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Abstract: Bipolar charge injection and field-dependent mobility transport through nanocomposite film comprised of 

various shapes of ferroelectric nanofillers in an amorphous polymer matrix is simulated using a self-consistent 3D particle-

in-cell model. The classical electrical double layer is extended by substitution of a dipolar core for the nanofiller. Metal-

polymer charge injection assumes Schottky emission and Fowler-Nordheim tunneling, migration with field-dependent 

Poole-Frenkel mobility, and recombination with Monte Carlo selection. A boundary integral equation method solves the 

Poisson equation coupled with a second-order predictor-corrector scheme for time integration of the equations of motion. 

The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit. Simulation results for 

BaTiO3 nanofiller in amorphous polymer matrix indicate that anti-parallel polarization results in the highest leakage 

conduction and lowest level of charge trapping in the interaction zone.  Charge attachment to nanofillers is increased with 

spheroids due to the increase in surface area, and especially so for anti-parallel polarized oblate spheroids, showing the 

influence of orientations that present larger cross-sections. 
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1 Introduction 

Ceramic nanofillers are incorporated within amorphous 

polymer binders to result in nanocomposite films for use in 

energy storage for rapid power cycling applications. Some 

advantages include: high energy density, low materials and 

replacement cost, and self-healing, lightweight, and small 

footprint properties. Nanocomposite films may be 

engineered to low dielectric loss while combining the 

processability and high breakdown field strength of the 

polymer with the high dielectric constant of the fillers. 

Large contrast in permittivity between the two phases may 

give rise to highly inhomogeneous electric fields (E) in the 

“interaction zone”, defined as the interfacial region that 

surrounds the nanofillers and interspaces.  

Highly inhomogeneous fields and structural inhomogeneity 

generally lead to a significant reduction in the effective 

breakdown field strength of the composite, limiting the 

increase in the energy storage capacity and energy density. 

Improved dispersion of filler in the polymer matrix create 

effective electron scattering and transport centers, thus 

reducing breakdown probability by blocking degradation 

tree growth and increasing long-term breakdown strength 

[1]. Polymers currently used as matrices in the dielectric 

nanocomposites include poly(vinylidene fluoride) (PVDF)-

based ferroelectric semicrystalline polymers which exhibit 

large spontaneous polarization and high dielectric constants 

(10 at 1 kHz) because of the presence of highly 

electronegative fluorine on the polymer chains and the 

spontaneous alignment of CF dipoles in the crystalline 

phases [2]. Considerable progress has been made over the 

past several years in the enhancement of the energy 

densities of the polymer nanocomposites by tuning the 

chemical structures of ceramic fillers and polymer matrices 

and engineering the polymer-ceramic interfaces. The 

incorporation of the TiO2 nanoparticles into the polymer 

induces an improved electric displacement, which accounts 

for high energy densities observed in the nanocomposites 

[3].  

Surface hydroxylation treatment using hydrogen peroxide 

to modify the surface of BaTiO3 (BT) nanofillers dispersed 

in a ferroelectric copolymer host has resulted in up to two 

orders of magnitude reduction in the leakage current of 

nanocomposite thin-film capacitors. This reduction is 

observed concurrently with the enhancement of effective 

permittivity and breakdown strength of the thin-film 

nanocomposites [4]. The challenge in matching nanofillers 

with the polymer matrix is to understand the role of the 

interaction zone where the very large area to volume ratio 

of the interfaces in nanocomposites would have significant 
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impact on the electrical and dielectric properties of the film. 

Charge mapping studies may help to define and quantify 

the taxonomy of the mobile, trapped, bound, and 

polarization charge types and their abundance. Knowledge 

of the spatial and temporal distributions may facilitate 

insight into the dynamics of charge re-distributions which 

lead to breakdown at high fields or prolonged usage. 

Empirical methods using pulse electroacoustic (PEA) and 

laser induced pressure pulse (LIPP) techniques have 

demonstrated preliminary feasibility [5,6].  1D bipolar 

charge transport models capable of handling leakage 

current up to pre-breakdown levels have been successfully 

applied to layered polymer films [7,8,9]. Axisymmetric 

models capable of handling divergent field configurations 

have been reported [10,11].  

However, continuum charge transport models are not suited 

to simulate material with morphology at the nanometer 

length scale. Commercial software has been used to 

compute effective permittivity of nanocomposites [12,13]. 

Several models of nanoparticles are discussed in the 

literature, including the Tanaka Multicore 3-layer and the 

Lewis models [14]. The classical electrical double layer 

(EDL) is similar to the Lewis model and is predicated on a 

monopole net charge for the core. Charge transport is 

enabled by the increase in nanoparticle loading within the 

dielectric composite eventually leading to overlap of the 

diffuse double layers forming conduction paths. Bulk 

charge accumulation is reduced due to this internal 

conductivity, and the dielectric breakdown strength of the 

nanocomposite is improved. 

Figure 1: Extended EDL (eEDL) model for ferroelectric 

nanofillers (e.g. BaTiO3) in amorphous polymer (e.g. 

PVDF) matrix: (a) Initial charge ‘1’ attach to opposite-

signed end of dipole particle repel subsequent  particle ‘2’ 

after charge build-up; (b) Maxwell-Wagner-Sillas (MWS) 

polarization effect; and (c) Charge particle trajectory 

meandering through inter-spaces. 

This paper extends the EDL (eEDL) to model ferroelectric 

nanofillers as shown in Figure 1 where the core is replaced 

by a dipole of the appropriate physical diameter and dipole 

moment with assigned orientation. Metal-polymer charge 

injection assumes Schottky emission and Fowler-Nordheim 

tunneling, migration through field-dependent Poole-Frenkel 

mobility, and recombination with Monte Carlo selection. A 

boundary integral equation method is used for solution of 

the Poisson equation coupled with a second-order 

predictor-corrector scheme for robust time integration of 

the equations of motion. The stability criterion of the 

explicit algorithm conforms to the Courant-Friedrichs-Levy 

(CFL) limit. Charge passage may be illustrated in Figure 

1(a), where incoming positive charge is repelled by the 

positive-end and attracted towards the negative-end of the 

dipole and vice-versa. Charge is allowed to attach on 

impact forming the bound Stern-Helmholtz layer. 

Subsequent waves of incoming charge may be repelled to 

form the diffuse outer Gouy-Chapman transport layer. The 

cumulative charge buildup on opposing ends of the dipole 

leads to Maxwell-Wagner-Sillars (MWS) polarization as 

shown in Figure 1(b). The gradual charge deposition and 

formation of the diffuse layers as charge migrates through 

the polymer film creates the interaction zone. Trajectories 

for charges that make it through the film to the counter-

electrode are curvilinear paths that meander through the 

interspaces, as shown in Figure 1(c). Charges that arrive at 

the counter-electrode are neutralized and therefore 

contribute to the conduction of the film; but not to the field. 

One question that needs to be addressed is the effect of 

nanofiller shape on charge transport and its implications to 

nanocomposite energy storage application. This paper will 

predict bipolar charge injection, transport, and 

recombination/electroluminescence through nanocomposite 

film comprising ferroelectric BT nanofiller in amorphous 

PVDF polymer matrix for various polarizations and for 

several nanofiller shapes; including spheres and prolate and 

oblate spheroids. 

2 Problem Formulation 

2.1. Electrostatic Fields 

The composite field due to the bias voltage, space charge, 

and polarization charge is given by: 

𝑬 = 𝑬𝑏𝑖𝑎𝑠 + 𝑬𝑞 + 𝑬𝑑𝑖𝑝𝑜𝑙𝑒    (1) 

When the particle count, n, is small to moderate, fields 

from the space charge are computed from superposing or 

summing the point source solutions for all particles 

considered: 

𝑬𝑞 = − ∫ ∇𝐺
1

𝜀0
𝜌(𝑣′)

𝑉′ 𝑑𝑉′ ∑ ∇𝐺
1

𝜀0
𝑞𝑖

𝑛
𝑖=1   (2)

  

With G as the Green function fundamental solution to a 

point charge in the volume V’. The polarization, P, from 

sphere-shaped ferroelectric materials in a dielectric medium 

may be written as: 

𝑷 = 3
−1

+2
𝑬    (3) 

Where  is the ratio of the permittivity of the sphere to the 
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polymer matrix, and (1)/(+2) is the Clausius-Mossotti 

factor which vanishes when the material and medium 

permittivities are identical. The material component of the 

dipole moment given by: 

𝒑𝑪𝑴 =  
4

3
𝜋𝑎3𝑷 = 4𝜋

−1

+2
𝑎3𝑬   (4) 

Is summed with the intrinsic dipole moment to compute the 

net dipole field as: 

𝑬𝑑𝑖𝑝𝑜𝑙𝑒 =   
1

4𝜀0
(

3(𝒑𝒓)𝒓−𝒑

𝑟3 )             (5) 

Where p, is the net dipole moment, r is the distance of 

evaluation, and a is the nanofiller radius.  

The solution of the Poisson equation is obtained using the 

boundary integral equation method (BIEM), based on the 

use of the free space Green function as the solution to a 

point source. Instead of the classical approach to derive a 

particular Green function that incorporates geometry, 

material properties, and boundary conditions, linearity and 

superposition is invoked to solve an equivalent (and 

simpler) problem. The source distribution technique (SDT) 

treats mobile space charge and bulk trapped charge as 

volume sources, and replaces conducting boundaries and 

material interfaces with appropriate distributions of 

unknown free and bound interfacial polarization and 

trapped charges to satisfy the specified boundary and 

interface conditions. Enforcement of boundary conditions 

for potential and flux and interface conditions at material 

interfaces for continuity of tangential E and normal D 

(=E): 

𝒏 × (𝑬1 − 𝑬2) = 0                           (6) 

𝒏(𝜀1𝑬1 − 𝜀2𝑬2) =


𝜀0

 

For the Poisson equation result in  

∫ 𝐺
σ(𝑠′)

𝜀0𝑆′ 𝑑𝑆′ + ∫ 𝐺
(𝑐′)

𝜀0𝐶′ 𝑑𝐶′ = (𝑠) − ∫ 𝐺
ρ(𝑣′)

𝜀0𝑉′ 𝑑𝑉′  (7) 

{∫
𝜕𝐺

𝜕𝑛

σ(𝑠′)

𝜀0𝑆′
𝑑𝑆′ −

σ(𝑠)

2𝜀0

} + ∫
𝜕𝐺

𝜕𝑛

(𝑐′)

𝜀0𝐶′
𝑑𝐶′ 

=
𝜕(𝑠)

𝜕𝑛
− ∫

𝜕𝐺

𝜕𝑛

ρ(𝑣′)

𝜀0𝑉′ 𝑑𝑉′                     (8) 

{∫
𝜕𝐺

𝜕𝑛

(𝑐′)

𝜀0𝐶′
𝑑𝐶′ −

𝜀1 + 𝜀2

𝜀1 − 𝜀2

(𝑐)

2𝜀0

} + ∫
𝜕𝐺

𝜕𝑛

σ(𝑠′)

𝜀0𝑆′
𝑑𝑆′ 

= −
(𝑐)

𝜀0(𝜀1−𝜀2)
− ∫

𝜕𝐺

𝜕𝑛

ρ(𝑣′)

𝜀0𝑉′ 𝑑𝑉′       (9) 

For Dirichlet, Neumann, and dielectric interface conditions, 

respectively, where (s) and (s)/n are the potential and 

normal derivative on the surface. Selective enforcement at 

collocation points generate discretized equations that result 

in a matrix that is inverted to determine the magnitude of 

the free and bound polarization source distributions. Then 

fields and field derivatives are computed by integrating 

contributions from all the source distributions. Kernel 

functions, including the Green function and its analytic 

derivatives (G, G/n, and G) are integrated numerically 

using Gauss-Legendre quadrature. Singular kernels are 

accurately computed using minimum order sampling by 

tying the quadrature weight function to the singularity. 

Details on the computation of these integrals are discussed 

in detail for axisymmetric and 2D geometries.13,15 

Discretized forms of these three equations are solved 

simultaneously for (s) on electrodes and (c) on interfaces. 

Equations (7) to (9) invoke superposition of sources that 

include: free charge, , on electrodes (S’); polarization 

charge, , and trapped charge, , on material and physical 

interfaces (C’); and mobile and trapped space charge,  in 

the volume (V’). Free charge at the two electrode-polymer 

interfaces and polarization and trapped charge at the 

polymer-polymer interface are related to the electric fields 

on sides 1 and 2 by: 

                         𝜎𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 = 𝜀0𝜀𝑟𝒏𝑬 

𝜎𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝜀0(𝒏𝑬2 − 𝒏𝑬1)  (10) 

                  𝜎𝑡𝑟𝑎𝑝𝑝𝑒𝑑 = 𝜀0(𝜀2𝒏𝑬2 − 𝜀1𝒏𝑬1) 

Therefore allowing direct inference of the E fields. 

Elements of the discretized matrices on the left hand sides 

of (7) to (9) are calculated from spatial integrals and 

therefore need not be recomputed for every time-step. 

Large portions of the matrices may be saved and reused in 

matrix algebra for rapid computation of the sources, or 

independent variables,  and. The forcing functions on the 

right hand side may be approximated as summations of 

discrete contributions from point charges as shown in (2). 

More details on this charge taxonomy and the use of rapid 

matrix algebra are reported in the literature [15]. 

With A as electrode area, and J as the current density 

defined in (19), finite numbers of positive and negative 

charge particles, n, are injected at each time-step, t, from 

the cathode and the anode into the respective adjacent 

polymer according to: 

∆𝑛 =
𝐽𝐴

𝑞
∆𝑡    (11) 

Where the charges are injected from randomized locations 

on the surface of the corresponding electrodes. 

For large numbers of particles, n, and spatially varying 

distributions a “scatter-gather” method may be used to 

scatter the space charge,, to qi on the vertices of the 

inscribed volume mesh using, for example, trilinear 

interpolation:  

𝜌 =
∑ 𝛼𝑖𝑞𝑖

8
𝑖=1

𝑉
   (12) 

Where i are the trilinear interpolation functions and V is 

the mesh volume. This particle-mesh scheme facilitates 

integration by gathering the contributions from the vertices, 

i, of all volume meshes, j: 

http://www.naturalspublishing.com/Journals.asp
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𝑬 = ∫ ∇𝐺𝜌(𝑣′)
𝑉′

1

𝜀0
𝑑𝑉′ ≈ ∑ ∑ ∇𝐺

1

𝜀0
𝛼𝑖𝑞𝑖

8
𝑖=1

𝑘
𝑗=1  (13) 

To compute the E field at the  position. This method 

requires only nk (<<n2) calculations for a mesh of size 

k<<n.  Following (12), the current density, J, can be 

similarly expressed as: 

𝑱 =
∑ 𝛼𝑖𝑞𝑖𝒗𝑖𝑖

𝑉
           (14) 

With vi (=E) as the drift velocity. Contributions of these 

volume sources to the E-field are evaluated as the algebraic 

summations of the field from each volume mesh as shown 

in (13). 

2.2. Equations of Motion 

The electrodynamic simulation of space charge migration 

through the nanocomposite film involves the time-

dependent integration of the two equations of motion: 

𝑚
𝑑𝒗

𝑑𝑡
= 𝑞𝑬                   (15) 

                                
𝑑𝒙

𝑑𝑡
= 𝒗    (16) 

Where m and q are the mass and the charge of the particle, 

v is its velocity and E is the electric field at the particle 

location. The equations above are followed in time as they 

evolve in velocity and position (phase space) to determine 

the trajectory of each particle.  The driving terms in (15) are 

the Coulomb and dipole forces. Due to the small 

acceleration time and short mean free path, implementation 

of (15) and (16) may be simplified by assuming that charge 

migrates with a drift velocity, v=E, where  is the 

mobility in the polymer. 

3 Simulation Algorithm  

3.1. Particle Simulation 

Solution of the Poisson equation for charge conservation 

and integration of the equations of motion at each time 

interval form a two-step field solve-particle push algorithm 

for particle simulation in the computational cell. Nanofillers 

are randomly distributed within the cell to the prescribed 

vol.% loading using “hard sphere” logic; i.e. allowing 

contact but no over-lap. The 3D PIC model tracks the 

dynamics of charge particle injection, particle-particle 

interactions, and particle attachment to nanofillers during 

migration through the amorphous polymer and 

nanocomposite layers between the top and bottom 

electrodes. The self-consistent E field solution is obtained 

using the BIEM. Particle tracking involves a predictor-

corrector algorithm to integrate the equations of motion 

subject to the applied bias. A self-consistent particle-

particle, particle-mesh (P3M) scheme may be implemented 

for very large numbers of particles [16-18]. 

3.2. Computational Cell 

The computational cell used for the nano-scale simulations 

is shown in Figure 2 where the 500 nm nanocomposite 

layer is sandwiched between two 250 nm amorphous 

polymer layers. The cell is a cuboid of edge dimension 1 

m, volume of 1 m3, bounded by 4 vertical side walls with 

zero flux condition (/n = 0), and top (anode) and bottom 

(cathode) electrodes at constant potential to maintain the 

bias E field. Discrete numbers of charge particles, dictated 

by the current density and time-step, are continuously 

injected from the electrodes as a function of the averaged 

electrode E field. Injection locations are randomly 

dispersed over the electrode surface. Charge particles 

migrate through the nanofiller distribution under the 

composite E field with those arriving at the counter-

electrode considered neutralized and therefore having no 

further contribution to the E field. Periodic boundary 

conditions imposed on the 4 vertical walls force exiting 

particles to re-enter at the opposite side walls. 

Figure 2: Side view of computational cell with 500 nm 

nanocomposite layer sandwiched between 250 nm layers of 

amorphous polymer in a cubic cell of volume 1 m3 with 

vertical side walls as zero flux boundaries and electrodes as 

charge injectors. 

To minimize local error, displacement, h, is required to be 

smaller than the Debye length, i.e. LD=(kBT/q2Ni)½, where 

Ni is the largest charge number density. The time step, t, 

needs to be shorter than the dielectric relaxation time, 

=/qNi, characteristic of charge fluctuations to decay. 

The stability criterion of the explicit algorithm is given by 

the CFL limit, c: 

c = |
v∆t

∆h
| ≤ 1   (17) 

which represents the ratio of mobile charge velocity, v, to 

trace velocity, h/t. For stability, (17) states that the trace 

velocity cannot be faster than the speed of the charge [19]. 

3.3. Time Integration 

The two differential equations given by (15) and (16) are 

integrated numerically using a predictor-corrector method 

of order t2, or second-order accurate in time.  The 

dependent variable, x, is iteratively improved at each time 

level.  To start, we assume that at time level n, the set (xn-1, 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑖𝑑𝑒 𝑤𝑎𝑙𝑙𝑠: 

/𝑛 = 0 

Anode 

Cathode 

 

∆𝑝 =
𝐽𝐴

𝑞
∆𝑡 

∆𝑛 =
𝐽𝐴

𝑞
∆𝑡 

Amorphous polymer 

Amorphous polymer 

 



 Int. J. Thin. Fil. Sci. Tec. 5, No. 1, 1-12 (2016) / http://www.naturalspublishing.com/Journals.asp                                                       5 
 

 

        © 2016 NSP 

         Natural Sciences Publishing Cor. 
 

xn) is known.  Then, the predictor-corrector equations are: 

Predictor: 

                                     𝒗𝑛 =  𝑬𝑛 

                                 𝒙𝑛+1 = 𝒙𝑛−1 + 2∆𝑡 𝒗𝑛 

                                𝒙𝑛−1′ = 𝒙𝑛 +
1

4
(𝒙𝑛+1 − 𝒙𝑛−1) 

Corrector: 

𝒗𝑛+1 = 𝑬𝑛+1                                 (18) 

𝒙𝑛+1 = 𝒙𝑛−1′ +
1

2
𝑡 𝒗𝑛+1 

Update: 

𝒙𝑛−1 = 𝒙𝑛 

𝒙𝑛 = 𝒙𝑛+1 

In the predictor stage, the initial location for the (n-1) 

iteration level is improved and used in the corrector stage to 

obtain the updated location for the next time level. The 

above tacitly assumed that the field is “frozen-in” relative 

to the time step of charge migration, and the transient time 

to attain terminal velocity is much shorter than the mean 

free path or the time between collision events of oppositely 

charged particles. 

4 Bipolar Charge Transport  

4.1. Charge Injection 

At low to moderate applied fields, charge injection from a 

metal electrode into the lowest unoccupied molecular 

orbital (LUMO) band of the polymer by Schottky barrier 

thermionic emission is given by: 

𝐽𝑛 = 𝐴𝑇2𝑒
−

(𝑊𝑛−∆𝑤)

𝑘𝐵𝑇/𝑞                             (19) 

𝐽𝑝 = 𝐴𝑇2𝑒
−

(𝑊𝑝−∆𝑤)

𝑘𝐵𝑇/𝑞  

Where A is the Richardson constant (=1.2×106 A/m2.K2), 

and Wn and Wp are the energy barriers to injection in eV. 

The combined effect of the image force and the applied 

field results in a lowering of the barrier potential given by: 

∆𝑤 = √
𝑞𝐸

4𝜋𝜀
    (20) 

At higher applied fields, the slope gets steeper and the 

barrier is further lowered so that the tunneling length is 

much shorter, increasing the probability for tunneling 

through the barrier. Charge injection from a metal electrode 

into the polymer is treated using the Fowler-Nordheim 

quantum mechanical tunneling model given by: 

𝐽 = 𝐶𝐸2𝑒−
𝛽

𝐸   (21) 

Where C = (q3/162he),  = (4√2me/3hq)
e
3/2

, me is 

the electron effective mass, h is Planck’s constant 

(4.1356×10−15 eV.s), and e is the effective potential 

barrier. e is equal to qWp or qWn for positive and negative 

charge, respectively. For the set of simulation parameters 

used here, the transition from Schottky emission to Fowler-

Nordheim tunneling occurs at about 166 V/m [9]. 

4.2. Field-dependent Mobility 

At low-fields and low densities, carriers are almost in 

equilibrium with the lattice vibrations so the low-field 

mobility is mainly affected by phonon and Coulomb 

scattering. The mobility increases until the velocity 

approaches the random thermal velocity. In a moderately 

large electric field, less thermal fluctuation is required to 

free charge allowing for higher conduction via the Poole-

Frenkel mobility: 

 𝜇 = 𝜇0𝑒𝛾√𝐸    𝜇0𝑒
(

∆𝑤

𝑘𝐵𝑇/𝑞
)
        (22) 

Where  is a constant, and w is as defined in (20). At 

higher electric fields, mobility decreases with increasing 

electric field due to increased lattice scattering at higher 

carrier energies, and carrier velocity saturate. The Caughey-

Thomas field-dependent mobility: 

𝜇 =
𝜇0

[1+(
𝜇0𝐸

𝑣𝑠𝑎𝑡
)

𝛽
]

1/𝛽    (23) 

Provides a smooth transition between low-field and high 

field behavior where o is the low field mobility at a field 

of Eo, vsat is the saturation velocity, and =1 is commonly 

used [20]. 

4.3. Charge Attachment/Detachment 

Trapping and de-trapping of space charge in polymeric 

materials are related to the microstructure and morphology 

of the materials. Analogous to the continuum model, 

trapped charge on nanofiller surfaces are considered to be 

attached charge. In the eEDL model, initial charge 

attachment to nanofillers are assumed to be deterministic, 

i.e. attachment on impact, or probability Pt(t)=1. 

Subsequent taper-off due to Coulomb force and dipole field 

repulsion from build-up of the attached charge follow the 

MWS effect, i.e. Pt(t)0 as the limiting behavior. Charge 

detachment, to be considered in future model development, 

may be physically controlled by comparing the local field 

to the trap depth used in the de-trapping rate, kd, equation: 

  𝑘𝑑 = 𝑁𝑐𝑡ℎ𝜎𝑒−𝐸𝑡/𝑘𝐵𝑇                 (24) 

Where Nc is the effective density of states in the LUMO, vth 

is the thermal velocity, and Et is the trap depth [9]. 

4.4. Recombination 

The Monte Carlo collision model is used to describe 

particle-particle events between oppositely charged entities 

http://www.naturalspublishing.com/Journals.asp
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resulting in recombination [17]. The probability of a 

collision of the ith charge particle with a charge particle of 

the opposite polarity in a time step t is given by: 

𝑃𝑖 = 1 − 𝑒−𝑛0𝜎(𝐸𝑖)𝑣𝑖∆𝑡         (25) 

where n0 is the number density of the opposite polarity 

mobile charge, (Ei) is the total collision cross-section 

which in general depends on the kinetic energy of the ith 

particle (could be larger than the geometrical cross-section 

given by  = 𝜋(𝑟𝑖 + 𝑟𝑗)2), and vi is the velocity of this 

particle relative to the velocity of the opposite polarity 

particle.  Therefore, no is a measure of the number of 

collisions per unit length, 1/no is the mean free path 

between collisions, and novi is the collision frequency.  

For a finite t, the probability of a collision is determined 

by comparing Pi with Ri, representing a uniform random 

number between 0 and 1.  For Pi > Ri, the particle i is 

assumed to have sustained a collision within the time step 

t resulting in recombination and neutralization of the 

charge pair. Otherwise, Monte Carlo selection returns a 

non-event. 

5 Results and Discussion  

The model for the nanocomposite film is a random 

distribution of nanofillers in a 500 nm layer sandwiched on 

the top and bottom by 250 nm amorphous polymer layers. 

Only unipolar injection from the anode is considered here 

to allow clearer illustration of results. Charge transport 

studies are performed for several nanoparticle polarization 

orientations with respect to the bias E field, including: 

random, in-plane, parallel, and anti-parallel as shown in 

Figure 3. Table 1 summarizes the simulation parameters, 

and includes the dipole moment of BT nanofillers [21]. 

Table 1: Simulation Parameters. 

Parameter Value Description 

p 
9 x 1011 

cm2/V.s 

Mobility of positive 

charge 

n 
9 x 1011 

cm2/V.s 

Mobility of negative 

charge 

Wp 1.2 eV Anode barrier potential 

Wn 1.2 eV Cathode barrier potential 

PVDF 12.4 
Dielectric constant of 

PVDF 

BT 1000. 
Dielectric constant of 

BaTiO3 

dBT 50 to 150 nm Diameter of BaTiO3  

mBT 4.25x1030 C.m 
Dipole moment of 

BaTiO3  

Results are generated for a comparative study of shape 

dependence of the BT nanofiller (which may also be other 

Perovskites such as TiO2, or ZrO2) on charge transport. 

Nanofiller shapes are constrained to have identical 

volumes, and include the sphere, prolate spheroid, and 

oblate spheroid.  

In particular, the prolate spheroid and oblate spheroid are 

arbitrarily chosen to have c/a=4 and c/a=1/4, respectively, 

where c and a are the semi-major and semi-minor axes. 

Table 2 contains the dimensions and surface areas for a 

volume defined by a 150 nm spherical nanoparticle.  

 

Table 2: Spheroid Parameters. 

Spheroids 
a 

<nm> 

c 

<nm> 

r 

<nm> 

Norm* Surface 

Area 

Sphere   75.00 1.00 

Prolate 47.25 188.99  1.28 

Oblate 119.06 29.76  1.43 

a, c – semi-minor, -major axes; *surface area normalized to sphere 

Sample trajectories are shown in Figure 4 for randomly 

distributed 150 nm nanofillers (large circles) at 10 vol.% 

loading with dipole moment of 4.25x10−30 C.m and in-

plane, parallel, and anti-parallel polarization.  Figure 4(a) 

for in-plane polarization shows the rear view with 7 

attachments and 3 trajectories passing through to the 

counter-electrode, one of which suffers multiple deflections 

enroute. The side view in Figure 4(b) shows 8 trajectories 

terminating on upper half-spheres due to the bias field and 

the added attraction of the dipole field, and 2 passing 

through to the counter-electrode completing a conduction 

event. Finally, Figure 4(c) contains a perspective view 

showing trajectories terminating on the tail-end of the 

spheres and 1 trajectory that is repelled by the front-end of 

the dipole, deflected laterally, and subsequently moving to 

the counter-electrode. 

Figures 5(a) and 5(b) show the charge fractions, normalized 

to total charge, of those attached to spherical nanofillers 

and those that arrived at the counter-electrode for the 4 

polarization cases. The time axes indicate the transit times 

for charge to travel to the nanofiller and through to the 

counter-electrode. Lower attachment results in higher 

conduction or higher fractions of arrivals at the counter-

electrode, and vice-versa. In all runs, the tracking time is 

adjusted so that the same amount of charge is injected.  

The random and in-plane cases have similar results with the 

latter case exhibiting a slightly higher attachment due to all 

dipoles being aligned in the plane to provide equal access to 

the opposite-signed ends. The parallel case presents the 

negative end of the dipoles directly to the positive charge 

and results in the highest attachment. The anti-parallel case 

is just the opposite, making it more difficult for incoming 

positive charge to be initially repelled before they can be 

drawn to the underside of the dipoles. Depending on the 

proximity of the neighboring nanoparticles, a dipole 

polarization cancellation effect may cause the charge 

particle to continue migration therefore increasing the 

probability of propagating through to the counter-electrode. 
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In particular, for the anti-parallel case, very little 

attachment is observed to the nanofillers with > 90% arrival 

at the counter-electrode. 

 

Figure 3: Nanocomposite film with nanofiller polarizations 

including: (a) random; (b) in-plane; (c) parallel; and (d) 

anti-parallel with respect to the bias E field. 

Figure 6(a) for 10 vol.% spherical BT nanofillers shows 

average electrode E fields are decreased due to the anti-

parallel polarization. The transient time is equivalent to the 

charge transit time between the electrodes. The slightly 

lower (negative) average E field on the anode is due to the 

presence of injected positive charge. In Figure 6(b), 

injected current density at the anode is seen to stabilize 

after a time interval of 1 transit time. 

 

Figure 4: Perspective views of sample trajectories for: (a) 

in-plane; (b) parallel; and (c) anti-parallel polarizations of 

randomly distributed 150 nm spherical nanofillers (large 

circles) at 10 vol.% loading showing attachment and 

conduction events. Meandering of the tracers indicate the 

nature of charge migration through the interaction zone 

formed by the interfaces of the nanofillers and amorphous 

polymer binder. 

http://www.naturalspublishing.com/Journals.asp
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Figure 5: Charge particle fractions: (a) attached to 

spherical nanofillers; and (b) arrived at the counter-

electrode with up to 90% for the anti-parallel case.  Time 

axes show transit times to nanofiller and counter-electrode. 

 

Figure 6: (a) Average anode and cathode E fields for 10 

vol.% BaTiO3 nanofillers are reduced due to the anti-

parallel polarization, with the anode E field also lowered by 

the proximity of the injected positive charge; and (b) 

Injected current density at the anode stabilizes after 1 

transit time. 

 

Figure 7: Top views of scatter plots showing randomly 

distributed 150 nm spherical nanofillers (large circles) at 

10vol.% loading and attached charge (orange), mobile 

charge (magenta), and conduction charge (blue) for: (a) 

random; (b) in-plane; (c) parallel; and (d) anti-parallel 

polarizations. 

Shown in Figure 7 are the top views of scatter plots for the 

randomly distributed 150 nm spherical nanofillers (large 

circles) at 10 vol.% loading and attached charge (orange), 

mobile charge (magenta), and charge arrived at the counter-

electrode (blue) for random, in-plane, parallel; and anti-

parallel polarizations. Figure 7(a) shows the mobile positive 
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charge attracted to the tail-end of the randomly polarized 

spheres. The upwards-directed in-plane polarization in 

Figure 7(b) shows attachment to the back end of the 

spheres. Figure 7(c) shows mobile positive charge attracted 

to the tail-end of the parallel polarized sphere, forming 

uniformly coated upper hemispheres. Finally, as seen in 

Figure 7(d) is the anti-parallel polarized spherical 

nanofillers rendered transparent to show the mobile positive 

charge attached to the underside or lower hemisphere. 

In Figure 8 are the top views of scatter plots of the 

randomly distributed 150 nm prolate spheroidal nanofillers 

(large circles) at 10 vol.% loading and attached charge 

(orange), mobile charge (magenta), and charge arrived at 

the counter-electrode (blue) for in-plane, parallel, and anti-

parallel polarizations. Figure 8(a) shows the mobile positive 

charge attracted to the tail-end of the in-plane polarized 

prolate spheroids. Figure 8(b) also shows the mobile 

positive charge attracted to the tail-end of the prolate 

spheroids, forming uniformly coated upper hemispheres. 

Finally, in Figure 8(c) are shown the prolate spheroidal 

nanofillers with the mobile positive charge attached to the 

upper side or upper hemisphere. Note that the attachment to 

the same-signed dipole end is because the bias field 

dominates over the repulsion of the dipole field near the tip 

of the longer semi-major axis when c/a=4.  

The top views in Figure 9 are scatter plots of the randomly 

distributed 150 nm oblate spheroidal nanofillers (large 

circles) at 10vol.% loading and attached charge (orange), 

mobile charge (magenta), and charge arrived at the counter-

electrode (blue) for in-plane, parallel, and anti-parallel 

polarizations. Figure 9(a) shows the mobile positive charge 

attracted to the tail-end of the in-plane polarized oblate 

spheroids. Figure 9(b) also shows the mobile positive 

charge attracted to the tail-end of the oblate spheroids, 

forming fully coated upper hemispheres. Finally, in Figure 

9(c) is shown the oblate spheroidal nanofillers with mobile 

positive charge attached to the upper side or upper 

hemisphere. 

Table 3: Charge fractions for BT in amorphous PVDF. 

Sphere 
% 

Mobile 

% 

Attached 

% 

Conduction 
Polarization 

Random 3.29 74.12 22.59 ? 

In-plane 3.22 76.14 20.64  

Parallel 3.10 85.47 11.43  

Anti-
parallel 

5.05 2.24 92.70  

Prolate 
 

In-plane 3.27 73.79 22.95  

Parallel 3.57 73.11 23.33  

Anti-
parallel 

5.10 10.27 84.63  

Oblate 
 

In-plane 3.39 73.55 23.06  

Parallel 2.43 91.79 5.78  

Anti-
parallel 

3.63 55.13 41.24  

 

 

 

Figure 8: Top views of scatter plots showing randomly 

distributed 150 nm prolate spheroidal ferroelectric 

nanofillers at 10vol.% loading and attached charge 

(orange), mobile charge magenta), and conduction charge 

(blue) for: (a) in-plane; (b) parallel; and (c) anti-parallel 

polarizations. 
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Figure 9: Top views of scatter plots showing randomly 

distributed 150 nm oblate spheroidal ferroelectric 

nanofillers at 10vol.% loading and attached charge 

(orange), mobile charge magenta), and conduction charge 

(blue) for: (a) in-plane; (b) parallel; and (c) anti-parallel 

polarizations. 

Figure 10(a) shows the fractions of attached, mobile, and 

conduction positive charge captured on anti-parallel 

polarized spherical nanofillers where the curves asymptote 

in time to 2.24%, 5.05%, and 92.70%, respectively, 

indicating low attachment and high conduction. 

Corresponding plots for prolate spheroidal nanofillers are 

shown in Figure 10(b), with the respective curves 

asymptoting in time to 10.27%, 5.10%, and 84.63%. 

Similarly, plots for oblate spheroidal nanofillers are shown 

in Figure 10(c) where the curves asymptote in time to 

55.13%, 3.63%, and 41.24%, respectively, with the 

attached and conduction fractions inverted in the oblate 

spheroid case. 

 

Figure 10: Fractions of attached, mobile, and positive 

conduction charge for: (a) spherical; (b) prolate spheroidal; 

and (c) oblate spheroidal shaped nanofillers asymptote with 

time for any given volume fraction, with the attached and 

conduction fractions inverted in the oblate spheroid case. 

Table 3 summarizes the asymptotes of all charge fractions 

for all the polarization cases and geometrical shapes. 

Several observations may be inferred: 
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 For any shaped nanofiller: (a) parallel polarization results 

in the highest charge attachment, and therefore lowest 

conduction, due to the combined effects of the bias field 

and the attraction of the dipole field; (b) anti-parallel 

polarization results in the lowest charge attachment, and 

therefore highest conduction, due to the opposition of the 

dipole field to the bias field; and (c) in-plane polarization 

tends to capture slightly more charge than the random 

case, and therefore have somewhat lower conduction. 

 In the anti-parallel case: (a) the mobile charge is repelled 

before it is attracted to the tail-end; a situation which is 

repeated as near co-linear dipole fields cancel, thus 

facilitating continued migration of the charge through the 

interspaces, thereby increasing conduction; and (b) charge 

attachment follows the order: oblate > prolate > sphere. 

Prolate > sphere due to smaller dipole repulsion field at 

larger c.  Oblate > sphere because of larger capture cross-

section. 

 For parallel polarization, charge attachment follows the 

order: oblate > sphere > prolate due to geometrical cross-

section. 

 For the prolate spheroid with c/a=4, the parallel 

polarization case involve a longer distance (c>r) between 

the incoming particle and the centroid, thereby 

minimizing the additive effect of the dipole field on the 

bias field. 

From the preceding results, it is evident that anti-parallel 

polarization has dramatically higher conduction, a property 

which has immediate implications to reducing residual 

charge accumulation and extending the lifetime and 

reliability of nanocomposite films. Previous studies have 

determined that in-plane and parallel polarization cases lead 

to increased attachment and therefore fewer trajectories that 

form conduction events [22,23]. The opposing E field of 

the anti-parallel polarized nanofiller acts to lower net E 

field, reduce charge injection, and minimize attachment to 

nanoparticles because the dipole is oriented for field 

repulsion. An application that benefits from this feature is 

the increase in power conversion efficiency (PCE) of 

organic photovoltaic (OPV) devices by inserting an 

ultrathin film of a ferroelectric co-polymer, P(VDF-TrFE), 

at the metal–organic interface to enhance the charge 

extraction efficiency. Highly crystalline P(VDF-TrFE) 

films prepared by the Langmuir–Blodgett method 

spontaneously polarize and has been shown to be 

responsible for the enhancement of PCE in ferroelectric 

OPV devices [24].  

The barrier properties of polymers can be significantly 

altered by inclusion of nanofillers with large aspect ratio, 

especially when they are oriented orthogonal to the charge 

propagation path.  Comparing the entries in column 4 of 

Table 3 for prolate and oblate spheroids with anti-parallel 

polarization, it is clear that the fraction of charge particles 

that arrive at the counter-electrode is halved for the current 

set of parameters. Oriented higher aspect ratio nanofillers 

may mandate more tortuous pathways for the charge 

particles to transverse the nanocomposite. 

6 Conclusions 

This paper has described a rapid 3D particle simulation 

algorithm which couples the BIEM with robust predictor-

corrector time integration of the equations of motion to 

efficiently simulate bipolar charge transport through 

nanocomposite polymer film comprised of ferroelectric 

nanofillers in amorphous polymer matrices. An extended 

EDL model was implemented which substituted a dipole 

for the monopole in the classical EDL model. The rationale 

was to allow for the initial charge particles to attach onto 

the nanofillers on impact to form the bound Stern-

Helmholtz layer. Subsequent charge particles are repelled 

due to charge build up and the MWS effect, leading to the 

formation of the diffuse Gouy-Chapman transport layer. 

Metal-polymer charge injection assumed Schottky emission 

at low to moderate fields and Fowler-Nordheim tunneling 

at high fields. Injected particles were migrated via field-

dependent Poole-Frenkel mobility and recombined with 

Monte Carlo selection. A boundary integral equation 

method was used for solution of the Poisson equation 

coupled with a second-order predictor-corrector scheme for 

robust time integration of the equations of motion. The 

stability criterion of the explicit algorithm conformed to the 

CFL limit. Careful trajectory tracking revealed the 

curvilinear paths taken by charge particles that meander 

through the interspaces that form the interaction zone. 

Results have substantiated the use of the eEDL model for 

treatment of nanocomposites in bipolar charge transport 

studies. 

A matrix of simulation runs was performed to study the 

effect of nanofiller shape on bipolar charge transport for 

random, in-plane, parallel, and anti-parallel polarizations. 

The anti-parallel polarization results are particularly 

interesting because of increased leakage conduction and 

decreased charge attachment to nanofillers; possibly 

leading to improved reliability and better breakdown 

strength. The explanation is the preferential attachment of 

charge to the tail (negative) end of the dipole due to charge 

polarity. The mobile charge is repelled before it is attracted 

to the other end; a situation which is repeated as almost co-

linear dipole fields of aligned nanofillers cancel, thus 

facilitating the charge to migrate through the interspaces. 

The study of shape-dependence and effects of physical 

barriers on charge transport shows that both polarization 

and geometry play contradictory roles. Anti-polarized 

orientation lowers the electrode E field and forces the 

charge to be initially repelled by each nanofiller particle 

thus increasing the charge fraction that makes it to the 

counter-electrode, resulting in higher conduction. Higher 

aspect ratio geometries, especially if oriented with the 

larger cross-section orthogonal to the propagation 

pathways, act to reduce the charge fraction arriving at the 

counter-electrode, decreasing conduction. Analogies to 

http://www.naturalspublishing.com/Journals.asp


 12                                                                                                                     M. Lean, W. Chu: Simulating effect of Ferroelectric … 
 

 

 

© 2016 NSP 

Natural Sciences Publishing Cor. 
 

flow fields exist where at high aspect ratio in 

nanocomposites, significant decreases in permeability are 

predicted and observed in practice [25]. High aspect ratio 

nanolayers provide properties that are not possible for 

larger-scaled composites. The impermeable layers mandate 

a tortuous pathway to transverse the nanocomposite. The 

enhanced barrier characteristics and lower charge migration 

are benefits from the hindered diffusion pathways through 

the nanocomposite. 

An area of future work will involve derivation of transport 

and attachment/detachment coefficients from empirical data 

on time-dependent I-V curve measurements of leakage 

current, and matching with model predictions to extract and 

refine estimates for key parameters. The model will then be 

used to predict results that can be compared against 

experiment. Ultimately the validated model may be used 

for parameter exploration and optimization. A concurrent 

effort is to seek corroboration with estimates from first 

principles quantum mechanical (QM) and molecular 

dynamics (MD) calculations of trap depths and metal-

polymer barrier potentials. 
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