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Abstract: In this paper, we introduce a new class of Hermite poly-Genocchi polynomials and we give some identities of those

polynomials related to the Stirling numbers of the second kind. The concepts of poly-Bernoulli numbersB(k)
n (a,b), poly-Bernoulli

polynomialsB(k)
n (x,a,b) of Jolany et al, Hermite-Bernoulli polynomialsHBn(x,y) of Dattoli et al andHB(α)

n (x,y) of Pathan et al are

generalized to the oneHG(k)
n (x,y). Some implicit summation formulae and general symmetry identities are derived by using different

analytical means and applying generating functions. Theseresults extend some known summations and identities of Hermite poly-
Genocchi numbers and polynomials.
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1 Introduction

The 2-variable Kampe de Feriet generalization of the
Hermite polynomials [13] and [15] reads

Hn(x,y) = n!
[ n
2 ]

∑
r=0

yrxn−2r

r!(n−2r)!
(1.1)

These polynomials are usually defined by the generating
function

ext+yt2 =
∞

∑
n=0

Hn(x,y)
tn

n!
(1.2)

and reduce to the ordinary Hermite polynomialsHn(x)
(see [1]) wheny =−1 andx is replaced by 2x.
The classical Bernoulli polynomialsBn(x), the classical
Euler polynomialsEn(x) and the classical Genocchi
polynomials Gn(x), together with their familiar

generalizationsB(α)
n (x), E(α)

n (x) and G(α)
n (x) of (real or

complex) orderα are usually defined by means of the
following generating functions (see for details [2],[36],
pp.532-533 and [38], p.61; see also [41] and the
references cited therein):
(

t
et −1

)α
ext =

∞

∑
n=0

B(α)
n

tn

n!
(| t |< 2π;1α = 1)

(1.3)

(

2
et +1

)α
ext =

∞

∑
n=0

E(α)
n

tn

n!
(| t |< π;1α = 1)

(1.4)
and
(

2t
et +1

)α
ext =

∞

∑
n=0

G(α)
n

tn

n!
(| t |< π;1α = 1)

(1.5)
So that obviously the classical Bernoulli polynomials
Bn(x), the classical Euler polynomialsEn(x) and the
classical Genocchi polynomialsGn(x) are given
respectively by

Bn(x) = B(1)
n (x),En(x) = E(1)

n (x)

and
Gn(x) = G(1)

n (x) (nεN) (1.6)

For the classical Bernoulli numbersBn, the classical
Euler numbersEn and the classical Genocchi numbersGn

B1
n(0) = Bn(0) = Bn,E

1
n (0) = En(0) = En

and
G1

n(0) = Gn(0) = Gn, (1.7)

respectively.
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The history of Genocchi numbers can be traced back
to Italian mathematician Angelo Genocchi (1817-1889).
From Genocchi to the present time, Genocchi numbers
have been extensively studied in many different context in
such branches of Mathematics as, for instance,
elementary number theory, complex analytic number
theory, Homotopy theory (stable Homotopy groups of
spheres), differential topology (differential structures on
spheres), theory of modular forms (Eisenstein series),
p-adic analytic number theory (p-adic L-functions),
quantum physics (quantum Groups). The works of
Genocchi numbers and their combinatorial relations have
received much attention [3,4,5,6,7,8,9,10,11,12,14,16,
17,29,39,40].

In [25], Kaneko introduced and studied poly-Bernoulli
numbers which generalize the classical Bernoulli numbers.

poly-Bernoulli numbersB(k)
n with kεz andnεN, appear in

the following power series

Lik(1− e−t)

1− e−t =
∞

∑
n=0

B(k)
n

tn

n!
(1.8)

wherekεz and

Lik =
∞

∑
m=1

zm

mk , |z|< 1

so fork ≤ 1,

Lik =− ln(1− z), Li0(z) =
z

1− z
, Li−1 =

z
(1− z)2 , ...

Moreover whenk ≥ 1, the left hand side of (1.8) can
be written in the form

et 1
et −1

∫ t

0

1
et −1

· · ·
∫ t

0

1
et −1

∫ t

0

t
et −1

dtdt · · ·dt =
∞

∑
n=0

B(k)
n

tn

n!

In the special case, one can see

B(1)
n = Bn.

Recently, Jolany et al [21,22] generalized the concept of
poly-Bernoulli polynomials is defined as follows.

Let a,b,c > 0 and a 6= b. The generalized

poly-Bernoulli numbers B(k)
n (a,b), the generalized

poly-Bernoulli polynomials B(k)
n (x,a,b) and the

polynomialsB(k)
n (x,a,b,c) are appeared in the following

series respectively

Lik(1− (ab)−t)

bt − a−t =
∞

∑
n=0

B(k)
n (a,b)

tn

n!
, |t|<

2π
| lna+ lnb|

(1.9)
Lik(1− (ab)−t)

bt − a−t ext =
∞

∑
n=0

B(k)
n (x,a,b)

tn

n!
, |t|<

2π
| lna+ lnb|

(1.10)

Lik(1− (ab)−t)

bt − a−t cxt =
∞

∑
n=0

B(k)
n (x,a,b,c)

tn

n!
, |t|<

2π
| lna+ lnb|

(1.11)
One can easily see that

B(k)
n (0,1,e) = B(k)

n ,B(k)
n (x) = 1+ x

and
B(k)

n (x) = B(k)
n (ex+1

,ex) (1.12)

whereB(k)
n are generalized poly-Bernoulli numbers. For

more information about poly-Bernoulli numbers and
poly-Bernoulli polynomials, we refer to [18] to [23].

Very recently, Pathan et al [30] to [35] introduced the
generalized Hermite-Bernoulli polynomials of two

variablesHB(α)
n (x,y) is defined by

(

t
et −1

)α
ext+yt2 =

∞

∑
n=0

HB(α)
n (x,y)

tn

n!
(1.13)

which is essentially a generalization of Bernoulli numbers,
Bernoulli polynomials, Hermite polynomials and Hermite-
Bernoulli polynomialsHBn(x,y) introduced by Dattoli et
al [15, p.386(1.6)] in the form

(

t
et −1

)

ext+yt2 =
∞

∑
n=0

HBn(x,y)
tn

n!
(1.14)

The Stirling number of the first kind is given by

(x)n = x(x−1) · · ·(x− n+1) =
n

∑
l=0

S1(n, l)x
l
,(n ≥ 0)

(1.15)
and the Stirling number of the second kind is defined

by generating function to be

(et −1)n = n!
∞

∑
l=n

S2(l,n)
t l

l!
(1.16)

In this paper, we first give definitions of the Hermite

poly-Genocchi polynomialsHG(k)
n (x,y) and we give some

formulae of those polynomials related to the Stirling
numbers of the second kind. Some implicit summation
formulae and general symmetry identities are derived by
using different analytical means and applying generating
functions. These results extend some known summations
and identities of generalized Hermite-Bernoulli
polynomials studied by Dattoli et al, Zhang et al, Yang,
Khan, Pathan and Khan.

2 A new class of Hermite poly-Genocchi
polynomials

Now, we define the Hermite poly-Genocchi polynomials
as follows

2Lik(1− e−t)

et +1
ext+yt2 =

∞

∑
n=0

HG(k)
n (x,y)

tn

n!
,(kεz) (2.1)
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so that

HG(k)
n (x,y) =

n

∑
m=0

(

n
m

)

G(k)
n−mHm(x,y) (2.2)

when x = y = 0, G(k)
n = G(0,0) are called the

poly-Genocchi numbers. By (2.1), we easily getG(k)
0 = 0.

For k = 1, from (2.1), we have

2Li1(1− e−t)

et +1
ext+yt2 =

∞

∑
n=0

HGn(x,y)
tn

n!
(2.3)

Thus by (2.1) and (2.3), we get

HG(k)
n (x,y) = HGn(x,y),(n ≥ 0).

For y = 0 in (2.1), the result reduces to the
poly-Genocchi polynomials Kim et al [28.,p.Eq.(4)4776]
is defined as

2Lik(1− e−t)

et +1
ext =

∞

∑
n=0

G(k)
n (x)

tn

n!
,(kεz) (2.4)

Theorem 2.1.For n ≥ 0, we have

HG(2)
n (x,y) =

n

∑
m=0

(

n
m

)

Bm

m+1HGn−m(x,y) (2.5)

Proof. Applying Definition (2.1), we have
∞

∑
n=0

HG(k)
n (x,y)

tn

n!
=

2Lik(1−e−t )

et +1
ext+yt2

=
2

et +1
ext+yt2

∫ t

0

1
ez −1

∫ t

0

1
ez −1

· · ·
1

ez −1

∫ t

0

z
ez −1

dz · · ·dz

In particulark = 2, we have

H G(2)
n (x,y) =

2
et +1

ext+yt2
∫ t

0

z
ez −1

dz =

(

∞

∑
m=0

tmBm

m+1

)

2t
et +1

ext+yt2

=

(

∞

∑
m=0

tmBm

m+1

)(

∞

∑
n=0

H Gn(x,y)
tn

n!

)

Replacing n by n-m in above equation, we have

=
∞

∑
n=0

n

∑
m=0

(

n
m

)

Bm

m+1HGn−m(x,y)
tn

n!

On equating the coefficients of the like powers of t in the
above equation, we get the result (2.5).
Remark 1. Fory = 0 in Theorem (2.1), the result reduces
to known result of Kim et al [28.,p. 4777, Theorem (2.1)].
Corollary 1. For n ≥ 0, we have

G(2)
n (x) =

n

∑
m=0

(

n
m

)

Bm

m+1
Gn−m(x) (2.6)

Theorem 2.2.For n ≥ 1, the degree ofHG(k)
n (x,y) is n-1.

we have

HG(k)
n (x,y)

n
=

n−1

∑
m=0

(

n−1
m

)

G(k)
m+1

m+1
Hn−m−1(x,y) (2.7)

Proof. By Definition (2.1) of Hermite poly-Genocchi
polynomials, we have

∞

∑
n=0

HG(k)
n (x,y)

tn

n!
=

2Lik(1− e−t)

1− e−t ext+yt2

=

(

∞

∑
m=0

G(k)
m

tm

m!

)(

∞

∑
n=0

Hn(x,y)
tn

n!

)

Replacing n by n-m in above equation and comparing
the coefficients oftn, we get

HG(k)
n (x,y) =

n

∑
m=0

(

n
m

)

G(k)
m Hn−m(x,y),(n ≥ 0) (2.8)

From (2.8), we have

HG(k)
n (x,y)

n
=

n−1

∑
m=0

(

n−1
m

)

G(k)
m+1

m+1
Hn−m−1(x,y),(n ≥ 1)

(2.9)
Therefore by (2.9), we obtain the result (2.7).
Remark 2. Fory = 0 in Theorem (2.2), the result reduces
to known result of Kim et al [28.,p. 4778, Theorem (2.2)].

Corollary 2. For n ≥ 1, the degree ofG(k)
n (x) is n-1. we

have

G(k)
n (x)
n

=
n−1

∑
m=0

(

n−1
m

)

G(k)
m+1

m+1
xn−m−1 (2.10)

Theorem 2.3.For n ≥ 0, we have

HG(k)
n (x,y)=

n

∑
p=0

p+1

∑
l=1

(−1)l+p+1l!S2(p+1, l)
lk(p+1)

(

n
p

)

HGn−p(x,y)

(2.11)
Proof. From equation (2.1), we have

∞

∑
n=0

HG(k)
n (x,y)

tn

n!
=

(

Lik(1− e−t)

t

)(

2t
et +1

ext+yt2
)

(2.12)
Now

1
t

Lik(1− e−t) =
1
t

∞

∑
l=1

(1− e−t)l

lk =
1
t

∞

∑
l=1

(−1)l

lk (1− e−t)l

=
1
t

∞

∑
l=1

(−1)l

lk l!
∞

∑
p=l

(−1)pS2(p, l)
t p

p!

=
1
t

∞

∑
p=1

p

∑
l=1

(−1)l+p

lk l!S2(p, l)
t p

p!

=
∞

∑
p=0

(

p+1

∑
l=1

(−1)l+p+1

lk
l!

S2(p+1, l)
p+1

)

t p

p!
(2.13)

From equations (2.12) and (2.13), we get

∞

∑
n=0

H G(k)
n (x,y)

tn

n!
=

∞

∑
p=0

(

p+1

∑
l=1

(−1)l+p+1

lk
l!

S2(p+1, l)
p+1

)

t p

p!

(

∞

∑
n=0

H Gn(x,y)
tn

n!

)
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Replacing n by n-p in the r.h.s of above equation and
comparing the coefficients oftn, we get the result (2.11).
Remark 3. Fory = 0 in Theorem (2.3), the result reduces
to known result of Kim et al [28.,p. 4779, Theorem (2.3)].

Corollary 3. For n ≥ 0, we have

G(k)
n (x) =

n

∑
p=0

p+1

∑
l=1

(−1)l+p+1l!S2(p+1, l)
lk(p+1)

(

n
p

)

Gn−p(x)

(2.14)
Theorem 2.4.For n ≥ 1, we have

H G(k)
n (x+1,y)+H G(k)

n (x,y) = 2
n

∑
p=1

p

∑
l=1

(−1)l+p

lk
l!S2(p, l)

(

n
p

)

Hn−p(x,y)

(2.15)

Proof. Using the Definition (2.1), we have

∞

∑
n=0

HG(k)
n (x+1,y)

tn

n!
+

∞

∑
n=0

HG(k)
n (x,y)

tn

n!

=
2Lik(1− e−t)

et +1
e(x+1)t+yt2 +

2Lik(1− e−t)

et +1
ext+yt2

= 2Lik(1− e−t)ext+yt2

=
∞

∑
p=1

(

2
p

∑
l=1

(−1)l+p

lk l!S2(p, l)

)

t p

p!
ext+yt2

=

(

∞

∑
p=1

(

2
p

∑
l=1

(−1)l+p

lk l!S2(p, l)

)

t p

p!

)(

∞

∑
n=0

Hn(x,y)
tn

n!

)

Replacing n by n-p in the above equation and
comparing the coefficients oftn, we get the result (2.15).
Remark 4. Fory = 0 in Theorem (2.4), the result reduces
to known result of Kim et al [28.,p. 4780, Theorem (2.4)].

Corollary 4. For n ≥ 1, we have

G(k)
n (x+1)+G(k)

n (x) = 2
n

∑
p=1

p

∑
l=1

(−1)l+p

lk l!S2(p, l)

(

n
p

)

xn−p

(2.16)
Theorem 2.5.For dεN with d ≡ 1(mod2), we have

H G(k)
n (x,y) =

n

∑
p=0

(

n
p

)

dn−p−1
p+1

∑
l=0

d−1

∑
a=0

(−1)l+p+1l!S2(p+1, l)
lk

(−1)a
H Gn−p(

a+ x
d

,y)

(2.17)

Proof. From equation (2.1), we can be written as

∞

∑
n=0

HG(k)
n (x,y)

tn

n!
=

2Lik(1− e−t)

et +1
ext+yt2

=

(

2Lik(1− e−t)

t

)

(

2t
ebt +1

d−1

∑
a=0

(−1)ae(a+x)t+yt2

)

=

(

∞

∑
p=0

(

p+1

∑
l=1

(−1)l+p+1

lk
l!

S2(p+1, l)
p+1

)

t p

p!

)(

∞

∑
m=0

dm−1
d−1

∑
a=0

(−1)a
H Gn(

a+ x
d

,y)
tn

n!

)

Replacing n by n-p in above equation and comparing the
coefficient oftn, we get the result (2.17).

Remark 5. Fory = 0 in Theorem (2.5), the result reduces
to known result of Kim et al [28.,p. 4780].

Corollary 5. For dεN with d ≡ 1(mod2), we have

G(k)
n (x) =

n

∑
p=0

(

n
p

)

dn−p−1
p+1

∑
l=0

d−1

∑
a=0

(−1)l+p+1l!S2(p+1, l)
lk

(−1)aGn−p(
a+ x

d
)

(2.18)

3 Implicit summation formulae involving
Hermite poly-Genocchi polynomials

For the derivation of implicit formulae involving

poly-Genocchi polynomials G(k)
n (x) and Hermite

poly-Genocchi polynomials HG(k)
n (x,y) the same

considerations as developed for the ordinary Hermite and
related polynomials in Khan et al [24] and
Hermite-Bernoulli polynomials in Pathan and Khan [30 to
36] holds as well. First we prove the following results
involving Hermite poly-Genocchi polynomials

HG(k)
n (x,y).

Theorem 3.1. For x,yεR and n ≥ 0, The following
implicit summation formulae for Hermite poly-Genocchi

polynomialsHG(k)
n (x,y) holds true:

HG(k)
l+p(z,y) =

l,p

∑
m,n=0

(

l
m

)(

p
n

)

(z−x)m+n
HG(k)

l+p−m−n(x,y)

(3.1)
Proof. We replace t byt + u and rewrite the generating
function (2.1) as

2Lik(1− (e)−(t+u))

et+u +1
ey(t+u)2 = e−x(t+u)

∞

∑
l,p=0

HG(k)
l+p(x,y)

t l

l!
up

p!

(3.2)
Replacing x by z in the above equation and equating

the resulting equation to the above equation, we get

e(z−x)(t+u)
∞

∑
m,l=0

HG(k)
l+p(x,y)

t l

l!
up

p!
=

∞

∑
l,p=0

HG(k)
l+p(z,y)

t l

l!
up

p!

(3.3)
On expanding exponential function (3.3) gives

∞

∑
N=0

[(z− x)(t+u)]N

N!

∞

∑
l,p=0

H G(k)
l+p(x,y)

t l

l!
up

p!
=

∞

∑
l,p=0

H G(k)
l+p(z,y)

t l

l!
up

p!
(3.4)

which on using formula [[37], p.52(2)]

∞

∑
N=0

f (N)
(x+ y)N

N!
=

∞

∑
n,m=0

f (n+m)
xn

n!
ym

m!
(3.5)

in the left hand side becomes

∞

∑
m,n=0

(z− x)m+ntmun

m!n!

∞

∑
l,p=0

H G(k)
l+p(x,y)

t l

l!
up

p!
=

∞

∑
l,p=0

H G(k)
l+p(z,y)

t l

l!
up

p!
(3.6)
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Now replacing l by l-m, p by p-n and using the lemma
[[37], p.100(1)] in the left hand side of (3.6), we get

∞

∑
m,n=0

∞

∑
l,p=0

(z− x)m+n

m!n! HG(k)
l+p−m−n(x,y)

t l

(l −m)!
up

(p− n)!

=
∞

∑
l,p=0

HG(k)
l+p(z,y)

t l

l!
up

p!
(3.7)

Finally on equating the coefficients of the like powers of t
and u in the above equation, we get the required result.

Remark 1. By taking l = 0 in equation (3.1), we
immediately deduce the following result.
Corollary 3.1. The following implicit summation formula

for Hermite poly-Genocchi polynomialsHG(k)
n (z,y) holds

true:

HG(k)
p (z,y) =

p

∑
n=0

(

p
n

)

(z− x)n
HG(k)

p−n(x,y) (3.8)

Remark 2. On replacing z by z+x and settingy = 0 in
Theorem (3.1), we get the following result involving poly-
Genocchi polynomials of one variable

G(k)
l+p(z+ x) =

l,p

∑
m,n=0

(

l
m

)(

p
n

)

(z)m+nG(k)
l+p−m−n(x)

(3.9)
whereas by setting z=0 in Theorem 3.1, we get

another result involving poly-Genocchi polynomials of
one and two variables

G(k)
l+p(y) =

l,p

∑
m,n=0

(

l
m

)(

p
n

)

(−x)m+n
HG(k)

l+p−m−n(x,y)

(3.10)
Remark 3. Along with the above results we will exploit

extended forms of poly-Genocchi polynomialsG(k)
l+p(z) by

setting y=0 in the Theorem (3.1) to get

G(k)
l+p(z) =

l,p

∑
m,n=0

(

l
m

)(

p
n

)

(z− x)n+mG(k)
l+p−m−n(x)

(3.11)
Theorem 3.2.For x,yεR andn ≥ 0. Then

HG(k)
n (x+ u,y) =

n

∑
j=0

(

n
j

)

u j
HG(k)

n− j(x,y) (3.14)

Proof. Since

∞

∑
n=0

H G(k)
n (x+u,y)

tn

n!
=

Lik(1− (e)−t)

et +1
e(x+u)t+yt2 =

(

∞

∑
n=0

H G(k)
n (x,y)

tn

n!

)(

∞

∑
j=0

u j t j

j!

)

Now replacing n by n-j and comparing the coefficients
of tn, we get the result (3.14).

Theorem 3.3.For x,yεR andn ≥ 0. Then

HG(k)
n (x+ u,y+w) =

n

∑
m=0

(

n
m

)

HG(k)
n−m(x,y)Hm(u,w)

(3.15)
Proof. By the definition of poly-Genocchi polynomials
and the definition (1.2), we have

Lik(1− (e)−t)

et +1
e(x+u)t+y(t+w)2 =

(

∞

∑
n=0

H G(k)
n (x,y)

tn

n!

)(

∞

∑
m=0

Hm(u,w)
tm

m!

)

Now replacing n by n-m and comparing the
coefficients oftn, we get the result (3.15).

Theorem 3.4. For x,yεR andn ≥ 0. Then

HG(k)
n (x,y) =

n−2 j

∑
m=0

[ n
2 ]

∑
j=0

y jxn−m−2 jG(k)
m

n!
m! j!(n−2 j−m)!

(3.16)
Proof. Applying the definition (2.1) to the term
Lik(1−(e)−t)

et+1 and expanding the exponential functionext+yt2

at t = 0 yields

Lik(1− (e)−t )

et +1
ext+yt2

=

(

∞

∑
m=0

G(k)
m

tm

m!

)(

∞

∑
n=0

xn tn

n!

)(

∞

∑
j=0

y j t2 j

j!

)

=
∞

∑
n=0

(

n

∑
m=0

(

n
m

)

G(k)
m xn−m

)

tn

n!

(

∞

∑
j=0

y j t2 j

j!

)

Replacing n by n-2j, we have

∞

∑
n=0

HG(k)
n (x,y)

tn

n!

=
∞

∑
n=0

(

n−2 j

∑
m=0

[ n
2 ]

∑
j=0

(

n−2 j
m

)

G(k)
m xn−m−2 jy j

)

tn

(n−2 j)! j!

(3.17)
Equating their coefficients oftn, we get the result

(3.16).

Theorem 3.5. For x,yεR andn ≥ 0. Then

HG(k)
n (x+1,y) =

[ n
2 ]

∑
j=0

n−2 j

∑
m=0

(

n−2 j
m

)

y jG(k)
m (x) (3.18)

Proof. By the definition of Hermite poly-Genocchi
polynomials, we have

Lik(1− (e)−t)

et +1
e(x+1)t+yt2 =

∞

∑
n=0

HG(k)
n (x+1,y)

tn

n!
(3.19)

=

(

∞

∑
m=0

G(k)
m (x)

tm

m!

)(

∞

∑
n=0

tn

n!

)(

∞

∑
j=0

y j t2 j

j!

)

=
∞

∑
n=0

n

∑
m=0

(

n
m

)

G(k)
m (x)

tn

n!

(

∞

∑
j=0

y j t2 j

j!

)

=
∞

∑
n=0

∞

∑
j=0

n

∑
m=0

(

n
m

)

y jG(k)
m (x)

tn+2 j

n! j!
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Replacing n by n-2j, we have

∞

∑
n=0

H G(k)
n (x+1,y)

tn

n!
=

∞

∑
n=0





[ n
2 ]

∑
j=0

n−2 j

∑
m=0

(

n−2 j
m

)

y jG(k)
m (x)





tn

n!
(3.20)

Combining (3.19) and (3.20) and equating their
coefficients oftn leads to formula (3.18).

Theorem 3.6. The following implicit summation formula

involving Hermite poly-Genocchi polynomialsHG(k)
n (x,y)

holds true:

HG(k)
n (x+1,y) =

n

∑
m=0

(

n
m

)

HG(k)
n−m(x,y) (3.21)

Proof. By the definition of Hermite poly-Genocchi
polynomials, we have

∞

∑
n=0

H G(k)
n (x+1,y)

tn

n!
−

∞

∑
n=0

H G(k)
n (x,y)

tn

n!
=

2Lik(1− e−t)

et +1
ext+yt2(et −1)

=

(

∞

∑
n=0

HG(k)
n (x,y)

tn

n!

)(

∞

∑
m=0

tm

m!

)

−
∞

∑
n=0

HG(k)
n (x,y)

tn

n!

=
∞

∑
n=0

n

∑
m=0

HG(k)
n−m(x,y)

tn

(n−m)!m!
−

∞

∑
n=0

HG(k)
n (x,y)

tn

n!

Finally, equating the coefficients of the like powers of
tn, we get (3.21).

Theorem 3.7. The following implicit summation formula

involving Hermite poly-Genocchi polynomialsHG(k)
n (x,y)

holds true:

HG(k)
n (−x,y) = (−1)n

HG(k)
n (x,y) (3.22)

Proof. We replace t by -t in (2.1) and then subtract the
result from (2.1) itself finding

eyt2
[

2Lik(1−e−t )

et +1
(ext −e−xt)

]

=
∞

∑
n=0

[1− (−1)n]HG(k)
n (x,y)

tn

n!

which is equivalent to

∞

∑
n=0

H G(k)
n (x,y)

tn

n!
−

∞

∑
n=0

H G(k)
n (−x,y)

tn

n!
=

∞

∑
n=0

[1− (−1)n]H G(k)
n (x,y)

tn

n!

∞

∑
n=0

H G(k)
n (x,y)

tn

n!
−H G(k)

n−m(−x,y)
tn

n!
=

∞

∑
n=0

[1− (−1)n]H G(k)
n (x,y)

tn

n!

and thus by equating coefficients of like powers oftn, we
get (3.22).

4 General symmetry identities for Hermite
poly-Genocchi polynomials

In this section, we give general symmetry identities for

the poly-Genocchi polynomialsG(k)
n (x) and the Hermite

poly-Genocchi polynomialsHG(k)
n (x,y) by applying the

generating function(2.1) and (2.4). The results extend
some known identities of Zhang and Yang [43], Yang
[42,Eqs.(9)], Khan [26,27] and Pathan and Pathan et al
[[30] to [35]].

Theorem 4.1.Let a,b> 0 anda 6= b. Forx,yεR andn ≥ 0.
Then the following identity holds true:

n

∑
m=0

(

n
m

)

bman−m
HG(k)

n−m(bx,b2y)HG(k)
m (ax,a2y)

=
n

∑
m=0

(

n
m

)

ambn−m
HG(k)

n−m(ax,a2y)HG(k)
m (bx,b2y)

(4.1)
Proof. Start with

g(t) =

(

(2Lik(1− e−t))2

(eat +1)(ebt +1)

)

eabxt+a2b2yt2 (4.2)

Then the expression for g(t) is symmetric in a and b and
we can expand g(t) into series in two ways to obtain

g(t)=
1

ab

∞

∑
n=0

HG(k)
n (bx,b2y)

(at)n

n!

∞

∑
m=0

HG(k)
m (ax,a2y)

(bt)m

m!

=
1

ab

∞

∑
n=0

n

∑
m=0

(

n
m

)

an−mbm
HG(k)

n−m(bx,b2y)HG(k)
m (ax,a2y)tn

On the similar lines we can show that

g(t)=
1

ab

∞

∑
n=0

HG(k)
n (ax,a2y)

(bt)n

n!

∞

∑
m=0

HG(k)
m (bx,b2y)

(at)m

m!

=
1

ab

∞

∑
n=0

n

∑
m=0

(

n
m

)

ambn−m
HG(k)

n−m(ax,a2y)HG(k)
m (bx,b2y)tn

Comparing the coefficients oftn on the right hand sides of
the last two equations we arrive the desired result.

Remark 1. By setting b = 1 in Theorem 4.1, we
immediately following result

n

∑
m=0

(

n
m

)

an−m
HG(k)

n−m(x,y)HG(k)
m (ax,a2y)

=
n

∑
m=0

(

n
m

)

am
HG(k)

n−m(ax,a2y)HG(k)
m (x,y) (4.3)

Theorem 4.2.Let a,b> 0 anda 6= b. Forx,yεR andn≥ 0.
Then the following identity holds true:

n

∑
m=0

(

n
m

)a−1

∑
i=0

b−1

∑
j=0

HG(k)
n−m

(

bx+
b
a

i+ j,b2z

)

G(k)
m (ay)bman−m

=
n

∑
m=0

(

n
m

)b−1

∑
i=0

a−1

∑
j=0

HG(k)
n−m

(

ax+
a
b

i+ j,a2z
)

G(k)
m (by)ambn−m

(4.4)
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Proof. Let

g(t) =

(

(2Lik(1− e−t))2

(eat +1)(ebt +1)

)

(eabt −1)2eab(x+y)t+a2b2zt2

(eat −1)(ebt −1)

g(t)=

(

2Lik(1− e−t)

(eat +1

)

eabxt+a2b2zt2
(

eabt −1
ebt −1

)(

2Lik(1− e−t)

ebt +1

)

eabyt

(

eabt −1
eat −1

)

=

(

2Lik(1− e−t)

(eat +1

)

eabxt+a2b2zt2
a−1

∑
i=0

ebti

(

2Lik(1− e−t)

ebt +1

)

eabyt
b−1

∑
j=0

eat j (4.5)

=

(

2Lik(1− e−t)

eat +1

)

ea2b2zt2
a−1

∑
i=0

b−1

∑
j=0

e(bx+ b
a i+ j)at

∞

∑
m=0

G(k)
m (ay)

(bt)m

m!

=
1
ab

∞

∑
n=0

a−1

∑
i=0

b−1

∑
j=0

H G(k)
n

(

bx+
b

a
i+ j,b2z

)

(at)n

n!

∞

∑
m=0

G(k)
m (ay)

(bt)m

(m)!

=
1
ab

∞

∑
n=0

n

∑
m=0

(

n
m

) a−1

∑
i=0

b−1

∑
j=0

H G(k)
n−m

(

bx+
b

a
i+ j,b2z

)

G(k)
m (ay)bman−mtn (4.6)

On the other hand

g(t) =
1
ab

∞

∑
n=0

n

∑
m=0

(

n
m

) b−1

∑
i=0

a−1

∑
j=0

H G(k)
n−m

(

ax+
a
b

i+ j,a2z
)

G(k)
m (by)ambn−mtn

(4.7)

By comparing the coefficients oftn on the right hand
sides of the last two equations, we arrive at the desired
result.

5 Conclusion

Based on the definition of Hermite polynomials and
polylogarithmic function, we introduced a new class of
Hermite poly-Genocchi polynomials. By using Jolany’s
methods introduced in [20] and [21], we gave Hermite
poly-Genocchi polynomials with two variable, and also
we analysed its behaviours including general symmeric
properties.
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