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1 Introduction

The study of BCK-algebra was initiated by Imai and Iseki
in 1966 as a generalization of the concept of set-theoretic
difference and propositional calculi and also for the first
time, E. H. Moore in 1910 [6] introduced closure
operation on a set. After that many researchers have
worked on closure operation, see for example [2,4,8,9].
Finally in 2012 , N. Epestein published a paper [4] about
closure operation on commutative algebra. The closure
operation open a new ideas in commutative algebra. Since
ordered algebra have been used in many branches of
mathematics and as far as we know, there is no article on
closure operation in this area in general, so this paper is
the first step of using closure operation in (a special)
ordered algebra, and hoping that this manuscript open
another new ideas for future researches in algebra
structures.

The structure of the article is as follows: first we
introduce the notion of closure operations and provide
some examples. Then we give some lemmas and
theorems that help us to make some more closure
operations. Also we consider some closure operations on
Noetherian BCK-algebras and we use this notion on a
quotient BCK-algebra and obtain some results. Moreover
by considering different type of ideals we prove some
related results.

2 Preliminaries

In this section, we gather some basic notions relevant to
closure operation on ideals which will need in the next
sections.

Definition 2.1[10] An algebra (X;∗,0) of type (2,0) is
called a BCI-algebra if it satisfies the following
conditions: for any x, y, z∈ X,
BCI-1: ((x∗ y)∗ (x∗ z))∗ (z∗ y)= 0
BCI-2: x∗0= x
BCI-3: x∗ y= 0 and y∗ x= 0 imply x= y

We call the binary operation∗ on X the ∗
multiplication on X, and the constant 0 of X the zero
element of X. We often write X instead of(X;∗,0) for a
BCI-algebra in brevity.

Proposition 2.2[10] Suppose that (X;∗,0) is a
BCI-algebra. Define a binary relation≤ on X by which
x ≤ y if and only if x∗ y = 0 for any x,y ∈ X. Then
(X;≤)is a partially ordered set with 0 as a minimal
element.

Definition 2.3[10] Given a BCI-algebra X, if it satisfies
the condition
BCK-1:0∗x= 0 for all x∈ X, which means that0≤ x. for
each x∈ X.
We call this algebra a BCK-algebra.
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Definition 2.4[10] Given an element a in BCI-algebra X,
the set

A(a) = {x∈ X|x≤ a}

is called initial section of X determined by a.

Definition 2.5[7] A BCK-algebra X is called bounded if
there exists the greatest element of X, with respect to the
ordered relation≤.

Definition 2.6[10] A partially ordered set(X;≤) is called
a lower semilattice if any two elements in X have the
greatest lower bound. It is called an upper semilattice if
each pair of elements in X has its least upper bound.

Given a BCK-algebra X, if it with respect to its BCI-
ordering≤ forms a lower semilattice, then the algebra X
is called a lower BCK-semilattice. Similarly we can define
an upper BCK-semilattice.
In a lower BCK-semilattice we denote x∧y= glb{x,y}.

Definition 2.7[10] A subset A of a BCI-algebra X is called
an ideal of X if
(i) 0∈ A.
(ii) x ∈ A and y∗ x∈ A imply y∈ A for any x,y∈ X.
Note that X and{0} are ideals of X, and they are called
the trivial ideals of X.

Theorem 2.8[7] Let A be an ideal of a BCK-algebra X.
Then for any x,y∈ X, x∈ A and y≤ x imply that y∈ A.

Definition 2.9[10] An ideal A of a BCI-algebra X is called
closed if A is closed under the∗ multiplication on X.

Definition 2.10[10] Let S be a subset of a BCI-algebra X.
We call the least ideal of X, containing S, the generated
ideal of X by S, denoted by< S> or (S]. An ideal A of
a BCK-algebra X is said to be finitely generated if there
is a finite subset S of X such that A=< S>. The ideal<
a> generated by one generator a is also called aprincipal
idealof X.

Definition 2.11[7] A BCK-algebra X is called
commutative if x∗ (x∗ y) = y∗ (y∗ x) f or any x,y∈ X.

Theorem 2.12[7] A BCK-algebra X is commutative if and
only if (X;≤) is a lower semilattice with x∧y= y∗ (y∗ x)
for any x, y∈ X.

Definition 2.13[7] A BCK-algebra X is said to be
Noetherian if each ideal of X is finitly generated.

Definition 2.14[7] Given a BCK-algebra X, we say that
X satisfies the ascending chain condition, abbreviated by
ACC, if there does not exists an infinite properly ascending
chain I1 ⊆ I2 ⊆ ... in IX

Theorem 2.15[7] In a BCK-algebra X, the following are
equivalent:
(i) X is Noetherian,
(ii) X satisfies ACC,.

Theorem 2.16[7] Let X be a lower BCK-semilattice. Then
X is commutative if and only if A(a)

⋂
A(b) = A(a∧b) for

any a, b∈ X where a∧b= b∗ (b∗a) and A(.) is an initial
section of X.

Definition 2.17[10] Suppose(X;∗,0) and (X′;∗′,0′) are
two BCK-algebra. A mapping f: X −→ X′ is called a
homomorphism from X into X′ if, for any x, y∈ X

f (x∗ y) = f (x)∗′ f (y)

If, in addition,the mapping f is onto, then f is called an
epimorphism. The mapping is called an isomorphism if it
is both an epimorphism and one-to-one.

Definition 2.18[10] An equivalence relation relationθ on
a BCI-algebra X is called a congruence on X if it is of the
substitution property:

x∼ y(θ ),u∼ v(θ ) imply x∗u∼ y∗ v(θ )

for any x, y, u, v∈ X. Denote
X
θ

for the quotient set

{θx|x∈ X}. If θ is a congruence on X, the operation∗ on
X
θ

given byθx ∗θy = θx∗y is well-defined. Then(
X
θ
,∗,θ0)

is an algebra which call the quotient algebra of X
induced byθ .

Theorem 2.19[10] Let f : X −→X′ be an epimorphism. If
A is an ideal of X, then f(A) is an ideal of X′.

3 Closure Operation

In this section, we define closure operation on ideals and
by given some theorems we construct and present some
different closure operations.

Definition 3.1By an operation”d” on the set of all ideals
of a BCK-algebra X (denoted byIX), we mean a function
d : IX −→ IX . For simplicity of notation for any A∈ IX
we write d(A) = Ad.

Definition 3.2Let X be a BCK-algebra. Then a closure
operation ”cl” on the set IX , is an operation
cl : IX −→ IX such that A7−→ Acl satisfies the following
conditions:
(i) A⊆ Acl for all A ∈ IX (Extension).
(ii) Acl = (Acl)cl for all A ∈ IX (Idempotence).
(iii) if A and B are inIX and B⊆ A. Then Bcl ⊆ Acl

(Order-preservation).

Example 3.3Let X be the set{0,1,2,3,4}. Define a
binary operation∗ on X by the following Cayley table

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 0
2 2 2 0 2 0
3 3 3 3 0 3
4 4 4 4 4 0
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Then X is a lower BCK-semilattice with 8 ideals. The
following figures describe the Hasse diagrams of
elements and ideals of X.
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Define cl on ideals as follows:
({0})cl = {0},({0,3})cl = {0,1,3},({0,1,3})cl = {0,1,3},({0,1})cl = {0,1,2},({0,1,2})cl = {0,1,2}

({0,1,2,3})cl = {0,1,2,3,4},({0,1,2,4})cl = {0,1,2,3,4} and ({0,1,2,3,4})cl = {0,1,2,3,4}.

It is easy to check that”cl” is a closure operation.

Definition 3.4We say that an ideal A inIX is cl-closed, if
A= Acl.
Note that Acl is cl-closed for any ideal A of X, by Definition
3.2.

Example 3.5In Example 3.3, the ideals
{0,1,3},{0,1,2},{0,1,2,3,4} are cl− closed ideals.

Theorem 3.6Acl is the intersection of all cl-closed ideals
containing A.

Proof.The proof is straightforward.

Definition 3.7Let A and B are two arbitrary ideals of a
lower BCK-semilattice X. Define:

A∧B=< {x∧y|x∈ A,y∈ B}> .

For an element x∈ X, we have x∧B= {x}∧B=< {x∧
y|y∈ B}>.

Definition 3.8Let X be a lower BCK-semilattice and∑ ⊆
IX . Then we say that∑ is ∧-closed if A∧B∈ ∑, for any
two ideals A,B∈ ∑

Example 3.9In Example 3.3, let
∑ = {{0},{0,3},{0,1},{0,1,3},{0,1,2}}. Then
∑ ⊆ IX and clearly∑ is a ∧-closed subset. Because for
any two elements of∑ like {0,1,3},{0,1,2}, we have
{0,1,3}∧{0,1,2}= {0,1} and{0,1} ∈ ∑.

Remark 3.10(i) From the above definition we get that:
A2 = A∧A=< {x∧y|x,y∈ A}> and A3 = A2∧A, ...

(ii) In a lower BCK-semilattice (specially, in a
commutative BCK-algebra), we have· · · ⊆ A3 ⊆ A2 ⊆ A,
because a commutative BCK-algebar is a lower
BCK-semilattice and x∧ y = x ∗ (x ∗ y) ≤ x, for any
x,y∈ X.

Definition 3.11Let A and B are ideals of a lower BCK-
semilattice X. Define the residuated quotient ideal A by B,
as follows:

(A :X B) :=< {x∈ X|x∧B⊆ A∧B}> .

Also,(A :X B∞) = ∑n∈N(A :X Bn) =< {x∈ X| there exists
n, x∧Bn ⊆ A∧Bn}>.

Example 3.12In Example3.3 let A = {0,1,3} and B=
{0,1,2}. Then by using the Example3.9 and the Hasse
diagram of elements in Example3.3we have:

{x∈ X|x∧{0,1,2}⊆ {0,1}}= {0,1,3}.

Thus,
(A :X B) =< {x∈ X|x∧{0,1,2}⊆ {0,1}}>=< {0,1,3}>= {0,1,3}.

Proposition 3.13Let X be a BCK-algebra and cl be a
closure operation onIX. Let {Aα}α∈Λ be a subset of
IX. Then:

(i) If every Aα is a ”cl− closed” , then so is∩αAα .
(ii) ∩αAcl

α is ”cl− closed” .
(iii) (∑α Acl

α )
cl = (∑α Aα)

cl .

Proof.Let {Aα}α∈Λ be as above. Then:
(i) For any β ∈ Λ we have ∩α Aα ⊆ Aβ , Thus

(∩αAα)
cl ⊆ Acl

β = Aβ . Since this hold for anyβ ; we have

(∩αAα)
cl ⊆ ∩α Aα .

(ii) We prove(∩α∈Λ Acl
α )

cl = ∩α∈Λ Acl
α . Since for each

α in Λ ; we have(Acl
α )

cl = Acl
α ; so Acl

α is a ”cl − closed”
ideal. Hence (2) follows directly from part (1).

(iii) First we prove(∑α Aα)
cl ⊆ (∑α Acl

α )
cl . By the

extension property,Aα ⊆ Acl
α for each α ∈ Λ . So

∑α Aα ⊆ ∑α Acl
α because∑α Aα =< Aα1 ∪ Aα2 ∪ ... >

whereα1,α2, ... are inΛ . Hence the conclusion follows
from order-preservation.
Conversly, for any β in Λ we have
Aβ ⊆ ∑α Aα ⊆ (∑α Aα)

cl and by using order-preservation
and idempotence properties,
Acl

β ⊆ (∑α Aα)
cl ⊆ ((∑α Aα)

cl)cl for all β ∈ Λ . Thus

∑α Acl
α ⊆ (∑α Aα)

cl .

In the following we mention a theorem which says
that: a given closure operation is equivalent with a
collection ∑ of ideals such that the intersection of any
subcollection is in∑.
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Theorem 3.14Let χ be the set of all closure operations
on IX and φ be the set of all subsets ofIX which are
closed under intersection. Then there is a one-to-one
correspondence betweenχ andφ .

Proof.Suppose ”cl” is a closure operation onX. Let ∑ be
the class of ”cl − closed” ideals. That is,A ∈ ∑ If and
only If A = Acl. By Proposition3.13, the intersection of
any subcollection of ideals in∑ is also in∑.
Conversly, suppose that∑ is a collection of ideals for
which the intersection of any subcollection is in∑. For
any idealA, let Acl = ∩{B|A⊆ B,B∈ ∑}. Then we have:
(i) A⊆ Acl .
(ii) By using (i) Acl ⊆ (Acl)cl . Now suppose that
x ∈ (Acl)cl , B ∈ ∑ andA ⊆ B. By definitionAcl, Acl ⊆ B.
So x ∈ B. SinceB is arbitrary,x ∈ ∩{B|A ⊆ B,B ∈ ∑}.
Therefore(Acl)cl ⊆ Acl.
(iii) For ideals A and B ofX such thatA⊆ B we have

∩{K|A⊆ K,K ∈ ∑} ⊆ ∩{K|B⊆ K,K ∈∑}.

Thus,Acl ⊆ Bcl .

Example 3.15(i) The identity operation, sending each
ideal to itself, is a closure operation on X.
(ii) The indiscrete operation, sending each ideal to X, is
also a closure operation on X.

Theorem 3.16Consider a bounded lower
BCK-semilattice X with 1 as the greatest element. Define
Ap =

⋂
{P ∈ Spec(X);A ⊆ P}. Then the operation

cl : IX −→ IX; A 7−→ Ap is a closure operation.

Proof.By Stone-lemma (Theorem 1.4.19 of [10]),
∩{P|P ∈ Spec(X),A ⊆ P} is not empty. Also for each
idealA of X;
(i) Clearly,A⊆ Ap.
(ii) Ap = (Ap)p. The proof is similar to the proof of
Theorem3.14.
(iii) For any two idealsA andB such thatA⊆ B; we have
Ap ⊆ Bp. Hence the operationcl : IX −→ IX; A 7−→ Ap is
a closure operation.

Theorem 3.17Let X be a bounded lower BCK-semilattice
with 1 as the greatest element and define Acl = ∩{I | I is
closed ideal and A⊆ I}. Then the operation cl: IX −→
IX such that A7−→ Acl , is a closure operation.

Proof.SinceX is a closed ideal containingA, the above set
is not empty.
(i) Obviously,A⊆ Acl.
(ii) Because of the intersection of closed ideals, is closed
ideal too. Therefore,

(Acl)cl = Acl
.

(iii) For any two idealsA andB of X, if B⊆ A thenBcl ⊆
Acl (the proof is similar to the proof of Theorem3.14).

Remark 3.18Note that for the above closure operation, we
have:

(i) Acl is the smallest closed ideal of X containing A.
(ii) A= Acl if and only if A is a closed ideal.

Theorem 3.19[10] Suppose that X is a lower
BCK-semilattice. Then

< x> ∩< y>=< x∧y>

Theorem 3.20[7] Let X be a lower BCK-semilattice. Then
X is commutative if and only if A(a)

⋂
A(b) = A(a∧b) for

any a, b∈ X where a∧b= b∗ (b∗a) and A(.) is an initial
section of X.

Theorems3.19and3.20, help us to have a following
theorem.

Theorem 3.21Let X be a bounded lower BCK-semilattice
with 1 as the greatest element. Define cl: IX −→IX such
that for each ideal A of X; Acl = ∩{B|A⊆ B,B∈ ∑}.

(i) If ∑ is the set of all principal ideals containing A.
Then”cl” is a closure operation.

(ii) If ∑ is the set of all initial sections containing A
and X is a commutative. Then”cl” is a closure operation.

Proof.(i) Since(1] = X, ∑ 6= /0.
(1) Obviously,A⊆ Acl .
(2) By using Theorem3.19, the intersection of principal
ideals is a principal ideal. Therefore,(Acl)cl = Acl .
(3) The proof of order-preservation is similar to the proof
of Theorem3.14.
(ii) By using the Theorem3.20, the proof is the same as of
the proof of part (i).

Theorem 3.22Suppose that B is an ideal of a BCK-algebra
X. Define cl: IX −→ IX such that for each ideal A of X;
Acl = A+B=< A∪B>. Then”cl” is a closure operation.

Proof.(i) A⊆ Acl.
(ii) (Acl)cl = (A+B)cl =<< A∪B> ∪B>=< A∪B>=
Acl.
(iii) For any two idealsA1 andA2 of X. If A1 ⊆ A2, then
A1∪B⊆ A2∪B. So< A1∪B>⊆< A2∪B>. Thus,Acl

1 ⊆

Acl
2 .

Theorem 3.23Let B be an ideal of a lower
BCK-semilattice X. Define cl: IX −→ IX such that for
each ideal A of X, Acl = (A :X B). Then”cl” is a closure
operation.

Proof.(i) For every elementa in A,

a∧B⊆ A∧B=< {α ∧β |α ∈ A,β ∈ B}> .

Which means thatA⊆ Acl.

(ii) Suppose thata∈ (Acl)cl , thena∧B⊆ Acl ∧B. Now
if g∈ Acl be an arbitrary element, theng∧B⊆ A∧B. So
Acl ∧B⊆ A∧B. Thereforea∧B⊆ A∧B anda∈ Acl.
(iii) For each idealsA1 , A2 of X. If A1 ⊆ A2 anda∈ (A1 :X
B)=Acl , thena∈X, a∧B⊆A1∧B. SinceA1∧B⊆A2∧B,
we havea∧B⊆ A2∧B anda∈ (A2 :X B) = Acl .
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Theorem 3.24Let A and B be two ideals of a lower
BCK-semilattice X. Consider:
(A :X B∞) =

⋃
n∈N(A :X Bn) =< {x ∈ X| there exists

n,x∧Bn ⊆ A∧Bn} >. Define cl: IX −→ IX such that
for each ideal A of X, Acl = (A :X B∞). Then”cl” is a
closure operation.

Proof.The proof is similar to the proof of Theorem3.23.

Theorem 3.25Let ϕ : X1 −→ X2 be a BCK-epimorphism
and ”cl” be a closure operation on X2. For each ideal A
of X1, define Acl′ = ϕ−1((ϕ(A))cl). Then”cl′” is a closure
operation on X1.

Proof.(i) Since ”cl” is a closure operation,ϕ(A)⊆ ϕ(A)cl .
So ϕ−1(ϕ(A)) ⊆ ϕ−1(ϕ(A)cl). Also A ⊆ ϕ−1(ϕ(A)),
thus A ⊆ ϕ−1(ϕ(A)cl) = Acl′ . This prove the extension
properti.
(ii) From extension property we know thatAcl′ ⊆ (Acl′)cl′ .
if α ∈ (Acl′)cl′ , then α ∈ ϕ−1(ϕ(Acl′)cl) and
ϕ(α) ∈ (ϕ(Acl′))cl . Also
ϕ(Acl′) = ϕ(ϕ−1(ϕ(A)cl))⊆ ϕ(A)cl . Hence

ϕ(α) ∈ ((ϕ(A))cl)cl = (ϕ(A))cl
.

Soα ∈ ϕ−1(ϕ(A))cl = Acl′ .
(iii) Let A⊆ B. Thenϕ(A)⊆ ϕ(B). Since ”cl” is a closure
operation, ϕ(A)cl ⊆ ϕ(B)cl . Hence,
ϕ−1(ϕ(A)cl)⊆ ϕ−1(ϕ(B)cl). ThereforeAcl′ ⊆ Bcl′ .

Suppose thatX andX′ are two BCK-algebra. We know
from [10] that if f : X −→ X′ is an epimorphism andA is
an ideal ofX, then f (A) is an ideal ofX′. This help us for
the next theorem.

Theorem 3.26Let ϕ : X1 −→ X2 be a BCK-epimorphism
and ”cl” be a closure operation on X1. For each ideal A
of X2, define Ac = ϕ((ϕ−1(A))cl). Then”c” is a closure
operation on X2.

Proof.The proof is similar to the proof of Theorem3.25.

Lemma 3.27Let {clλ}λ∈Λ be an arbitrary collection of
closure operations on ideals of a BCK-algebra X. Then
Acl =

⋂
λ∈Λ Aclλ defines a closure operation.

Proof.Suppose thatA is an ideal ofX.
For eachλ ∈ Λ sinceA⊆ Aclλ , A⊆

⋂
λ∈Λ Aclλ . ThusA⊆

Acl and the extension property holds.
For idempotence, suppose thatα ∈ (Acl)cl . Then for every
λ ∈ Λ , we haveα ∈ (Acl)clλ . SinceAcl ⊆ Aclλ and clλ
preserve order, we get thatα ∈ (Acl)clλ ⊆ (Aclλ )clλ =Aclλ .
Henceα ∈

⋂
λ∈Λ Aclλ = Acl andAcl = (Acl)cl .

Let A andB are two arbitrary ideals ofX such thatA⊆ B.
Since for eachλ ∈ Λ , clλ is a closure operation,Aclλ ⊆
Bclλ . Hence

⋂
λ∈Λ Aclλ ⊆

⋂
λ∈Λ Bclλ . ThusAcl ⊆ Bcl and

we have order-preservation property.

Definition 3.28Let cl1 and cl2 be two closure opertions
on a BCK-algebra X. Then we write cl1 ≤ cl2 if for every
ideal A, Acl1 ⊆ Acl2.

Lemma 3.29Suppose that{Aλ}λ∈Λ be a family of ideals
such that for everyλ1 andλ2 in Λ , there exists someβ ∈Λ
such that Aλi

⊆ Aβ for i = 1,2. Then A=
⋃

λ∈Λ Aλ is an
ideal.

Proof.The proof is straightforward.

Lemma 3.30Let {clλ}λ∈Λ be a direct set of closure
operations, that is for anyλ1,λ2 ∈ Λ , there exists some
µ ∈ Λ such that cλi

≤ cµ for i=1,2. Moreover, assume
that every ideal of X is finitly generated. Then
Acl =

⋃
λ∈Λ Aclλ defines a closure operation.

Proof.By Lemma3.29, Acl is an ideal and every ideal ofX
is finitely generated, soAcl =< a1,a2, . . . ,an >. Sinceai ∈
Acl (i=1,2,...,n), for each i=1,2,...,n there existsλi ∈Λ such
that ai ∈ Aclλi . Now by assumption there existsclβ such

that clλi
≤ clβ (i=1,2,...,n). SoAclλi ⊆ Aclβ . Henceai ∈

Aclβ . ThereforeAcl ⊆Aclβ . On the other hand, by definition
of Acl , Aclβ ⊆ Acl. HenceAcl = Aclβ . Extension and order-
preservation properties are clear.

Idempotence: for any idealA, by above argument there
existsλ1 andλ2 in Λ such thatAcl = Aclλ2 and(Acl)cl =

(Acl)clλ1 . Hence

(Acl)cl = (Acl)clλ1 = (Aclλ2 )clλ1 .

By assumption, there existβ in Λ such thatclλ1
≤ clβ . So

(Aclλ2)clλ1 ⊆ (Aclβ )clβ = Aclβ .

Now from Acl =
⋃

λ∈Λ Aclλ , we haveAclβ ⊆ Acl. Thus
(Acl)cl ⊆ Acl.

Also by extension property,Acl ⊆ (Acl)cl . Therefore
(Acl)cl = Acl.

Remark 3.31Since in Noetherian BCK-algebra every
ideal is finitely generated, the above result is true for
every Noetherian BCK-algebra.

Theorem 3.32Let ξ be a ∧-closed set of ideals of a
Noetherian lower BCK-semilattice X. Define
ξ : IX −→ IX such that for each ideal A of X;
Aξ = ∑K∈ξ (A :X K). Then,”ξ ” is a closure operation.

Proof.First for each idealK in ξ , defineAK = (A :X K).
By Theorem3.23, (−)K is a closure operation onIX .
Now we show that{(−)K ;K ∈ ξ} is a direct set of
closure operations. To this end letK1 and K2 be in ξ .
Then K1 ∧ K2 is in ξ and AK1 ⊆ AK1∧K2. Also,
AK2 ⊆ AK1∧K2. Now sinceAξ =

⋃
K∈ξ (A :X K), by Lemma

3.30, (−)ξ is a closure operation onIX .

Remark 3.33We call the above closure operation as the
ξ -closure of an ideal A.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


74 H. Bordbar, M. M. Zahedi: A finite type of closurey...

Example 3.34Suppose that X be a BCK-algebra as in
Example3.3, and Putξ = {{0},{0,1},{0,3}}. clearly ξ
is a ∧-closed subset of ideals of a Noetherian lower
BCK-semilattice X. For ideal A0 = {0} we have

Aξ
0 =< (A0 :X {0})∪ (A0 :X {0,1})∪ (A0 :X {0,3})> .

But (A0 :X {0}) = {x ∈ X | x∧{0} ⊆ A0 ∧{0}} = X. By
routine verification, for any ideal A of X we have
Aξ = ∑K∈ξ (A :X K) = X. Thusξ is an indiscrete closure
operation.

Proposition 3.35Let X be a BCK-algebra and
d : IX −→ IX be an operation which it satisfies the
extension and order-preservation conditions. Let S be the
set of all closure operations on X defined by the property
that c∈ S if and only if Ad ⊆ Ac for all ideal A of X (It
means that d≤ c). Then by Lemma3.27 the assignment
A 7−→ AdS

=
⋂

c∈SAc is itself a closure operation.

Proof.By Lemma3.27it is straightforward.

Lemma 3.36dS is the smallest closure operation lying
above d.

Proof.Let e be a closure operation andd ≤ e. Then for
each idealA of X, Ad ⊆ Ae. Since e ∈ S, we have
AdS

=
⋂

c∈SAc ⊆ Ae.

We inductively define a new closure operation onX
and show that ifX is a Noetherian, then it is equivalent to
dS.

Definition 3.37Suppose that X be a BCK-algebra and d
be an operation on the set of ideals of X, which satisfies
the extension and order-preservation conditions. We define
inductively dn for a natural number n as follows:

Suppose d= d1 and for a natural number n ( n≥ 2),
Adn

= (Adn−1
)d.

Moreover, for an ideal A of X, we let Ad∞
=

⋃
n≥1Adn

Example 3.38Let X be the set{0,1,2,3,4}. Define a
binary operation∗ on X by the following Cayley table

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 2 0
3 3 3 3 0 0
4 4 4 3 2 0

X is a BCK-algebra. The following figure describe the
Hasse diagram of ideals of X.

{0}
❅

❅
❅

❅
{0,2}

�
�
�
�
{0,1}

{0,1,2} {0,1,3}
❅❅��

❍❍❍❍❍❍❍

{0,1,2,3,4}

Define d on ideals as follows:
({0})d = {0,2},({0,2})d = {0,1,2},({0,1,2})d = {0,1,2,3,4},({0,1})d = {0,1,2}

({0,1,3})d = {0,1,2,3,4} and({0,1,2,3,4})d = {0,1,2,3,4}
d is an operation on ideals of X, which satisfies the

extension and order-preservation conditions. For the
ideal{0,1} of X we have.
({0,1})d = {0,1,2},({0,1})d2

= (({0,1})d)d = ({0,1,2})d = {0,1,2,3,4}

({0,1})d3
= (({0,1})d2

)d = {0,1,2,3,4}d = {0,1,2,3,4}

Similarly, we have({0,1})dn
= {0,1,2,3,4} for all n ≥ 3

and,

({0,1})d∞
=

⋃

n≥1

({0,1})dn
= {0,1,2,3,4}

Theorem 3.39Let X be a Noetherian BCK-algebra. Then
for each ideal A of X;

(i) d∞ is a closure operation on X.
(ii) Ad∞

= AdS

Proof.(i) Sinced has extension property, for each idealA,
we haveA ⊆ Ad. Now by induction for each natural
number n,A ⊆ Adn

. HenceA ⊆
⋃

nAdn
= Ad∞

. Therefore
d∞ has extension property. For any two idealsA andB of
X such thatA ⊆ B. By induction on n, we can prove,
operationdn has order-preservation property. So for any
natural numbern, Adn

⊆ Bdn
. Hence Ad∞

⊆ Bd∞
. For

idempotence, sinceX is Noetherian BCK-algebra and the
sequence{Adn

} is ascending sequence, there exists a
natural number n such that Ad∞

= Adn
. Hence

(Ad∞
)d∞

= (Adn
)d∞

=
⋃

l∈N(A
dn
)dl

=
⋃

l∈N Adn+l
= Ad′ .

(ii) We show thatAd∞
⊆ AdS

. It is enough to prove that
for each operationc in Sand each idealA of X, Adn

⊆ Ac.
Using induction on natural numbern, we have: Forn= 1
it is obviouse. Letn≥ 2 and for each operationc∈ Sand
each ideal A of X, Adn−1

⊆ Ac. Then
Adn

= (Adn−1
)d ⊆ (Ac)d and since d ≤ c,

(Ac)d ⊆ (Ac)c = Ac. HenceAdn
⊆ Ac. By using Lemma

3.36, dS is the smallest closure operation aboved and
d ≤ d1 ≤ dS. Therefored1 = dS.

After some fundamental results concerning closure
operation, we present some result regarding quotient
algebra. From [10], we know that ifA be an ideal of a

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. Lett.4, No. 2, 69-77 (2016) /www.naturalspublishing.com/Journals.asp 75

BCK-algebra X, Then quotient algebra
X
A

is still be

BCK-algebra. Also, ifX is bounded, so is
X
A

.

Theorem 3.40Let (X,∗,0) be a BCK-algebra and A be an

ideal of X. Defineϕ :
X
A
−→

X
Acl byϕ(Ax) = (Acl)x. Then

ϕ is a BCK-epimorphism with Ker(ϕ) =
Acl

A

Proof.Since X is a BCK-algebra,
X
A

and
X
Acl are

BCK-algebras too. Also,

ϕ(Ax∗Ay)=ϕ(Ax∗y)= (Acl)x∗y=Acl
x ∗Acl

y =ϕ(Ax)∗ϕ(Ay)

Thereforeϕ is a BCK-homomorphism. It is clear thatϕ is
onto. Now we have

Ker(ϕ) = {Ax ∈
X
A

;ϕ(Ax) = Acl
0 }= {Ax ∈

X
A

;Acl
x = Acl

0 }

Note thatAcl
x = Acl

0 means thatx ∈ Acl
0 . Hencex∗0= x ∈

Acl. ThereforeKer(ϕ) =
Acl

A
.

Theorem 3.41Let (X,∗,0) be a BCK-algebra, A be an
ideal of X and”cl” be a closure operation onIX . Define

η : I (
X
Acl ) −→ I (

X
Acl ) such that for each ideal

I
Acl of

X
Acl , (

I
Acl )

η =
Icl

Acl . Then,”η” is a closure operation.

Proof.Extension property: Since ”cl” is a closure
operation,I ⊆ Icl . Hence

I
Acl ⊆

Icl

Acl = (
I

Acl )
η
.

Order-preservation: Suppose thatI andJ are two ideals of

X such that
I

Acl ⊆
J

Acl . So I ⊆ J andIcl ⊆ Jcl. Therefore

(
I

Acl )
η =

Icl

Acl ⊆
Jcl

Acl = (
J

Acl )
η .

Idempotency:

((
I

Acl )
η)η = (

Icl

Acl )
η =

(Icl)cl

Acl =
Icl

Acl = (
I

Acl )
η

4 Closure Operations of Finite Type

In this section, we study finite type closure operations on
ideals of a BCK-algebra.

Lemma 4.1Let ”c” be a closure operation. Consider”cf ”
by setting Acf =

⋃
{Bc|B is a finitely generated ideal such

that B⊆ A}. Then”cf ” is a closure operation.

Proof.Extension property: letx ∈ A. If B = (x], then
B ⊆ A. Now by extension property ofc, B ⊆ Bc. Hence
x∈ Bc. ThereforeA⊆ Acf . Order-preservation: SupposeA
andB are two ideals ofX such thatA⊆ B. If x∈ Acf , then
there exists a finitely generated idealB′ such thatB′ ⊆ A
andx∈ (B′)c. Now by assumptionB′ ⊆ A⊆ B. Hence by
order-preservation ofc, x ∈ Bcf . ThereforeAcf ⊆ Bcf .
Idempotency: Supposez∈ (Acf )cf ; then there is a finitely
generated idealB ⊆ Acf such that z ∈ Bc. Let
{z1,z2, . . . ,zn} be a finite generating set forB. Since each
zi ∈ Acf , then there exists a finitely generated idealKi ⊆ A
such thatzi ∈ Kc

i . Now let K = ∑n
i=1Ki . Then for eachi,

Kc
i ⊆ Kc. So B ⊆ Kc. Hencez ∈ Bc ⊆ (Kc)c = Kc and

sinceK is a finitely generated sub-ideal ofA; it follows
thatz∈ Acf . ThereforeAcf = (Acf )cf .

Definition 4.2If c = cf (Lemma4.1), we say that”c” is a
closure operation of finite type.

Example 4.3The identity and indiscrete closure
operations are of finite type. To show this, it is enough to
prove that c≤ cf . Because by definition of finite type
closure operation, we have cf ≤ c.
(i) Let c be an identity closure operation on X and
x ∈ Ac = A for an arbitrary ideal A. Then x∈ (x]c = (x]
and (x] ⊆ A. Thus by using Definition4.2, x ∈ Acf .
Therefore A⊆ Acf and c is a finite type closure operation.
(ii) Similarly, if c be an indiscrete closure operation on X
and x∈ Ac = X for an arbitrary ideal A, then x∈ (x]c = X
and (x] ⊆ X. Therefore x∈ Acf and c is a finite type
closure operation.

Theorem 4.4Let ”c” be a closure operation on a
BCK-algebra X. Then:

(i) For every finitely generated ideal A of X; Ac = Acf

(ii) The closure operation”cf ” ; is a finite type closure
operation.

(iii) The closure operation”cf ” is the greatest finite
type closure operation in which cf ≤ c.

Proof.(i) Let K be a finitely generated ideal ofX. Then
by using Lemma4.1, Kcf ⊆ Kc. On the other hand since
K is finitely generated,Kc ⊆ Kcf = ∪{Bc|B is a finitely
generated ideal,B⊆ K}. ThusKc = Kcf .
(ii) By using part (i) for each finitely generated idealK of
X, we haveKc = Kcf . So the following two sets are equal.
A(cf ) f = ∪{Kcf |K ⊆ A andK is finitely generated ideal}
andAcf = ∪{Kc|K ⊆ A andK is finitely generated ideal}.
(iii) Let d be a finite type closure operation andd≤ c. Then
by Lemma4.1, we havedf ≤ cf .

Lemma 4.5Let ”c” be a finite type closure operation on X
and{Aλ}λ∈Λ be a chain of c− closed ideals of X. Then
the union of this chain is a c− closed ideal too.

Proof.By extension property of ”c” we know(∪λ∈Λ Aλ )⊆
(∪λ∈Λ Aλ )

c. Now we show that(∪λ∈Λ Aλ )
cf ⊆ (∪λ∈Λ Aλ ).

Let B be a finitely generated ideal ofX andB⊆ (∪λ∈Λ Aλ ).
If B = (a1,a2, . . . ,an], then for eachi there existsλi ∈ Λ
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such thatai ∈ Aλi
. Since{AΛ}λ∈Λ is a chain ofc−closed

ideals, then there existsβ ∈ Λ such thatai ∈ Aβ for each
i, 1 ≤ i ≤ n. ThusB⊆ Aβ andBc ⊆ Ac

β . SoBc ⊆ Aβ . Now
by definition ofcf ;

(∪λ∈Λ Aλ )
cf ⊆ (∪λ∈Λ Aλ ).

Since ”c” is a finite type closure operation, we have:

(∪λ∈Λ Aλ )
cf = (∪λ∈Λ Aλ ).

Theorem 4.6Let ”c” be a closure operation of finite type
on a BCK-algebra X. Then every c− closed ideal
contained in a maximal c− closed ideal.

Proof.We prove the theorem by Zorn’s lemma. Suppose
thatA be a ”c− closed” ideal of X. Let ∑ = {B|B is ”c−
closed” ideal of X andA⊆ B}. ∑ is not empty set because
A∈ ∑ and∑ is a partial ordered set by inclusion. Now let
T be a chain in∑. If K = ∪B∈TB, thenK is an ideal ofX
andA⊆ K. Also by Lemma 4.5,K is a ”c−closed” ideal.
HenceK ∈ ∑. For each idealH of ∑, H ⊆ K. SoK is an
upper bound forT in ∑. By Zorn lemma∑ has a maximal
element.

In the following example, we show that the converse
of Theorem4.6is not true.

Example 4.7Suppose that X is the set{0,1,2,3,4}.
Define a binary operation∗ on X by the following Cayley
table

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 0
2 2 2 0 2 0
3 3 3 3 0 0
4 4 4 4 4 0

X is a BCK-algebra. The following figures describe
the Hasse diagrams of elements and ideals of X.

0

1

�
�
�

3

2
�
��

4

{0}
❅

❅
❅

❅
{0,3}

�
�
�
�
{0,1}

{0,1,3} {0,1,2}
❅❅

{0,1,2,3,4}

��

❍❍❍❍❍❍❍

{0,1,2,3}

Define cl on ideals as follows:
({0})cl = {0},({0,3})cl = {0,1,3},({0,1,3})cl = {0,1,3},({0,1})cl = {0,1,2},({0,1,2})cl = {0,1,2}

({0,1,2,3})cl = {0,1,2,3,4} and ({0,1,2,3,4})cl = {0,1,2,3,4}.
cl is a closure operation and”cl− closed” ideals of X

are {0},{0,1,3},{0,1,2},{0,1,2,3,4}. Clearly every
”cl − closed” ideal contained in a maximal”cl − closed”
ideal. But cl is not a finite type closure operation.
Because ({0,1,3})cl = {0,1,3} and
({0,1,3})cl f = ∪{Bcl | B⊆ {0,1,3},B is a f initely generated ideal o f X}=

({0})cl∪({0,3})cl∪({0,1})cl∪({0,1,3})cl = {0,1,2,3}.

Therefore({0,1,3})cl f = {0,1,2,3} 6= ({0,1,3})cl =
{0,1,3} and cl is not a finite type closure operation.

Remark 4.8Since every commutative BCK-algebra is a
lower BCK-semilattice, all of the above results hold for a
commutative BCK-algebra too.

5 Conclusions and future works

As we mentioned in the abstract, in this article we give
the notions of closure operation, cl-closed, finite type and
then obtain some different closure oprations together with
somemore related results. Now there are some ideas and
questions:
(i) How we can define some other types of closure
operation, e.g. semi-prime, meet and prime closure
operation.
(ii) Can we obtain some relationship between different
types of closure operations.
(iii) Can we generalized these ideas to hyper BCK
(K)-algebra.
We will try to work on these ideas and give the results in
the forthcoming papers.
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