« on X by the following Cayley table

A WNEF O *
A WNPEF OO
A WNOO|IF
WWoOronN
NONOOW
[oNeNeNoNolFN

X is a BCK-algebra. The following figure describe the
Hasse diagram of ideals of X.

d” has extension property. For any two ideAlandB of
X such thatA C B. By induction on n, we can prove,
operationd" has order-preservation property. So for any
natural numbem, AY" C BY". HenceAY” C BY”. For
idempotence, sinck is Noetherian BCK-algebra and the
sequence{Ad"} is ascending sequence, there exists a
natural number n such that A" = A", Hence
(AT = (AT = Uiy (AT)F = Uy AT = AT

(i) We show thatAd” € A%, It is enough to prove that
for each operatiog in Sand each ideah of X, A" C A°.
Using induction on natural numbar we have: Fon=1
it is obviouse. Lenh > 2 and for each operatiane Sand
each ideal A of X, A" c AS  Then
AL (A" ¢ (A9 and  since d <
A%)d C (A%)¢ = AC, HenceA?" C AC. By using Lemma
3.36 dS is the smallest closure operation abaveand
d < d* < dS. Therefored! = dS.

After some fundamental results concerning closure
operation, we present some result regarding quotient
algebra. From 10|, we know that ifA be an ideal of a
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BCK-algebra X, Then quotient algebra;% is still be

o X
BCK-algebra. Also, ifX is bounded, so %.

Theorem 3.4Qet (X, *,0) be a BCK-algebra and A be an

ideal of X. Definep X % by ¢ (Ax) = (A%)x. Then
cl

¢ is a BCK-epimorphism with Keg) = AT

. . X
ProofSince X is a BCK-algebra,— and

X
A NG pa A€
BCK-algebras too. Also,

O (AckAy) = O (Ay) = (A% )y = AL <AL = ¢ (Ax) =D (Ay)

Thereforep is a BCK-homomorphism. It is clear thétis
onto. Now we have

Ker(@) = (A i d(A) =AF) = [Ace JiAT =Ag)

Note thatAS = AS means thak € AS. Hencex*0=x €
cl

A% ThereforeKer(¢) = 7~

Theorem 3.41et (X,*,0) be a BCK-algebra, A be an
ideal of X and’'cl” be a closure operation oty . Define

X X . |
n: J(E) — 'ﬂ(ﬁ) such that for each |dea4@ of
X el . .
A (E)” = Then,”n” is a closure operation.

ProofExtension property: Since cl” is a closure

operation) C 19, Hence
I |
ad S aa = (Gaa)™
Order-preservation: Suppose thandJ are two ideals of
X such that— C —. Sol C J and!® C J°. Therefore

Acl = Acl”
[ |C| JCI J
(E)n S (E)n-
Idempotency:

| |cl (lcl)cl |cl |

()" = () = S = = ()"

4 Closure Operations of Finite Type

ProofExtension property: leix € A. If B = (x|, then
B C A. Now by extension property df, B C B°. Hence
x € B®. ThereforeA C A°f. Order-preservation: Suppose
andB are two ideals oK such thatA C B. If x € A°f, then
there exists a finitely generated iddilsuch that8’ C A
andx € (B')¢. Now by assumptio®’ C A C B. Hence by
order-preservation o€, x € B®. ThereforeA®" C B°f.
Idempotency: Supposec (A% )°f; then there is a finitely
generated idealB C A% such that z € B®. Let
{z1,25,...,2z} be a finite generating set f&: Since each
z € A®, then there exists a finitely generated id€alC A
such thatz, € KE. Now letK = ¥ ; K;. Then for each,
K¢ C K€ SoB C K® Hencez e B® C (K¢ =K and
sinceK is a finitely generated sub-ideal éf it follows
thatze A°. ThereforeA® = (A®)°f,

Definition 4.2If c = ¢y (Lemma4.1), we say thatc’ is a
closure operation of finite type.

Example 4.3The identity and indiscrete closure
operations are of finite type. To show this, it is enough to
prove that c< c¢. Because by definition of finite type
closure operation, we haveg & c.

(i) Let ¢ be an identity closure operation on X and
x € A® = A for an arbitrary ideal A. Then x (x]° = (X
and (x] € A. Thus by using Definitior.2, x € A,
Therefore AC A°f and c is a finite type closure operation.
(i) Similarly, if ¢ be an indiscrete closure operation on X
and xe A° = X for an arbitrary ideal A, then x (x]° = X
and (x] C X. Therefore xc A° and c is a finite type
closure operation.

Theorem4.4et "c” be a closure operation on a
BCK-algebra X. Then:

(i) For every finitely generated ideal A of X ¢ A= A®f

(ii) The closure operatiofics”; is a finite type closure
operation.

(iii) The closure operatiorics” is the greatest finite
type closure operation in which &< c.

Proof(i) Let K be a finitely generated ideal &f. Then
by using Lemmat.1, K¢ C K€, On the other hand since
K is finitely generatedK® C K® = U{BF|B is a finitely
generated ideaB C K}. ThusK® = K°®f.,

(i) By using part (i) for each finitely generated idd@lof
X, we haveK® = K®, So the following two sets are equal.
AC)1 — U{K® |K C A andK is finitely generated idejl
andA® = U{KCK C AandK is finitely generated idedl.
(i) Let d be afinite type closure operation asék c. Then
by Lemma4.1, we haveds < cs.

Lemma 4.8 et "c” be a finite type closure operation on X
and {A, },ca be a chain of ¢ closed ideals of X. Then

In this section, we study finite type closure operations onne union of this chain is a-¢ closed ideal too.

ideals of a BCK-algebra.

Lemma 4.1 et”c” be a closure operation. Considéc”

ProofBy extension property ofc” we know (Uy cp Ay ) C
(Ua E/\A)\)C. Now we show thatU, E/\A)\)Cf C (UreaAr).

by setting A" = J{B®|B is a finitely generated ideal such | gt g pe afinitely generated ideal XfandB C (U A A, ).

that BC A}. Then"c;” is a closure operation.

If B= (a1,a,...,an|, then for each there exists\; € A
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such that € A),. Since{Ax } ¢ is a chain ot — closed (0,1,2,3,4}

ideals, then there exisf$ € A such thatg; € Ag for each |

i, 1<i<n ThusB C Ag andB® C A7. S0B® C Ag. Now {0,1,2,3}

init ’ /TN
by definition ofcs; 0.13) 0.1.2)
| |

(U)\e/\A/\ )Cf - (U/\eAA/\)- {0,3} {0,1}

Since 't” is a finite type closure operation, we have: \ /
(UrenM ) = (UpenMr)- o

Theorem 4.6.et”c” be a closure operation of finite type

on a BCK-algebra X. Then every €closed ideal Define cl on ideals as follows:

contained in a maximal € closed ideal. ({0 = {0}, ({0,31)° = {0,1,3},({0, 1.3))° = {0.1,3}, ({01} = {0.0,2}.({0.1,2))° = {0.1.2}

({0,1,2,3})¥ = {0,1,2,3,4} and ({0,1,2,3,4})® = {0,1,2,3,4}.
ProofWe prove the theorem by Zorn's lemma. Suppose cl is a closure operation antcl — closed ideals of X
thatA be a 't — closed ideal of X. Let Y = {B|Bis "c— are {0},{0,1,3},{0,1,2},{0,1,2,3,4}. Clearly every
closed ideal of X andA C B}. ¥ is not empty set because “cl —closed ideal contained in a maximdlkl — closed
A€y andy is a partial ordered set by inclusion. Now let ideal. But cl is not a finite type closure operation.
T be a chaininy. If K = UgerB, thenK is an ideal ofX ~ Because ({0,1,3)¢ = {0,1,3} and
andA C K. Also by Lemma 4.5K is a "c — closed ideal. ({0,1,3})%" = U{B | BC {0,1,3},B is a finitely generated ideal of X=
HenceK € 5. For each ideaH of ¥, H C K. SoK is an
upper bounzd fofl in 5. By Zorn Ie%\mai has a maximal (10D U({0,3})U({0,1})?U({0,1,3})" = {0,1,2,3}.

element, Therefore({0,1,3})° — {0,1,2,3} # ({0,1,3})¢ —

. 0,1,3} and cl is not a finite type closure operation.
In the following example, we show that the converse{ ; yp P

of Theorem4.6is not true. Remark 4.8Since every commutative BCK-algebra is a
lower BCK-semilattice, all of the above results hold for a

Example 4.Suppose that X is the sef0,1,2,3,4}. commutative BCK-algebra too.

Define a binary operation on X by the following Cayley

table

5 Conclusions and future works

As we mentioned in the abstract, in this article we give
the notions of closure operation, cl-closed, finite type and
then obtain some different closure oprations together with
somemore related results. Now there are some ideas and
guestions:
(i) How we can define some other types of closure
operation, e.g. semi-prime, meet and prime closure
operation.
(i) Can we obtain some relationship between different
types of closure operations.
4 (i) Can we generalized these ideas to hyper BCK
(K)-algebra.
We will try to work on these ideas and give the results in
the forthcoming papers.

A WNREROl*
A WNPF OO
A WNOOIR
A WwWOOON
AONPFPOW
[eoNeNeNoNol N

X is a BCK-algebra. The following figures describe
the Hasse diagrams of elements and ideals of X.
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