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1 Introduction

The idea ofI -convergence in real numbers was introduced
by Kostyrko,Šalát and Wilezyński [9] in 2000 and it is an
interesting generalization of statistical convergence. The
notion of statistical convergence was introduced in 1951
by Fast [5] and Schoenberg [14] independently and it was
discussed and developed by several authors viz. [6,10,
15]. Many authors [4,8,13,16,17,18,19,20] developed
the concept ofI -convergence based on the notion of ideal
I of subsets of the setN of natural numbers in different
spaces.
Recently the concept of statistical convergence has been
studied in a linearly ordered additive system associated
with the order convergence with respect to a particular
metric in [3].
The order convergence is one of the main concept used in
this paper and it was described and developed by many
authors including [1,2,7,12].
The main purpose of this paper is to examine whether the
concept of I -convergence is extendable in a linearly
ordered metric additive system mentioned in [3] and we
introduce the concept ofOI-convergence and study some
basic properties of this convergence.

2 Definitions and notations

First we recall the definition of natural density of a subset
of natural numbersN and the idea of statistical
convergence.
Definition 2.1. ([11]) If K is a subset of the set of positive

integersN then the natural density ofK is defined by,

δ (K) = limn→∞
|Kn|

n , where

Kn = {k ≤ n : k ∈ K} and|Kn| is the number of elements
of Kn.

Definition 2.2. ([5]) A sequence{xn} of real numbers is
said to be statistically convergent to some numberξ , if for
anyε > 0,

δ ({k∈ N : |xk− ξ | ≥ ε}) = 0.

If {xn} is statistically convergent toξ , then we write
st− limnxn = ξ .

We now mention the idea of order convergence and a
particular metricγ in a linearly ordered additive systemL
introduced in the paper [21] and also recall definition of
an ideal.

Definition 2.3.Let L be a set of the elementsx,y,z, ... and
≤ is a binary relation defined for all pairs(x,y) for
x,y∈ L.
We say thatL is partially ordered set with respect to≤, if
for all x,y,z∈ L
(i) x≤ x for all x∈ L,
(ii) x≤ y andy≤ x impliesx= y and
(iii) x≤ y andy≤ z implies thatx≤ z.
If x ≤ y andx 6= y, we writex < y. The relationx ≤ y is
also written asy ≥ x. Similarly, x < y is also written as
y> x.
A partially ordered setL is said to be a lattice if every two
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elementsx,y ∈ L possess a least upper boundx∨ y ∈ L
and a greatest lower boundx∧y∈ L.
L is said to be an additive system if for every two
elementsx,y ∈ L there exists a least upper boundx∨ y in
L andL is said to be a multiplicative system if for every
two elementsx,y ∈ L there exists a greatest lower bound
x∧y in L.

An elementθ in L is the null element ofL if x∨θ = x for
all x∈ L.
If L is a partially ordered set, we say that a sequence{xi}
is increasing (decreasing) ifxi ≤ x j (ai ≥ a j) for i < j.

Note 2.4.To denote a monotone increasing (decreasing)
sequence{xn} ∈ L we use the notationxn ↑ (xn ↓). The
notation xn ↓ x means thatxn ↓ and infxn = x. The
meaning of the notationxn ↑ x is similar.

Definition 2.5.([7]) A sequence{xn} in an additive system
L is said to be order convergent (O-convergent) toξ ∈ L if
there exists a sequence{yn} of elements ofL with yn ↓ θ
such that

|xn− ξ |< yn for eachn∈ N,

where inL, |x|= x++ x− andx+ = x∨θ , x− = (−x)∨θ .

Definition 2.6. [21] (i) Let L be an additive system andD
be a real valued function defined onL. Then a functionγ
is defined onL by

γ(a,b) = 2D(a∨b)−D(a)−D(b).

D(a) is said to be monotone increasing (decreasing) when

D(a)≤ D(b)(D(a)≥ D(b)) for a< b.

(ii) Let L be an additive system andγ(a,b) be real valued
function defined for every pair(a,b) ∈ L; then define

∆(a,b,c) = 1
2{γ(a,b)+ γ(b,c)− γ(a,c)} for a,b,c∈ L.

The following proposition is immediate.

Proposition 2.7. ([21]) If D(a) is a real valued function
defined on an additive systemL, then fora,b∈ L
(i) D(a)−D(b) = γ(a,b) if a≥ b
(ii) If D(a) is monotone increasing, then
|D(a)−D(b)| ≤ γ(a,b)
(iii ) γ(a,b) = γ(b,a), γ(a,a) = 0
(iv) ∆(a,a∨b,b) = 0
(v) D(a) is monotone increasing if and only ifγ(a,b)≥ 0
(vi) D(a) is properly monotone increasing if and only if
γ(a,b)> 0 for a 6= b.

Note 2.8. If D(a) is monotone increasing and
∆(a,b,c)≥ 0 for everya,b,c∈ L, thenγ(a,b) is a metric
onL.
In this connection we mention the following result from
the paper[21].

Result 2.9.If D(a) is a real valued function defined on an
additive systemL, then
(A) ∆(a,b,c) ≥ 0 for every a,b,c ∈ L implies the
following equivalent statements .
(i) γ(a∨c,b∨c)≤ γ(a,b) for all a,b∈ L
(ii) γ(a∨c,b∨c)≤ γ(a,b) for all b≤ a
(iii ) D(a∨c)+D(b)≤ D(a)+D(c∨b) for b≤ a
(iv) γ(a∨c,b∨d)≤ γ(a,b)+ γ(c,d)
(B) If D(a) is monotone increasing, then∆(a,b,c) ≥ 0 if
and only if one of the equivalent statements(i)− (iv)
holds.

Here we mention the concept of order statistical
convergence in the metric additive system(L,γ).

Definition 2.10.[3] A sequence{xn}n in a metric additive
system(L,γ) is said to be order statistically convergent (i.e
ost-convergent) tox ∈ L if, there exists a sequence{yn}n
in L with yn ↓ θ such that

δ ({k∈ N : γ(xk,x)≥ D(yk)}) = 0,

whereD is a real valued monotone increasing function on
L with D(θ ) = 0 and∆(a,b,c)≥ 0 for all a,b,c∈ L.

We now recall the concept of an ideal and filter of a
non-empty set andI -convergence of a sequence.

Definition 2.11. [9] Let X 6= /0. A family of setsI ⊆ 2X is
said to be an ideal inX providedI satisfies the following
conditions:
(a) φ ∈ I ,
(b) A∪B∈ I if A,B∈ I ,
(c) If A∈ I andB⊆ A thenB∈ I .

Definition: 2.12. [9] Let X be a non-empty set. A
non-empty familyF ⊆ 2X is said to be a filter onX if the
following conditions are satisfied:
(a) φ /∈ F,
(b) A∩B∈ F if A,B∈ F,
(c) If A∈ F andA⊆ B⊆ X thenB∈ F.

An idealI is said to be non-trivial ifI 6= φ andX /∈ I .
A non-trivial ideal I is said to be admissible inX if
{x} ∈ I for eachx∈ X.

Lemma 2.13.[9] I is a non-trivial ideal inX if and only if
the family of setsF(I) = {M ⊆ X : X −M ∈ I} is a filter
in X.
It is called the filter associated with the idealI .

Definition 2.14. [9] Let I be a non-trivial ideal of subsets
of N, the set of natural numbers and(X,ρ) be a metric
space. A sequencex= {xn} of elements ofX is said to be
I -convergent to ξ ∈ X if for each ε > 0 the set
A(ε) = {n∈ N : ρ(xn,ξ )≥ ε} ∈ I .
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If x = {xn} is I -convergent toξ , then ξ is called the
I -limit of the sequencex and we denote it by
I − limn→∞ xn = ξ .

Definition 2.15. [9] Let I be a non-trivial ideal of subsets
of N and(X,ρ) be a metric space. A sequencex = {xn}
of elements ofX is said to beI∗-convergent toξ ∈ X if
there exists a set M ∈ F(I) with
M = {m1 < m2 < m3 < ....} ⊆ N such that
limn→∞ ρ(xmn,ξ ) = 0.

Definition: 2.16. [9] An admissible idealI of subsets of
N is said to haveAP-property if for any sequence
{A1,A2,A3, ...} of mutually disjoint sets ofI , there exists
a sequence{B1,B2,B3...} such that for eachi ∈ N the
symmetric differenceAi∆Bi is finite and∪∞

i=1Bi ∈ I .

3 Order ideal convergence

Following the idea ofost-convergence we introduce the
concept of order ideal convergence in the metric additive
system(L,γ) where γ is a metric defined in [21] and
study some general properties related to this convergence.

Definition 3.1. Let I be a non-trivial ideal of subsets ofN
and (L,γ) be a metric additive system. A sequence
x = {xn} of elements ofL is said to be order ideal
convergent (OI-convergent) toξ ∈ L if there exists a
sequencey = {yn} ∈ L with yn ↓ θ such that the set
A = {n ∈ N : γ(xn,ξ ) ≥ D(yn)} ∈ I , whereD is a real
valued monotone increasing function defined onL with
D(θ ) = 0 and∆(a,b,c)≥ 0 for all a,b,c∈ L.

The numberξ is called the order ideal limit (OI-limit) of
the sequencex= {xn} and we writeOI− lim xn = ξ .
Throughout the paper we considerD to be a monotone
increasing real valued function withD(θ ) = 0 and
∆(a,b,c)≥ 0 for all a,b,c∈ L.

Note 3.2. From the definition of OI-convergence it is
clear that an OI-convergent sequence is I-convergent. In
particular if D be an identity map andL = R, then γ
becomes the usual metric onR. In this case
OI-convergence is equivalent to the I-convergence of real
numbers.

Example 3.3.If I f is the family of all finite subsets ofN
then I f is an admissible ideal onN and the
OI-convergence coincides with the ordinary convergence.

Example 3.4.If Iδ = {A ⊆ N : δ (A) = 0} then Iδ is an
admissible ideal inN and theOI-convergence coincides
with the order statistical convergence.

We give an example of a sequence which is
OI-convergent but not convergent in(L,γ) in ordinary

sense.

Example 3.5.Consider the idealI f and letL = R with D
as the identity mapping. Then clearly(L,γ) becomes the
usual metric space.
Consider a sequence{xn} in R as follows:

xn =

{

1, if n is a square

0, otherwise

Let {yn} be a sequence inR such thatyn = 1
n. Then

{n ∈ N : γ(xn,0) ≥ D(yn)} ∈ I . So OI − lim xn = 0, but
{xn} is not convergent with respect to the metricγ.

Theorem 3.6.If I is a non-trivial ideal, thenOI-limit of
any sequence if exists, is unique.

Proof: Let x = {xn} be a sequence inL such thatx is
OI-convergent toξ as well asν and supposeξ 6= ν. Let
ε = 1

3γ(ξ ,ν). ThenB(ξ ,ε)∩B(ν,ε) = φ whereB(ξ ,ε)
is the open ball with centre atξ andε as the radius.
Since x is OI-convergent to bothξ and ν, then there

exists two sequences{y(1)n } and{y(2)n } in L with y(1)n ↓ θ
andy(2)n ↓ θ such that{k∈ N : γ(xk,ξ )≥ D(y(1)k )} ∈ I and

{k∈ N : γ(xk,ν)≥ D(y(2)k )} ∈ I . Now y(1)n ↓ 0 andy(2)n ↓ 0

implies that there existsn0 ∈ N such thatD(y(1)n ) < ε/2

and D(y(2)n ) < ε/2 for all n ≥ n0. Then for k ≥ n0,

{k ∈ N : γ(xk,ξ ) < D(y(1)k )} ⊆ {k ∈ N : γ(xk,ξ ) < ε/2}.
So fork ≥ n0, A = {k ∈ N : γ(xk,ξ ) < ε/2} ∈ F(I) since

{k∈ N : γ(xk,ξ ) < D(y(1)k )} ∈ F(I). Similarly for k ≥ n0,
B = {k ∈ N : γ(xk,ν) < ε/2} ∈ F(I). Thus for k ≥ n0,
A∩B ∈ F(I) andA∩B 6= φ which is a contradiction and
hence the proof.

Lemma 3.7. If x = {xn} ∈ L is such that limn→∞ xn = ξ
with respect to the metricγ, then there exists a sequence
{αn} ∈ L with αn ↓ θ such thatγ(xn,ξ ) < D(αn), for all
n∈N.

Proof: Since limn→∞ xn = ξ , then forε > 0 there exists
m∈ N such thatγ(xn,ξ )< ε for all n≥ m.
Let {yn} be a sequence inL such thatyn ↓ θ . Then for
eachyi there exists a smallest positive integermi such that
γ(xn,ξ )< D(yi) for all n≥ mi , i = 1,2,3, ...
Choose z1 ∈ L such that,
D(z1)≥ max{D(y1),γ(x1,ξ ),γ(x2,ξ ), ......,γ(xm1−1,ξ )},

Choosez2 ∈ L such that,
γ(xm1,ξ ) ≥ D(z2) >
max{D(y2),γ(xm1+1,ξ ),γ(xm1+2,ξ ), ......,γ(xm2−1,ξ )},

Choosez3 ∈ L such that,
γ(xm2,ξ ) ≥ D(z3) >
max{D(y3),γ(xm2+1,ξ ),γ(xm2+2,ξ ), ......,γ(xm3−1,ξ )},
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and so on.
Now set,

αi = z1; i = 1,2, .....,m1−1
= y1; i = m1
= z2; i = m1+1,m1+2, .....,m2−1
= y2; i = m2
.. ..................

Then

γ(xn,ξ )< D(αn), for all n∈ N andαn ↓ θ .

Theorem 3.8.If I is a non-trivial ideal andx = {xn} ∈ L
be such that limn→∞ xn = ξ with respect to the metricγ,
thenOI− lim xn = ξ .

Proof: Let x = {xn} ∈ L be a sequence such that
limn→∞ xn = ξ with respect to the metricγ. Then by
Lemma 3.7 there exists a sequence{αn} ∈ L with αn ↓ θ
such thatγ(xn,ξ )< D(αn), for all n∈ N.
Then {n ∈ N : γ(xn,ξ ) ≥ D(αn)} = φ ∈ I . So,
OI− lim xn = ξ .

Theorem 3.9.If I is a non-trivial ideal and if{xn} and
{yn} are two sequences inL such thatOI− lim xn = ξ and
OI− lim yn = ν, thenOI− lim(xn∨yn) = ξ ∨ν.

Proof: SinceOI − lim xn = ξ and OI − lim yn = ν, then
there exists sequences{αn} and {βn} in L with αn ↓ θ
andβn ↓ θ such that
A = {n ∈ N : γ(xn,ξ ) ≥ D(αn)} ∈ I and
B= {n∈N : γ(yn,ν)≥ D(βn)} ∈ I .
Let p ∈ Ac ∩ Bc. Clearly γ(xp,ξ ) < D(αp) and
γ(yp,ν) < D(βp). SinceD is an increasing function, then
by using Result 2.9(B) we have

γ(xp∨yp,ξ ∨ν)≤ γ(xp,ξ )+ γ(yp,ν)< D(αp)+D(βp).

Since αn ↓ θ and βn ↓ θ we can consider a sequence
{δn} ∈ L with δn ↓ θ andD(δn) ≥ D(αn)+D(βn) for all
n∈ N. Thenγ(xp∨yp,ξ ∨ν)< D(δp).
Let C= {n∈ N : γ(xn∨yn,ξ ∨ν)≥ D(δn)}. Thenp∈Cc

and henceAc∩Bc ⊆ Cc. This implies thatC ⊆ A∪B ∈ I
since A,B ∈ I and consequently
OI− lim(xn∨yn) = ξ ∨ν.

Definition 3.10Let I be a non-trivial ideal of subsets ofN
and (L,γ) be a metric additive system. A sequence
x = {xn} of elements inL is said to be order ideally
bounded(i.e.OI-bounded) inL if there existsB ∈ R such
that the set{n∈ N : D(xn)≥ B} ∈ I .

Theorem 3.11.Let I be a non-trivial ideal of subsets of
N. An OI-convergent sequence in the metric additive
system(L,γ) is OI-bounded.

Proof: Let x = {xn} be a sequence inL such that
OI − lim xn = ξ . Then there exists a sequence{yn} in L

with yn ↓ θ such that{n∈ N : γ(xn,ξ ) ≥ D(yn)} ∈ I . i.e.
A= {n∈ N : γ(xn,ξ )< D(yn)} ∈ F(I).
Let p∈ A. Thenγ(xp,ξ )< D(yp)
i.e., 2D(xp∨ξ )−D(xp)−D(ξ )< D(yp). Then
D(xp)≤ 2D(xp∨ξ )−D(xp)< D(yp)+D(ξ ).
Sinceyn ↓ θ , thenD(yn) ↓ 0 and consequently,{D(yn)} is
bounded and we can choose a real numberM such that
M = sup{D(yp) : p∈ A}. ClearlyD(xp) < D(ξ )+M and
so A ⊆ {k ∈ N : D(xk) < D(ξ ) + M} ∈ F(I). Hence the
proof.

Theorem 3.12Let I be an admissible ideal of subsets of
N and(L,γ) be a metric additive system. IfI contains an
infinite set, then there exists anOI-convergent sequence
{xn} in L, which has subsequence, which does not
converge to the same limit.

Proof: Let A be an infinite set inI andA= {n1,n2,n3, ...}
with n1 < n2 < n3 < .......
Again letB= N−A= {m1,m2,m3, ....} with m1 < m2 <
m3 < ....
SinceI is admissible thenB is also an infinite set.
Let us chooseη ,ξ ∈ L such thatη 6= ξ and consider a
sequence{xn} ∈ L such that

xk = η ; i f k ∈ A,
= ξ ; i f k ∈ B.

We choose a sequence{yn} of non-null elements inL
such that yn ↓ θ . This implies that
{n ∈ N : γ(xn,ξ ) ≥ D(yn)} ⊆ A ∈ I . Clearly,
OI − lim xk = ξ . But
{nk ∈ N : γ(xnk,η) ≥ D(yn)} = φ ∈ I and consequently
the subsequence{xnk} is OI-convergent toη .

Theorem 3.13.Let I be an admissible ideal of subsets of
natural numbers and each sequencex = {xn} in L has a
subsequence which isOI-convergent toξ , then x is
OI-convergent toξ .

Proof: Let x = {xn} be a sequence inL such that each
subsequence ofx has a subsequence that isOI-convergent
to ξ but OI− lim xn 6= ξ .
Then for each {yn} ∈ L with yn ↓ θ ,
A= {n∈ N : γ(xn,ξ ) ≥ D(yn)} /∈ I . i.e. A∈ F(I) andA is
an infinite set sinceI is admissible.
Let A= {n1 < n2 < n3 < ...} and{xnk} be a subsequence
of x. Then if we choose any subsequence{xpk} of {xnk},
then clearly
{pk ∈ N : γ(xpk,ξ ) ≥ D(ypk)} /∈ I which is a
contradiction. Therefore,OI− lim xn = ξ .

Definition 3.14.Let I be a non-trivial ideal of subsets of
N and (L,γ) be a metric additive system. A sequence
x= {xn} of elements ofL is said to beOI∗-convergent to
ξ ∈ L if there exists a set M ∈ F(I) with
M = {m1 < m2 < m3 < .....} and limk→∞ xmk = ξ with
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respect to the metricγ.

Theorem 3.15.Let I be a non-trivial ideal of subsets of
N. If {xn} is a sequence inL such thatOI∗− lim xn = ξ ,
thenOI− lim xn = ξ .

Proof: Let OI∗− lim xn = ξ . Then there existsM ∈ F(I)
with M = {m1 < m2 < m3 < .....} such that
limk→∞ xmk = ξ . Then we can choose{βn} in L with
βn ↓ θ by using Lemma 3.7 such thatγ(xmk ,ξ )< D(βmk),
for all k∈ N.
Therefore,{k ∈ N : γ(xk,ξ ) ≥ D(βk)} ⊆ N − M ∈ I .
ConsequentlyOI − lim xn = ξ .

The following example ensures that for an idealI a
sequence{xn} in L, OI − lim xn andOI∗− lim xn may not
be equal.

Example 3.16.Let Np = {p, p2, p3, ....}, wherep∈ P, the
set of all prime numbers andN1 = N− ∪p∈PNp Then
N= ∪ j=1, j∈PNj where eachNj is infinite andNi ∩Nj = φ
for i 6= j. ConsiderI = { A ⊂ N : A intersects only a
f inite number o f Nj ’s }.
Let L has an accumulation pointξ in L. Then there exists
a sequence{xn} in L so that limn→∞ xn = ξ .
Using Lemma 3.7 we can choose a sequence{αn} in L
with αn ↓ θ so thatγ(xn,ξ )< D(αn) for all n∈ N.
Define a sequence{yn} in L with yn = x j if n∈ Nj , where
j is either 1 or a prime number. We assert that
OI − lim yn = ξ . If not, then for eachβ = {βn} in L with
βn ↓ θ , A(β ) = {n∈ N : γ(yn,ξ ) ≥ D(βn)} /∈ I . i.e. A(β )
intersects infinite number ofNj ’s. Then there exists a
subsequence{pn} of prime numbers such that
γ(yn,ξ )≥ D(βn) whenn∈ N1∪Np1 ∪Np2 ∪Np3 ∪ ....
Since Np1 is infinite, there exists a natural number
n= q1 ∈ Np1 such thatγ(xp1,ξ )≥ D(βq1).
FurtherNp2 is infinite, so there exists a natural number
n= q2 ∈ Np2 with q2 > q1 such thatγ(xp2,ξ )≥ D(βq2).
Continuing this process we can construct a subsequence
{qn} of natural numbers such thatγ(xpn,ξ ) ≥ D(βqn) for
all n ∈ N but in particular ifβqn = αpn, this contradicts
the choice of{αn}.

Now if possible letOI∗− lim yn = ξ . Then there exists a set
M = {m1 < m2 < m3 < ...} ∈ F(I) such that limk→∞ xmk =
ξ with respect to the metricγ. Using Lemma 3.7 we can
have a sequence{βn} in L with βn ↓ θ such that

γ(xmk ,ξ )< D(βmk) for all k∈N .....(1)

Let H = N − M, then H ∈ I and there exists prime
numbers p1, p2, ...., pr such that
H ⊆ N1 ∪ Np1 ∪ Np2 ∪ ...Npr . Thus,Nr+1 ⊆ N− H = M
andn∈ Nr+1 implies thatyn = xr+1 for infinitely manyn.
i.e. for infinitely manymk, γ(ymk ,ξ ) = γ(xr+1,ξ ) > 0
which contradicts the relation(1) sinceβn ↓ θ andD is

monotone increasing. HenceOI∗− lim yn 6= ξ .

Theorem 3.17Let I be an admissible ideal of subsets of
N andI has theAP-property. Then for a sequence{xn} in
(L,γ), OI − lim xn = ξ if and only if OI∗ − lim xn = ξ ,
ξ ∈ L.

Proof: Since OI − lim xn = ξ , then we can choose a
sequence{yn} of distinct elements inL with yn ↓ θ such
that{n∈N : γ(xn,ξ )≥ D(yn)} ∈ I .
ConsiderA1 = {n∈ N : γ(xn,ξ )≥ D(y1)} and
An = {k∈ N : D(yn)≤ γ(xk,ξ )< D(yn−1)}, for n≥ 2.
Clearly Ai ’s are pairwise disjoint. ByAP-property there
exists a sequence of subsets{Bn} such thatAi∆Bi is finite
for all i ∈N andB= ∪∞

i=1Bi ∈ I
Let M = N−B= {m1,m2,m3, ...}.
For ε > 0 we choose the smallest positive integerk ∈ N

such that D(yk+1) < ε. Then
{n∈ N : γ(xn,ξ )≥ ε} ⊆ ∪k+1

i=1 Ai .
Ai∆Bi , i = 1,2,3, ...,k+1 are all finite sets and so there is
some m ∈ N such that
∪k+1

i=1 Bi ∩{n∈ N : n> m}= ∪k+1
i=1 Ai ∩{n∈N : n> m}.

If n> m andn /∈ B thenn /∈ ∪k+1
i=1 Bi and this implies that

n /∈ ∪k+1
i=1 Ai . Thenγ(xn,ξ )< D(yk+1)< ε.

Therefore,γ(xn,ξ ) < ε for n > m andn ∈ M and hence
limn→∞ xmn = ξ and consequentlyOI∗− lim xn = ξ .
The converse follows from Theorem 3.15.

4 Conclusion

In this paper, two new concepts, namely the concepts of
OI-convergence andOI∗-convergence in a linearly
ordered additive system have been introduced and
investigated. In this investigation we have also shown by
an example thatOI-convergence andOI∗-convergence
need not be equivalent. Further we have introduced the
idea of OI-bounded sequences and investigated some
basic properties. The present paper also contains a
generalization of the results of the papers [3] and [9]. In
this perspective we think that these results could provide a
more general frame work for the investigation on
convergence of sequences with respect to order.
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