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Abstract: In this paper, we introduce the notion of ranked bigroupoids and we define as well as discuss (X, , w)-self-
(co)derivations. In addition we define rankomorphisms and (X, *,w)-scalars for ranked bigroupoids, and we consider

some properties of these as well.
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1. Introduction

Y. Imai and K. Iséki introduced two classes of ab-
stract algebras: BC' K-algebras and BCT-algebras ([4,
5]). J. Neggers and H. S. Kim introduced the no-
tion of d-algebras which is another useful general-
ization of BC'K-algebras, and then investigated sev-
eral relations between d-algebras and BC K-algebras
as well as several other relations between d-algebras
and oriented digraphs ([8]). H. S. Kim and J. Neg-
gers ([7]) introduced the notion of Bin(X) and ob-
tained a semigroup structure. E. Posner [9] discussed
derivations in prime rings, and H. E. Bell and L. C.
Kappe [2] studied rings in which derivations satisfy
certain algebraic conditions. Y. B. Jun and X. L. Xin
[6] discussed derivations in BCT-algebras, and N. O.
Alshehri [1] applied the notion of derivations in in-
cline algebras. In this paper, we introduce the no-
tion of ranked bigroupoids and discuss (X, *,w)-self-
(co)derivations. (X, *,w)-scalars in ranked bigroupoids
will be discussed as well.

2. Preliminaries

An d-algebra ([8]) is a non-empty set X with a con-
stant 0 and a binary operation “*” satisfying the
following axioms:

(A)zxz =0,
(B)0* 2 =0,
(C)zxy =0and y*xx = 0imply x = y for all z,y € X.

A BCK-algebra is a d-algebra X satisfying the
following additional axioms:

D)((z*y) x (xx2))*(z*xy) =0,
(E)(x* (z*xy))*xy =0 for all z,y,z € X.

Given a non-empty set X, we let Bin(X) denote
the collection of all groupoids (X, *), where * : X X
X — X is a map and where *(z,y) is written in the
usual product form. Given elements (X, %) and (X, o)
of Bin(X), define a product “0” on these groupoids
as follows:

(X, %) O(X,e) = (X,X), (1)
where
e Wy=(zxy)e(y*z), (2)

for any z,y € X. Using that notion, H. S. Kim
and J. Neggers proved the following theorem.

Theorem 2.1. ([7]) (Bin(X), O) is a semigroup,
i.e., the operation “0” as defined in general is asso-
ciative. Furthermore, the left- zero-semigroup is the
identity for this operation.
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3. Ranked bigroupoids

A ranked bigroupoid is an algebraic system (X, x*,e)
where X is a non-empty set and “x” and “e” are bi-
nary operations defined on X. We may consider the
first binary operation * as the major operation, and
the second binary operation e as the minor operation.

Example 3.1. A K-algebra ([3]) is defined as an
algebraic system (G, e, ®) where (G, o) is a group and
where * ©® y := z e y~!. Hence every K-algebra is a
ranked bigroupoid.

Example 3.2. We construct a ranked bigroupoid
from any BC K-algebra. In fact, given a BC K-algebra
(X, *,0), if we define a binary operation “A” on X by
xAy:=xx* (z*y) for any z,y € X, then (X, *,A) is
a ranked bigroupoid.

We introduce the notion of “ranked bigroupoids”
to distinguish two bigroupoids (X, ,e) and (X, e, x).
Even though (X,x*,e) = (X, e, %) in the sense of bi-
groupoids, the same is not true in the sense of ranked
bigroupoids. This is analogous to the situation for
sets, where {z,y} = {y,z} but < z,y >#< y,z >
in general.

Given an element (X,*) € Bin(X), (X,*) has
a natural associated ranked bigroupoid (X, x, *), i.e.,
the major operation and the minor operation coincide.

We denote the class of all ranked bigroupoids de-
fined on a non-empty set X by Rbbin(X), ie.,
Rbbin(X) := {(X, x,e) | (X, %, @) is a ranked bigroupoid
on X }. We denote the class of all bigroupoids defined
on a non-empty set X by Bin?(X), i.e., Bin?(X) :=
{(X, *, ®) | %, are binary operations on X}.

Theorem 3.3. If we define (X, X, §) := (X, *,w)0O
(X, e,%) for any (X, *,w), (X, e, 1) € Rbbin(X), then
(Rbbin(X),0) is a semigroup where x Xy := (z*y) e
(y x x) and z€y = (zwy)y(ywz) for all z,y € X.

Proof. The proof is similar to the case of Theorem
2.1 in [7], and we omit it.

Proposition 3.4. If (X, *) is a left-zero-semigroup,
then (X, *, %) is the identity element in (Rbbin(X), O).

Proof. Let (X, *) be the left-zero-semigroup and
let (X,e,7) € Rbbin(X). If (X,X,¢) := (X,*,%)0
(X, e,1), then, for all x,y € X, we have z Ky =
(v+y)e(y+o) = woy and u€y = (wxy)(y+z) = 20y,
since (X, *) is the left-zero-semigroup, i.e., (X, X, &) =
(X7 .’ /l/))' If (X7 ®7 é.) = (X7 .7 /(Z))D(X7 *7 *)’ then’ for
all z,y € X, we have XKy = (zeoy)x(yex) = xeoy and
2y = (zpy) * (yyx) = xvhy, since (X, ) is the left-
zero-semigroup, i.e., (X,X, &) = (X, e,1). This proves
that (X, *, ) is the identity in (Rbbin(X), D).

If (X, *) is the right-zero-semigroup and if (X, X, &)
= (X, *,%)0 (X,e,1), then it is easy to see that
cXy = yex and xzfy = yyz for all z,y € X.
We denote by = P y = y e x and zy°Py = yix.
It follows that (X, *,*)0(X,X, &) = (X, e°P,¢°P) and
(X, B, )0(X, #, %) = (X, °P, ).

Proposition 3.5. If we define a map E : Bin(X)
— Rbbin(X) by E((X,x)) := (X, *,%), then it is an
injective homomorphism of semigroups.

Proof. Given (X,x),(X,e) € Bin(X), if we let
(X,0) = (X,%)0(X, o), then (X,0,0) = B((X,0))
= E((X,x)0(X,e)). If we let (X,K,&) := (X, *,*)0
(X,e0,0), then 2 Xy = (z*xy) e (y+x) = 0y and
28y = (xxy)e (yxx) = 20y for all z,y € X. Tt
follows that (X,X,¢) = (X,0,0). Hence

E((X7 *)D<X7.)) = E((X7 D))

= (X,0,0)

= (X, *,%)0(X,e,0)

= E((X,*))DE((X,e)),
proving the proposition.

A ranked bigroupoid (X, )\, p) is said to be left-
over-right if for all z,y € X, zAy = = and xzpy = y.
Similarly, a ranked bigroupoid (X, p, A) is said to be
right-over-left if for all z,y € X, zpy = y and xA\y =
x.

Proposition 3.6. For any (X, *,w) € Rbbin(X),
we have the following:

(XA p)BX, *w) =
(X7 *’wop)7

(i) (X, p, N)O(X, *,w) =
(X, *°P w).

(X, %,w)0(X, A p) =
(X,*,w)O(X,p,\) =
Using the notion of two binary operations A and

p we construct an interesting table which is a copy of
the Klein-4-group as follows:

O [ (XAN (Xpp) (X Ap) (X,p))
(XN [ (XN (Xop,p) (XA p) (X, p,A)
(X, Ps P) (Xv P p) (Xv )‘7>‘) (X, Ps )‘) (Xv)‘vp)
(XA p) | (XA p) (XopA) (XN A (X, p,p)
(X, |2 )‘) (Xa P7)\) (X,)\,p) (X7 P p) (X7)‘a /\)

4. Derivations in ranked bigroupoids

Given a ranked bigroupoid (X, *,w), a map d : X —
X is called an (X, w)-self-derivation if for all z,y €
X,

d(z xy) = (d(z) * y)w(z = d(y))

In the same setting, a map d : X — X is called an
(X, *,w)-self-coderivation if for all x,y € X,

d(x xy) = (z * d(y))w(d(z) * y)

Note that if (X,w) is a commutative groupoid,
then (X, *,w)-self-derivations are (X, *,w)-self-
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coderivations. A map d : X — X is called an abelian-
(X, *,w)-self-derivation if it is both an (X, x, w)-self-
derivation and an (X, *, w)-self-coderivation.

Proposition 4.1. Let (X, *,w) be a ranked bi-
groupoid such that (X,w,0) is a d-algebra. For any
(X, %, w)-self-derivation d : X — X if the identity
mapping, then X = {0}.

Proof. Consider d(x xy) = (d(z) * y)w(z xd(y)) =
(zxy)w(xxy)=0. Thuszxy=y*xz =0and z =y,
whence |X| =1 and X = {0}.

For the case where d : X — X is an (X, *,w)-
self-coderivation the same conclusion holds if d is the
identity map. Indeed, d(zxy) = (x*xd(y))w(d(z)*y) =
(xxy)w(x xy) =0, so that z xy = y x x = 0 implies
x=yand |X|=1.

Proposition 4.2. Let d be an (X, *, w)-self- deriva-
tion. If (X, *) is a monoid with identity 1, then d(1)
is an idempotent in (X,w).

Proof. Since d is an (X, x, w)-self-derivation, d(x) =
d(x x 1) = [d(z) * llw[z * d(1)] = d(x)w[z * d(1)] for
all z € X. If we let x := 1, then d(1) = d(1)w[1 *
d(1)] = d(1)wd(1), proving that d(1) is an idempotent
in (X,w).

Proposition 4.3. Let d be an (X, x*,w)-self-
derivation and let (X, *) be a semigroup with zero 0.
If d is regular, i.e., d(0) = 0, then 0 is an idempotent
n (X,w).

Proof. Since d is an (X, *, w)-self-derivation, d(0) =
d(0 x z) = [d(0) * z]w[0 x d(z)] = [d(0) * z]w0, i.e.,
d(0) = (d(0) * z)w0. If we let  := 0, then 0 = d(0) =

(d(0)*0)w0 = 0w0. Hence 0 is an idempotent in (X, w).

Theorem 4.4. Let (X, %)
semigroup.

be the left-zero-

(i)if dy is an (X, *,w)-self-derivation and if ds is an
(X, %, w)-self-coderivation, then (dy o do)(x * y) =
di(x) x do(y) for all z,y € X,

(i)if dy is an (X, *,w)-self-coderivation and if dy is an
(X, %, w)-self-coderivation, then (dy o do)(x * y) =
do(x) x dyi(y) for all z,y € X,

(iii)if d; are an (X, *,w)-self-coderivations (i = 1,2),
then (dyods)(z*y) = di(x)*xda(y) for allz,y € X,

(iv)if d; are an (X, x*,w)-self-derivations (i = 1,2),

then (diods)(x+y) = (dyods)(z)*y forallx,y € X,

Proof. (i). Given z,y € X, we have
(d3 0 d3)(z ) = d (dy (e * )
= di[(z x da(y)) w (d2(2) * y)]
= dy(z x da2(y))
= [di(2) * da(y)] w
= dy () * da(y)

Other cases are similar to the case (i), and we omit
the proofs.

[z * d1(d2(y))]

We can obtain similar properties to Theorem 4.4
when we discuss the right-zero-semigroup.

Proposition 4.5. If (X, )\, p) is a left-over-right
ranked bigroupoid, then every (X, A, p)-self-derivation
u is the identity map on X.

Proof. Forany 7, € X, u(z) = u(x\y) = (u(x) )

p
(zAu(y)) = p(@)pr = .

Similarly we obtain the following proposition:

Proposition 4.5". If (X, p, \) is a right-over-left
ranked bigroupoid, then every (X, p, \)-self-derivation
w is the identity map on X.

Proposition 4.6. If p is an (X, )\ \)-self-
coderivation or an (X, p, p)-self-derivation, then it is
the identity map on X.

Proof. Given z,y € X, if p is an (X, A, \)-self-
coderivation, then p(z) = plrAiy) = (xAp(y))A
(w(z)Ay) = zAp(z) = = If pis an (X, p, p)-self-
derivation, then u(y) = p(x py) =
Y.

Proposition 4.7. Every map p : X — X is
both an (X, A, p)-self-coderivation and an (X, p, A)-
self-coderivation.

Proof. Given z,y € X, we have p(xdy) = p(z) =
zpp(x) = (x Ap(y)) p(u(z) Ay), proving that  is an
(X, A, p)-self-coderivation. Moreover, we have p(zpy) =

) = py)ry = (zp p(y))A(u(z)py), proving that p
is an (X, p, \)-self-coderivation.

Let (X, *,w) be a ranked bigroupoid with distin-
guished element 0 and let d be an (X, *,w)-self-
derivation. A right ideal I, i.e., I * X C I, of the
groupoid (X, ) is said to be d-friendly if x x d(z) €
I for any x € X. We denote by Ker(d) = {x €
X|d(z) = 0} the kernel of d.

Proposition 4.8. Let (X,*) be a groupoid and
let 0 € X such that Oxxz =xxx =0 for all z € X.
If d is an (X, x, )-self-derivation, then Ker(d) is a
d-friendly right ideal of (X, x).

Proof. If x € Ker(d) and y € X, then d(z xy) =
(d(x) * 9) * (@ 5 d(y)) = (0% y) * (z * d(y)) = 0 and
hence z x y € Ker(d), proving that Ker(d) is a right
ideal of (X, *).

Given z,y € X, since d is an (X, x,x*)-self-
derivation, we have d(x * y) = (d(z) *x y) * (x * d(y)).
If we let y := d(z), then d(x x d(z)) = (d(z) * d(x)) *
(x * d*(x)) = 0, which means that = * d(z) € Ker(d).
This proves the proposition.

Corollary 4.9. Let (X, %,0) be ad/BCK-algebra.
If d is an (X, *, %)-self-derivation, then Ker(d) is a d-
friendly right ideal of (X, x).

Proof. Every d/ BC' K-algebra contains 0 € X such
that Oxz =z xxz =0 for all x € X.

Let d be an (X, *, *)-self-derivation and let Rad(d)
be the intersection of all d-friendly right ideals of (X, ).
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Since X € Rad(d), Rad(d) is always defined and
Rad(d) C Ker(d).

Proposition 4.10. Let (X, x) be a groupoid and
let 0 € X such that 0 xx = 0,2 *0 = x for all x €
X. If d is an (X, *, %)-self-derivation, then Ker(d) =
Rad(d).

Proof. If x € Ker(d), then x = %0 = xxd(z) € I;
for any d-friendly right ideal I; of (X, ), i.e., z €
NI; = Rad(d). Hence Ker(d) C Rad(d).

Corollary 4.11. Let (X, x,0) be a BCK-algebra.
If d is an (X, x*,x)-self-derivation, then Ker(d) =
Rad(d).

Proof. The conditions Oz = 0 and z*0 = x hold
for any z € X in every BC'K-algebra.

5. (X, *,w)-scalars in ranked
bigroupoids
Let (X, *,w) be a ranked bigroupoid and let £ € X. £

is called an (X, *,w)-scalar if for any x,y € X,

(3)§ * (xxy) =
()¢ * (rwy) =

(Exx)ry=a*({*y)
(Exz)w (€ *y).

For example, if (R,-,+) is a commutative ring,
then every element is an (R, -, +)-scalar.

Example 5.1. Let (G,e,®) be a K-algebra and
let e be the identity of (G, e). Then eg is the unique
(G, e,®)-scalar. In fact, if « is a (G, 8, ®)-scalar, then
ae(a®b)=ae(ab!)and (¢ea)® (veb) = (ae
a)e(aveb) ™t = ae(aebt)ea t It follows that
ae(aeb ) =cae(aeb !)ea! and hence a™! = eg,
proving that a = eg.

Proposition 5.2. Let d be an (X, *,w)-self-
derivation and let £ be an (X, *,w)-scalar. If we define
amap&xd: X — X by (§xd)(z) := Exd(x), then it
is an (X, x,w)-self-derivation.

Proof. Since d(xxy) = (d(z) *y)w(xxd(y)) for any
z,y € X, we have

(€*d)(z*y) =& [(d(x) * y)w(z * d(y))]
[ (d(x) * y)w[§ * (z * d(y))]
= [(€ x d)(2) * ylw[z * (§ * d(y))]
= [(§* d) () * yJw[z = ((§ * d)(y))],

proving that £ x d is an (X, *, w)-self-derivation.
Proposition 5.3. Let (X, ) € Bin(X). If ¢ € X
satisfies the condition (3), then £ is both an (X, *, A)-
scalar and an (X, , p)-scalar.
Proof. For any x,y € X, we have x[xAy] = Exa =
(€x2)A(E*y) and E* [zpy] = Exy = (Ex2)p( * y).

Proposition 5.4. Let (X, x, f) be a leftoid, i.e.,
x+xy = f(z), a function of x, for all z,y € X. If
a groupoid (X,w) does not contain any idempotent,
then the ranked bigroupoid (X, *,w) does not contain
any (X, *,w)-scalar.

Proof. Assume that there is an (X, *,w)-scalar « in
X. Then for any z,y € X, we have f(a) = ax[zwy] =
(a*xx)w(axy) = f(a)wf(a), which implies that f(«)
is an idempotent in X, a contradiction.

Proposition 5.5. Let (X, x, g) be a rightoid, i.e.,
x*y = g(y), a function of y, for allz,y € X. Ifa € X
is an (X, *,w)-scalar, then

(i)g?(b) = g(b) for allb € X,
(ii)g : (X,w) — (X,w) is a homomorphism.

Proof. (i). Let a be an (X, *,w)-scalar. Then «
(axb) = ax*g(b) = g%(b) and (a xa) *b = g(b) for all
a,b € X. Hence we obtain g%(b) = g(b) for all b € X.

(ii). Given a,b € X, we have g(awb) = a * (awb) =
(axa)w (axb) = g(a)wg(b), proving that ¢ : (X, w) —
(X,w) is a homomorphism.

Proposition 5.6. Let (X, *,g) be a rightoid and
let g : (X,w) — (X,w) be an idempotent homomor-
phism. Then every element of X is an (X, *,w)-scalar.

Proof. For any o € X, we have a * (a xb) =
axg(b) = g?(b) = g(b) = (a*a) xb, since g is an idem-
potent map. Moreover, a x (a * b) = a x g(b) = g2(b),
proving the condition (3).

a * (awdb) = glawb) = g(a)wg(b) = (o * a)w(a * b),
proving the condition (4).

Theorem 5.7. Let &, u be (X, *,w)-scalars. Then
& is also an (X, *,w)-scalar.

Proof. Given a,b € X, we have

(€xp)axb) = Ex[ux(axb)] = € x[(uxa)=b]
= e x(ura)) b = [(€xp) *a] b,
(€ x ) * b = ax €% (uxb)]
— ¢ fax (uxb)] = Ex[(uxa)+b]
= Exfux (axb)] = (€ p)(axb),

proving the condition (3). Moreover, for any a,b € X,
we obtain

(€ * p)(awd) = & * [pu * (awb)]
= Ex [(p* a)w(p = b)]
[€ % (p* a)]w[€ * (p* b)]
= [(§ * p) * aw[(§ * p) = B],

a
proving the condition (4).

Up to this point we have discussed (X, x,w)-self-
derivations and self-coderivations as mappings d : X
— X with certain properties.

Given ranked bigroupoids (X, *,w) and (Y, e, 1)
we shall be interested in defining what is meant by an
(X, #,w)-derivation § : X — Y of which (X, %, w)-self-
derivations form special cases.
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In order to do so we need to introduce the concept
of a rankomorphism, i.e., a morphism in the category
of ranked bigroupoids.

Thus given ranked bigroupoids (X, *,w) and (Y, e,
), amap f: (X,*,w) — (Y,e 1) is called a ranko-
morphism if for all z,y € X, f(zxy) = f(z) o f(y)
and f(zwy) = f(z)¥ f(y). I f(z*y) = f(z)yf(y)
and f(zwy) = f(x) ® f(y), then f : X — Y is a
morphism for Bin?(X), but it is not a rankomorphim
since it mixes the rankings.

If by Rbbin we denote Ux Rbbin(X), i.e., the class
of all ranked bigroupoids (X, *,w) for arbitrary set X
with rankomorphisms as the morphisms for this class
of objects then Rbbin becomes a category since the
(function) composition of rankomorphisms is also a
rankomorphism and, since the identity map on a set,
naturally generates a corresponding rankomorphism
as well.

Rankomorphisms can be studied in much greater
detail certainly, but here the purpose is to introduce
the following idea.

Amapd: (X, *,w) —
derivation if there exists a rankomorphism (not nec-
essarily unique) f : X — Y such that é(x xy) =
(0(z) o fly)(f(x) e d(y)) for all z,y € X.

Note that the composition of a rankomorphism
and an (X, *,w)-self-derivation forms an (X, *,w)-
derivation. In fact, if f : (X,*,w) — (Y, e,9) is a
rankomorphism and d : X — X is an (X, *,w)-self-
derivation, then for all z,y € X,

(fod)(zxy) = f(d(zxy))
= f((d(z) * y)w(z * d(y)) =
= ((fod)(x)e f(y)(f(x)e (fod)(y)
30 t.ha;.fo d: (X,x,w) — (Y,e,1) is an (X, *,w)-
Now s1.1ppose [ (X, *x,w) — (Y,e,1) is a ranko-
morphism and d : Y — Y is a (Y, e, ¢)-self-derivation.
Then d(f(zxy)) = (d(f(x)) o f(y)) ¥ (f(x) e d(f(y))
and d o f X, x,w) — (Yo, ) is an (X, *,w)-
derivation.
Thus, if f : (X,x,w) — (X,*,w) is the identity

map, then it is a rankomorphism and if d : X —
X is an (X, *,w)-self-derivation, it is an (X, *,w)-
derivation.

Suppose now that f : (X,*,w) — (
rankomorphism and that ¢ : (Y,e,¢) —
a (Y, e, 1)-derivation, i.e.,
g:(Y,e,9) —

Y,e, 1) is a
(Z,v,0) is
for some rankomorphism
(Z,v,0) we have §(f(xxy)) = §(f(x)e
fy) = (0f(x)vgf(y)o(gf(x)vif(y)) where
(9of)(x) = g(f(2)) and (gof)(zxy) = g(f(z)ef(y)) =
G(F@)Vg(f(3), e g0 £+ (X, ) = (2,7,) is a
rankomorphism since (g o f)(zwy) = g(f(z)Yf(y)) =
(90 /)()8(g 0 £)(y) as well. Hence 5o  : (X, %,w) —
Z,9,0) is an (X, *,w)-derivation.

If6 : (X,x,w) — (Y,e,¢)isan (X, x, w)-derivation
and if g : (Y,e,¢) — (Z,V,0) is a rankomorphism

(Y, e,7) is called an (X, *, w)-

where (a 9(0) ¢ SWT() £ 50), then

Y) 0
(905)(93*@/) g((86(z)e f(y))(f(x)ed(y))) = g(d(x)e
fy)og(f(z) e o = (9(0(z))vy(f(v)))0
(9(f(@))vg(é(y)))- Since x — g(f(x)) defines a ranko-
morphism gof : (X, *,w) — (Z,V,0), god : (X, *,w) —
(Z,v,0) is an (X, >k,w)-deriva‘cion.

Among the (X, *,w)-derivations, § : (X, *,w) —
(Y, e, 1) there are those which correspond to additive
maps, i.e., those for which é(zwy) = §(x)¥d(y). More
generally, we shall consider mappings a : X — X,
B:Y — Y where a(zwy) = a(z)wa(y) and B(uyv) =
B(u)yB(v) in addition to 4 to obtain Sda(zwy) =
Bi(a(x)waly) — Blda(z)vdaly) — (Ada(z))
(Bda(y)). In particular, if  and 8 are rankomorphims,
then Bodaris an (X, %, w)-derivation if § is an (X, *, w)-
derivation.

Example 5.8. (i). Suppose that R is the collec-
tion of all real numbers. Then we have ranked bi-
groupoids (R, -, +) and (R, +,-) where +, - are usual
addition and multiplication on R respectively. If f :
(R,-,+) — (R,+,-) is a rankomorphism, then f(z -
y) = f(z) + f(y) and f(z +y) = f(z) - f(y). Hence
£(0) = f{ - 0) = f(x) + £(0), showing that f(x) = 0
for all x € R. Thus the zero mapping is the only
rankomorphism between (R, -, +) and (R, +,-).

(ii). Suppose that ¢ : (R,-,+) — (R,+,-) is an
(R, -, +)-derivation. Then for some rankomorphism f :
(R7 1) — (R, +, ) we have 6(x - y) = (5(1‘) + f(y)) -
(f(z) +6(y)) = (6(x) +0) - (04 6(y)) = d(x) - 6(y)
since f = 0 is the only rankomorphism by (i). Hence
(R, -, +)-derivations include multiplicative mappings
on R. If n is a positive integer, then (x-y)™ = 2™ -y,

fd(z) x y) f(zised(y))— ™ is then a multiplicative map.

Proposition 5.9. If f : (X, *,w) — (Y,e,%) is an
onto rankomorphism and £ € X is an (X, x, w)-scalar,
then f(§) is a (Y, e,1))-scalar.

Proof. Let u = f(a),v = f(b) in Y. Then

f(&) e (uev) = f(§)e(f(a)ef(b))

=f(§) e flaxb) = f(E* (axb))
= flax(§xb)) = f(a) e [f(£) ® f(D)]
= ue[f(§) o],
ue[f(&)ev] = flax (b))
= f(€x(axb)) = f(Exa)e f(b)
[f(§) o f(a)] & f(b)
[f(§) e u] 0 v,
proving the condition (3).
f(&) o [uvv] = (&) o [f(a)if ()]
= f1(§ * (awd)] = fI(§ * a)w(& * b)]
= f(Exa)ypf(§xb)
= [£(&) e ulp[f(£) o 0],
proving the condition (4). This proves the proposition.

Example 5.10. Let K be a field. Define a binary

operation “«” on K by zxy := z(x —y) for all z,y €
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K. Let (X,w) € Bin(X). We show that there is no
(K, *,w)-scalar in K. Assume that « is a (K, *,w)-
scalar for some (K,w) € Bin(K). Then a * (a * b) =
a? — aa? + aab and (a*a) xb = a* — 2a%a + a?(a® -
b) + aabd for any a,b € X.

o? — aa® + aab = o' — 2034 + o*(a® — b) + aab (3)

If we let a := 0 in (5), then a? = a* — ba? for any
be K.Ifweletb:= —1, then a* = 0 and hence a = 0.
Hence we obtain a? = ax0 = a*(0xb) = 0% (a*b) =0
forall a,b € K. It follows that a = 0, which shows that
|K| =1, a contradiction.
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