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Abstract: In this paper, we introduce the notion of ranked bigroupoids and we define as well as discuss (X, ∗, ω)-self-
(co)derivations. In addition we define rankomorphisms and (X, ∗, ω)-scalars for ranked bigroupoids, and we consider
some properties of these as well.
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1. Introduction

Y. Imai and K. Iséki introduced two classes of ab-
stract algebras: BCK-algebras and BCI-algebras ([4,
5]). J. Neggers and H. S. Kim introduced the no-
tion of d-algebras which is another useful general-
ization of BCK-algebras, and then investigated sev-
eral relations between d-algebras and BCK-algebras
as well as several other relations between d-algebras
and oriented digraphs ([8]). H. S. Kim and J. Neg-
gers ([7]) introduced the notion of Bin(X) and ob-
tained a semigroup structure. E. Posner [9] discussed
derivations in prime rings, and H. E. Bell and L. C.
Kappe [2] studied rings in which derivations satisfy
certain algebraic conditions. Y. B. Jun and X. L. Xin
[6] discussed derivations in BCI-algebras, and N. O.
Alshehri [1] applied the notion of derivations in in-
cline algebras. In this paper, we introduce the no-
tion of ranked bigroupoids and discuss (X, ∗, ω)-self-
(co)derivations. (X, ∗, ω)-scalars in ranked bigroupoids
will be discussed as well.

2. Preliminaries

An d-algebra ([8]) is a non-empty set X with a con-
stant 0 and a binary operation “ ∗ ” satisfying the
following axioms:

(A)x ∗ x = 0,
(B)0 ∗ x = 0,
(C)x∗y = 0 and y∗x = 0 imply x = y for all x, y ∈ X.

A BCK-algebra is a d-algebra X satisfying the
following additional axioms:

(D)((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(E)(x ∗ (x ∗ y)) ∗ y = 0 for all x, y, z ∈ X.

Given a non-empty set X, we let Bin(X) denote
the collection of all groupoids (X, ∗), where ∗ : X ×
X → X is a map and where ∗(x, y) is written in the
usual product form. Given elements (X, ∗) and (X, •)
of Bin(X), define a product “2” on these groupoids
as follows:

(X, ∗) 2 (X, •) = (X, £), (1)

where

x £ y = (x ∗ y) • (y ∗ x), (2)

for any x, y ∈ X. Using that notion, H. S. Kim
and J. Neggers proved the following theorem.

Theorem 2.1. ([7]) (Bin(X), 2) is a semigroup,
i.e., the operation “2” as defined in general is asso-
ciative. Furthermore, the left- zero-semigroup is the
identity for this operation.
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3. Ranked bigroupoids

A ranked bigroupoid is an algebraic system (X, ∗, •)
where X is a non-empty set and “∗” and “•” are bi-
nary operations defined on X. We may consider the
first binary operation ∗ as the major operation, and
the second binary operation • as the minor operation.

Example 3.1. A K-algebra ([3]) is defined as an
algebraic system (G, •,¯) where (G, •) is a group and
where x ¯ y := x • y−1. Hence every K-algebra is a
ranked bigroupoid.

Example 3.2. We construct a ranked bigroupoid
from any BCK-algebra. In fact, given a BCK-algebra
(X, ∗, 0), if we define a binary operation “∧” on X by
x ∧ y := x ∗ (x ∗ y) for any x, y ∈ X, then (X, ∗,∧) is
a ranked bigroupoid.

We introduce the notion of “ranked bigroupoids”
to distinguish two bigroupoids (X, ∗, •) and (X, •, ∗).
Even though (X, ∗, •) = (X, •, ∗) in the sense of bi-
groupoids, the same is not true in the sense of ranked
bigroupoids. This is analogous to the situation for
sets, where {x, y} = {y, x} but < x, y > 6=< y, x >
in general.

Given an element (X, ∗) ∈ Bin(X), (X, ∗) has
a natural associated ranked bigroupoid (X, ∗, ∗), i.e.,
the major operation and the minor operation coincide.

We denote the class of all ranked bigroupoids de-
fined on a non-empty set X by Rbbin(X), i.e.,
Rbbin(X) := {(X, ∗, •) | (X, ∗, •) is a ranked bigroupoid
on X}. We denote the class of all bigroupoids defined
on a non-empty set X by Bin2(X), i.e., Bin2(X) :=
{(X, ∗, •) | ∗, • are binary operations on X}.

Theorem 3.3. If we define (X, £, ξ) := (X, ∗, ω)2
(X, •, ψ) for any (X, ∗, ω), (X, •, ψ) ∈ Rbbin(X), then
(Rbbin(X), 2) is a semigroup where x £ y := (x ∗ y) •
(y ∗ x) and xξy := (xωy)ψ(yωx) for all x, y ∈ X.

Proof. The proof is similar to the case of Theorem
2.1 in [7], and we omit it.

Proposition 3.4. If (X, ∗) is a left-zero-semigroup,
then (X, ∗, ∗) is the identity element in (Rbbin(X),2).

Proof. Let (X, ∗) be the left-zero-semigroup and
let (X, •, ψ) ∈ Rbbin(X). If (X, £, ξ) := (X, ∗, ∗)2
(X, •, ψ), then, for all x, y ∈ X, we have x £ y =
(x∗y)•(y∗x) = x•y and xξy = (x∗y)ψ(y∗x) = xψy,
since (X, ∗) is the left-zero-semigroup, i.e., (X, £, ξ) =
(X, •, ψ). If (X, £, ξ) := (X, •, ψ)2(X, ∗, ∗), then, for
all x, y ∈ X, we have x£y = (x•y)∗(y•x) = x•y and
xξy = (xψy) ∗ (yψx) = xψy, since (X, ∗) is the left-
zero-semigroup, i.e., (X, £, ξ) = (X, •, ψ). This proves
that (X, ∗, ∗) is the identity in (Rbbin(X), 2).

If (X, ∗) is the right-zero-semigroup and if (X, £, ξ)
:= (X, ∗, ∗)2 (X, •, ψ), then it is easy to see that
x £ y = y • x and xξy = yψx for all x, y ∈ X.
We denote by x •op y = y • x and xψopy = yψx.
It follows that (X, ∗, ∗)2(X, £, ξ) = (X, •op, ψop) and
(X, £, ξ)2(X, ∗, ∗) = (X, •op, ψop).

Proposition 3.5. If we define a map E : Bin(X)
→ Rbbin(X) by E((X, ∗)) := (X, ∗, ∗), then it is an
injective homomorphism of semigroups.

Proof. Given (X, ∗), (X, •) ∈ Bin(X), if we let
(X, 2) := (X, ∗)2(X, •), then (X, 2,2) = E((X, 2))
= E((X, ∗)2(X, •)). If we let (X, £, ξ) := (X, ∗, ∗)2
(X, •, •), then x £ y = (x ∗ y) • (y ∗ x) = x2y and
xξy = (x ∗ y) • (y ∗ x) = x2y for all x, y ∈ X. It
follows that (X, £, ξ) = (X, 2, 2). Hence

E((X, ∗)2(X, •)) = E((X, 2))
= (X, 2, 2)
= (X, ∗, ∗)2(X, •, •)
= E((X, ∗))2E((X, •)),

proving the proposition.

A ranked bigroupoid (X, λ, ρ) is said to be left-
over-right if for all x, y ∈ X, xλy = x and xρy = y.
Similarly, a ranked bigroupoid (X, ρ, λ) is said to be
right-over-left if for all x, y ∈ X, xρy = y and xλy =
x.

Proposition 3.6. For any (X, ∗, ω) ∈ Rbbin(X),
we have the following:

(i)(X,λ, ρ)2(X, ∗, ω) = (X, ∗, ω)2(X, λ, ρ) =
(X, ∗, ωop),

(ii)(X, ρ, λ)2(X, ∗, ω) = (X, ∗, ω)2(X, ρ, λ) =
(X, ∗op, ω).

Using the notion of two binary operations λ and
ρ we construct an interesting table which is a copy of
the Klein-4-group as follows:

2 (X, λ, λ) (X, ρ, ρ) (X,λ, ρ) (X, ρ, λ)
(X, λ, λ) (X, λ, λ) (X, ρ, ρ) (X,λ, ρ) (X, ρ, λ)
(X, ρ, ρ) (X, ρ, ρ) (X, λ, λ) (X, ρ, λ) (X,λ, ρ)
(X, λ, ρ) (X, λ, ρ) (X, ρ, λ) (X,λ, λ) (X, ρ, ρ)
(X, ρ, λ) (X, ρ, λ) (X,λ, ρ) (X, ρ, ρ) (X,λ, λ)

4. Derivations in ranked bigroupoids

Given a ranked bigroupoid (X, ∗, ω), a map d : X →
X is called an (X, ∗, ω)-self-derivation if for all x, y ∈
X,

d(x ∗ y) = (d(x) ∗ y)ω(x ∗ d(y))

In the same setting, a map d : X → X is called an
(X, ∗, ω)-self-coderivation if for all x, y ∈ X,

d(x ∗ y) = (x ∗ d(y))ω(d(x) ∗ y)

Note that if (X, ω) is a commutative groupoid,
then (X, ∗, ω)-self-derivations are (X, ∗, ω)-self-
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coderivations. A map d : X → X is called an abelian-
(X, ∗, ω)-self-derivation if it is both an (X, ∗, ω)-self-
derivation and an (X, ∗, ω)-self-coderivation.

Proposition 4.1. Let (X, ∗, ω) be a ranked bi-
groupoid such that (X, ω, 0) is a d-algebra. For any
(X, ∗, ω)-self-derivation d : X → X if the identity
mapping, then X = {0}.

Proof. Consider d(x ∗ y) = (d(x) ∗ y)ω(x ∗ d(y)) =
(x ∗ y)ω(x ∗ y) = 0. Thus x ∗ y = y ∗ x = 0 and x = y,
whence |X| = 1 and X = {0}.

For the case where d : X → X is an (X, ∗, ω)-
self-coderivation the same conclusion holds if d is the
identity map. Indeed, d(x∗y) = (x∗d(y))ω(d(x)∗y) =
(x ∗ y)ω(x ∗ y) = 0, so that x ∗ y = y ∗ x = 0 implies
x = y and |X| = 1.

Proposition 4.2. Let d be an (X, ∗, ω)-self- deriva-
tion. If (X, ∗) is a monoid with identity 1, then d(1)
is an idempotent in (X,ω).

Proof. Since d is an (X, ∗, ω)-self-derivation, d(x) =
d(x ∗ 1) = [d(x) ∗ 1]ω[x ∗ d(1)] = d(x)ω[x ∗ d(1)] for
all x ∈ X. If we let x := 1, then d(1) = d(1)ω[1 ∗
d(1)] = d(1)ωd(1), proving that d(1) is an idempotent
in (X, ω).

Proposition 4.3. Let d be an (X, ∗, ω)-self-
derivation and let (X, ∗) be a semigroup with zero 0.
If d is regular, i.e., d(0) = 0, then 0 is an idempotent
in (X, ω).

Proof. Since d is an (X, ∗, ω)-self-derivation, d(0) =
d(0 ∗ x) = [d(0) ∗ x]ω[0 ∗ d(x)] = [d(0) ∗ x]ω0, i.e.,
d(0) = (d(0) ∗ x)ω0. If we let x := 0, then 0 = d(0) =
(d(0)∗0)ω0 = 0ω0. Hence 0 is an idempotent in (X, ω).

Theorem 4.4. Let (X, ∗) be the left-zero-
semigroup.

(i)if d1 is an (X, ∗, ω)-self-derivation and if d2 is an
(X, ∗, ω)-self-coderivation, then (d1 ◦ d2)(x ∗ y) =
d1(x) ∗ d2(y) for all x, y ∈ X,

(ii)if d1 is an (X, ∗, ω)-self-coderivation and if d2 is an
(X, ∗, ω)-self-coderivation, then (d1 ◦ d2)(x ∗ y) =
d2(x) ∗ d1(y) for all x, y ∈ X,

(iii)if di are an (X, ∗, ω)-self-coderivations (i = 1, 2),
then (d1◦d2)(x∗y) = d1(x)∗d2(y) for all x, y ∈ X,

(iv)if di are an (X, ∗, ω)-self-derivations (i = 1, 2),
then (d1◦d2)(x∗y) = (d1◦d2)(x)∗y for all x, y ∈ X,

Proof. (i). Given x, y ∈ X, we have

(d2 ◦ d2)(x ∗ y) = d1(d2(x ∗ y))
= d1[(x ∗ d2(y))ω (d2(x) ∗ y)]
= d1(x ∗ d2(y))
= [d1(x) ∗ d2(y)] ω [x ∗ d1(d2(y))]
= d1(x) ∗ d2(y)

Other cases are similar to the case (i), and we omit
the proofs.

We can obtain similar properties to Theorem 4.4
when we discuss the right-zero-semigroup.

Proposition 4.5. If (X, λ, ρ) is a left-over-right
ranked bigroupoid, then every (X, λ, ρ)-self-derivation
µ is the identity map on X.

Proof. For any x, y ∈ X, µ(x) = µ(xλy) = (µ(x)λy)
ρ
(xλµ(y)) = µ(x)ρx = x.

Similarly we obtain the following proposition:
Proposition 4.5′. If (X, ρ, λ) is a right-over-left

ranked bigroupoid, then every (X, ρ, λ)-self-derivation
µ is the identity map on X.

Proposition 4.6. If µ is an (X, λ, λ)-self-
coderivation or an (X, ρ, ρ)-self-derivation, then it is
the identity map on X.

Proof. Given x, y ∈ X, if µ is an (X, λ, λ)-self-
coderivation, then µ(x) = µ(xλ y) = (xλµ(y))λ
(µ(x) λ y) = xλ µ(x) = x. If µ is an (X, ρ, ρ)-self-
derivation, then µ(y) = µ(x ρ y) = (x ρ µ(y)) ρ (µ(x) ρ y) =
y.

Proposition 4.7. Every map µ : X → X is
both an (X, λ, ρ)-self-coderivation and an (X, ρ, λ)-
self-coderivation.

Proof. Given x, y ∈ X, we have µ(xλy) = µ(x) =
xρ µ(x) = (xλ µ(y)) ρ (µ(x)λ y), proving that µ is an
(X, λ, ρ)-self-coderivation. Moreover, we have µ(xρy) =
µ(y) = µ(y)λy = (xρµ(y))λ(µ(x)ρy), proving that µ
is an (X, ρ, λ)-self-coderivation.

Let (X, ∗, ω) be a ranked bigroupoid with distin-
guished element 0 and let d be an (X, ∗, ω)-self-
derivation. A right ideal I, i.e., I ∗ X ⊆ I, of the
groupoid (X, ∗) is said to be d-friendly if x ∗ d(x) ∈
I for any x ∈ X. We denote by Ker(d) = {x ∈
X|d(x) = 0} the kernel of d.

Proposition 4.8. Let (X, ∗) be a groupoid and
let 0 ∈ X such that 0 ∗ x = x ∗ x = 0 for all x ∈ X.
If d is an (X, ∗, ∗)-self-derivation, then Ker(d) is a
d-friendly right ideal of (X, ∗).

Proof. If x ∈ Ker(d) and y ∈ X, then d(x ∗ y) =
(d(x) ∗ y) ∗ (x ∗ d(y)) = (0 ∗ y) ∗ (x ∗ d(y)) = 0 and
hence x ∗ y ∈ Ker(d), proving that Ker(d) is a right
ideal of (X, ∗).

Given x, y ∈ X, since d is an (X, ∗, ∗)-self-
derivation, we have d(x ∗ y) = (d(x) ∗ y) ∗ (x ∗ d(y)).
If we let y := d(x), then d(x ∗ d(x)) = (d(x) ∗ d(x)) ∗
(x ∗ d2(x)) = 0, which means that x ∗ d(x) ∈ Ker(d).
This proves the proposition.

Corollary 4.9. Let (X, ∗, 0) be a d/BCK-algebra.
If d is an (X, ∗, ∗)-self-derivation, then Ker(d) is a d-
friendly right ideal of (X, ∗).

Proof. Every d/BCK-algebra contains 0 ∈ X such
that 0 ∗ x = x ∗ x = 0 for all x ∈ X.

Let d be an (X, ∗, ∗)-self-derivation and let Rad(d)
be the intersection of all d-friendly right ideals of (X, ∗).
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Since X ∈ Rad(d), Rad(d) is always defined and
Rad(d) ⊆ Ker(d).

Proposition 4.10. Let (X, ∗) be a groupoid and
let 0 ∈ X such that 0 ∗ x = 0, x ∗ 0 = x for all x ∈
X. If d is an (X, ∗, ∗)-self-derivation, then Ker(d) =
Rad(d).

Proof. If x ∈ Ker(d), then x = x∗0 = x∗d(x) ∈ Ii

for any d-friendly right ideal Ii of (X, ∗), i.e., x ∈
∩Ii = Rad(d). Hence Ker(d) ⊆ Rad(d).

Corollary 4.11. Let (X, ∗, 0) be a BCK-algebra.
If d is an (X, ∗, ∗)-self-derivation, then Ker(d) =
Rad(d).

Proof. The conditions 0∗x = 0 and x∗0 = x hold
for any x ∈ X in every BCK-algebra.

5. (X, ∗, ω)-scalars in ranked
bigroupoids

Let (X, ∗, ω) be a ranked bigroupoid and let ξ ∈ X. ξ
is called an (X, ∗, ω)-scalar if for any x, y ∈ X,

(3)ξ ∗ (x ∗ y) = (ξ ∗ x) ∗ y = x ∗ (ξ ∗ y)
(4)ξ ∗ (x ω y) = (ξ ∗ x)ω (ξ ∗ y).

For example, if (R, ·, +) is a commutative ring,
then every element is an (R, ·,+)-scalar.

Example 5.1. Let (G, •,¯) be a K-algebra and
let eG be the identity of (G, •). Then eG is the unique
(G, •,¯)-scalar. In fact, if α is a (G, •,¯)-scalar, then
α • (a ¯ b) = α • (ab−1) and (α • a) ¯ (α • b) = (α •
a) • (α • b)−1 = α • (a • b−1) • α−1. It follows that
α• (a• b−1) = α• (a• b−1)•α−1 and hence α−1 = eG,
proving that α = eG.

Proposition 5.2. Let d be an (X, ∗, ω)-self-
derivation and let ξ be an (X, ∗, ω)-scalar. If we define
a map ξ ∗ d : X → X by (ξ ∗ d)(x) := ξ ∗ d(x), then it
is an (X, ∗, ω)-self-derivation.

Proof. Since d(x∗y) = (d(x)∗y)ω(x∗d(y)) for any
x, y ∈ X, we have

(ξ ∗ d)(x ∗ y) = ξ ∗ [(d(x) ∗ y)ω(x ∗ d(y))]
= [ξ ∗ (d(x) ∗ y)]ω[ξ ∗ (x ∗ d(y))]
= [(ξ ∗ d)(x) ∗ y]ω[x ∗ (ξ ∗ d(y))]
= [(ξ ∗ d)(x) ∗ y]ω[x ∗ ((ξ ∗ d)(y))],

proving that ξ ∗ d is an (X, ∗, ω)-self-derivation.
Proposition 5.3. Let (X, ∗) ∈ Bin(X). If ξ ∈ X

satisfies the condition (3), then ξ is both an (X, ∗, λ)-
scalar and an (X, ∗, ρ)-scalar.

Proof. For any x, y ∈ X, we have ξ∗[xλy] = ξ∗x =
(ξ ∗ x)λ(ξ ∗ y) and ξ ∗ [xρy] = ξ ∗ y = (ξ ∗ x)ρ(ξ ∗ y).

Proposition 5.4. Let (X, ∗, f) be a leftoid, i.e.,
x ∗ y = f(x), a function of x, for all x, y ∈ X. If
a groupoid (X, ω) does not contain any idempotent,
then the ranked bigroupoid (X, ∗, ω) does not contain
any (X, ∗, ω)-scalar.

Proof. Assume that there is an (X, ∗, ω)-scalar α in
X. Then for any x, y ∈ X, we have f(α) = α∗ [xωy] =
(α ∗x)ω(α ∗ y) = f(α)ωf(α), which implies that f(α)
is an idempotent in X, a contradiction.

Proposition 5.5. Let (X, ∗, g) be a rightoid, i.e.,
x∗y = g(y), a function of y, for all x, y ∈ X. If α ∈ X
is an (X, ∗, ω)-scalar, then

(i)g2(b) = g(b) for all b ∈ X,
(ii)g : (X, ω) → (X,ω) is a homomorphism.

Proof. (i). Let α be an (X, ∗, ω)-scalar. Then α ∗
(a ∗ b) = α ∗ g(b) = g2(b) and (α ∗ a) ∗ b = g(b) for all
a, b ∈ X. Hence we obtain g2(b) = g(b) for all b ∈ X.

(ii). Given a, b ∈ X, we have g(aωb) = α ∗ (aωb) =
(α∗a) ω (α∗b) = g(a)ωg(b), proving that g : (X,ω) →
(X,ω) is a homomorphism.

Proposition 5.6. Let (X, ∗, g) be a rightoid and
let g : (X, ω) → (X, ω) be an idempotent homomor-
phism. Then every element of X is an (X, ∗, ω)-scalar.

Proof. For any α ∈ X, we have α ∗ (a ∗ b) =
α∗g(b) = g2(b) = g(b) = (α∗a)∗b, since g is an idem-
potent map. Moreover, a ∗ (α ∗ b) = a ∗ g(b) = g2(b),
proving the condition (3).

α ∗ (aωb) = g(aωb) = g(a)ωg(b) = (α ∗ a)ω(α ∗ b),
proving the condition (4).

Theorem 5.7. Let ξ, µ be (X, ∗, ω)-scalars. Then
ξ ∗ µ is also an (X, ∗, ω)-scalar.

Proof. Given a, b ∈ X, we have

(ξ ∗ µ)(a ∗ b) = ξ ∗ [µ ∗ (a ∗ b)] = ξ ∗ [(µ ∗ a) ∗ b]
= [ξ ∗ (µ ∗ a)] ∗ b] = [(ξ ∗ µ) ∗ a] ∗ b,

a ∗ [(ξ ∗ µ) ∗ b] = a ∗ [ξ ∗ (µ ∗ b)]
= ξ ∗ [a ∗ (µ ∗ b)] = ξ ∗ [(µ ∗ a) ∗ b]
= ξ ∗ [µ ∗ (a ∗ b)] = (ξ ∗ µ)(a ∗ b),

proving the condition (3). Moreover, for any a, b ∈ X,
we obtain

(ξ ∗ µ)(aωb) = ξ ∗ [µ ∗ (aωb)]
= ξ ∗ [(µ ∗ a)ω(µ ∗ b)]
= [ξ ∗ (µ ∗ a)]ω[ξ ∗ (µ ∗ b)]
= [(ξ ∗ µ) ∗ a]ω[(ξ ∗ µ) ∗ b],

proving the condition (4).
Up to this point we have discussed (X, ∗, ω)-self-

derivations and self-coderivations as mappings d : X
→ X with certain properties.

Given ranked bigroupoids (X, ∗, ω) and (Y, •, ψ)
we shall be interested in defining what is meant by an
(X, ∗, ω)-derivation δ : X → Y of which (X, ∗, ω)-self-
derivations form special cases.
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In order to do so we need to introduce the concept
of a rankomorphism, i.e., a morphism in the category
of ranked bigroupoids.

Thus given ranked bigroupoids (X, ∗, ω) and (Y, •,
ψ), a map f : (X, ∗, ω) → (Y, •, ψ) is called a ranko-
morphism if for all x, y ∈ X, f(x ∗ y) = f(x) • f(y)
and f(xωy) = f(x) ψ f(y). If f(x ∗ y) = f(x)ψf(y)
and f(xωy) = f(x) • f(y), then f : X → Y is a
morphism for Bin2(X), but it is not a rankomorphim
since it mixes the rankings.

If by Rbbin we denote ∪XRbbin(X), i.e., the class
of all ranked bigroupoids (X, ∗, ω) for arbitrary set X
with rankomorphisms as the morphisms for this class
of objects then Rbbin becomes a category since the
(function) composition of rankomorphisms is also a
rankomorphism and, since the identity map on a set,
naturally generates a corresponding rankomorphism
as well.

Rankomorphisms can be studied in much greater
detail certainly, but here the purpose is to introduce
the following idea.

A map δ : (X, ∗, ω) → (Y, •, ψ) is called an (X, ∗, ω)-
derivation if there exists a rankomorphism (not nec-
essarily unique) f : X → Y such that δ(x ∗ y) =
(δ(x) • f(y))ψ(f(x) • δ(y)) for all x, y ∈ X.

Note that the composition of a rankomorphism
and an (X, ∗, ω)-self-derivation forms an (X, ∗, ω)-
derivation. In fact, if f : (X, ∗, ω) → (Y, •, ψ) is a
rankomorphism and d : X → X is an (X, ∗, ω)-self-
derivation, then for all x, y ∈ X,

(f ◦ d)(x ∗ y) = f(d(x ∗ y))
= f((d(x) ∗ y)ω(x ∗ d(y)) = f(d(x) ∗ y)ψf(x ∗ d(y))
= ((f ◦ d)(x) • f(y))ψ(f(x) • (f ◦ d)(y))

so that f ◦ d : (X, ∗, ω) → (Y, •, ψ) is an (X, ∗, ω)-
derivation.

Now suppose f : (X, ∗, ω) → (Y, •, ψ) is a ranko-
morphism and d : Y → Y is a (Y, •, ψ)-self-derivation.
Then d(f(x ∗ y)) = (d(f(x)) • f(y))ψ (f(x) • d(f(y))
and d ◦ f : (X, ∗, ω) → (Y, •, ψ) is an (X, ∗, ω)-
derivation.

Thus, if f : (X, ∗, ω) → (X, ∗, ω) is the identity
map, then it is a rankomorphism and if d : X →
X is an (X, ∗, ω)-self-derivation, it is an (X, ∗, ω)-
derivation.

Suppose now that f : (X, ∗, ω) → (Y, •, ψ) is a
rankomorphism and that δ : (Y, •, ψ) → (Z, O, θ) is
a (Y, •, ψ)-derivation, i.e., for some rankomorphism
g : (Y, •, ψ) → (Z, O, θ) we have δ(f(x∗y)) = δ(f(x)•
f(y)) = (δf(x)Ogf(y))θ(gf(x)Oδf(y)) where
(g◦f)(x) = g(f(x)) and (g◦f)(x∗y) = g(f(x)•f(y)) =
g(f(x))Og(f(y)), i.e., g ◦ f : (X, ∗, ω) → (Z, O, θ) is a
rankomorphism since (g ◦ f)(xωy) = g(f(x)ψf(y)) =
(g ◦ f)(x)θ(g ◦ f)(y) as well. Hence δ ◦ f : (X, ∗, ω) →
(Z, O, θ) is an (X, ∗, ω)-derivation.

If δ : (X, ∗, ω) → (Y, •, ψ) is an (X, ∗, ω)-derivation
and if g : (Y, •, ψ) → (Z, O, θ) is a rankomorphism

where δ(x ∗ y) = (δ(x) • f(y)ψ(f(x) • δ(y)), then
(g◦δ)(x∗y) = g((δ(x)•f(y))ψ(f(x)•δ(y))) = g(δ(x)•
f(y))θg(f(x) • δ(y)) = (g(δ(x))Og(f(y)))θ
(g(f(x))Og(δ(y))). Since x 7−→ g(f(x)) defines a ranko-
morphism g◦f : (X, ∗, ω) → (Z, O, θ), g◦δ : (X, ∗, ω) →
(Z, O, θ) is an (X, ∗, ω)-derivation.

Among the (X, ∗, ω)-derivations, δ : (X, ∗, ω) →
(Y, •, ψ) there are those which correspond to additive
maps, i.e., those for which δ(xωy) = δ(x)ψδ(y). More
generally, we shall consider mappings α : X → X,
β : Y → Y where α(xωy) = α(x)ωα(y) and β(uψv) =
β(u)ψβ(v) in addition to δ to obtain βδα(xωy) =
βδ(α(x)ωα(y)) = β(δα(x)ψδα(y)) = (βδα(x))ψ
(βδα(y)). In particular, if α and β are rankomorphims,
then β◦δα is an (X, ∗, ω)-derivation if δ is an (X, ∗, ω)-
derivation.

Example 5.8. (i). Suppose that R is the collec-
tion of all real numbers. Then we have ranked bi-
groupoids (R, ·,+) and (R, +, ·) where +, · are usual
addition and multiplication on R respectively. If f :
(R, ·, +) → (R,+, ·) is a rankomorphism, then f(x ·
y) = f(x) + f(y) and f(x + y) = f(x) · f(y). Hence
f(0) = f(x · 0) = f(x) + f(0), showing that f(x) = 0
for all x ∈ R. Thus the zero mapping is the only
rankomorphism between (R, ·, +) and (R, +, ·).

(ii). Suppose that δ : (R, ·, +) → (R, +, ·) is an
(R, ·, +)-derivation. Then for some rankomorphism f :
(R, ·, +) → (R, +, ·) we have δ(x · y) = (δ(x) + f(y)) ·
(f(x) + δ(y)) = (δ(x) + 0) · (0 + δ(y)) = δ(x) · δ(y)
since f = 0 is the only rankomorphism by (i). Hence
(R, ·, +)-derivations include multiplicative mappings
on R. If n is a positive integer, then (x ·y)n = xn ·yn,
i.e., x 7−→ xn is then a multiplicative map.

Proposition 5.9. If f : (X, ∗, ω) → (Y, •, ψ) is an
onto rankomorphism and ξ ∈ X is an (X, ∗, ω)-scalar,
then f(ξ) is a (Y, •, ψ)-scalar.

Proof. Let u = f(a), v = f(b) in Y . Then

f(ξ) • (u • v) = f(ξ) • (f(a) • f(b))
= f(ξ) • f(a ∗ b) = f(ξ ∗ (a ∗ b))
= f(a ∗ (ξ ∗ b)) = f(a) • [f(ξ) • f(b)]
= u • [f(ξ) • v],

u • [f(ξ) • v] = f(a ∗ (ξ ∗ b))
= f(ξ ∗ (a ∗ b)) = f(ξ ∗ a) • f(b)
= [f(ξ) • f(a)] • f(b)
= [f(ξ) • u] • v,

proving the condition (3).

f(ξ) • [uψ v] = f(ξ) • [f(a)ψf(b)]
= f [(ξ ∗ (aωb)] = f [(ξ ∗ a)ω(ξ ∗ b)]
= f(ξ ∗ a)ψf(ξ ∗ b)
= [f(ξ) • u]ψ[f(ξ) • v],

proving the condition (4). This proves the proposition.
Example 5.10. Let K be a field. Define a binary

operation “∗” on K by x ∗ y := x(x− y) for all x, y ∈
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K. Let (X,ω) ∈ Bin(X). We show that there is no
(K, ∗, ω)-scalar in K. Assume that α is a (K, ∗, ω)-
scalar for some (K, ω) ∈ Bin(K). Then α ∗ (a ∗ b) =
α2 −αa2 + αab and (α ∗ a) ∗ b = α4 − 2α3a + α2(a2 −
b) + αab for any a, b ∈ X.

α2 − αa2 + αab = α4 − 2α3a + α2(a2 − b) + αab (3)

If we let a := 0 in (5), then α2 = α4 − bα2 for any
b ∈ K. If we let b := −1, then α4 = 0 and hence α = 0.
Hence we obtain a2 = a∗0 = a∗(0∗b) = 0∗(a∗b) = 0
for all a, b ∈ K. It follows that a = 0, which shows that
|K| = 1, a contradiction.
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