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1 Introduction

Recent linear regression researches concern, with much attention, on fitting approaches that can accommodate data sets
adequately. A most popular regression approach, which willbe discussed in this paper, is spline models. This model
approach can accommodate the underlying trends of the data,which in some cases are curvilinear, in a linear regression
model. It consists of piecewise lines that join at ”knots” which gives a precise data representation than a single straight
regression line.

Crucially, spline models play a central role in regression because their computational properties and ability to gain
appropriate fit, [7]. At early stages of investigation, researchers developedspline models to scatter plot smoothing (e.g.
[8]). Later on, they treated spline model as polynomial which can be improved in a frame of knot selection (e.g. [20])
and basis functions (e.g. [9]). Introducing spline models to multivariate regression (e.g. [10]), nonparametric regression
(e.g.[8]) and Bayesian models (e.g. [6]) took a wide range of interest in the literature. [16] made a considerable comparison
between spline models.

Availability of various sampling methods is indeed a major challenge for researchers. This is because they need to
investigate appropriateness of these methods to gain better model estimates. A classical sampling method to fit spline
models considers Simple Random Sampling (SRS). However, since it is practically more efficient, Ranked Set Sampling
(RSS) has an increasing attractiveness when estimating regression models, [18]. This method can minimize sampling costs
and furthermore, it can improve efficiency of the estimated parameters in the underlying model, [17]. For these reasons,
this research investigates DRSS technique, as an improved method of RSS, for spline models and compare it with RSS
and SRS techniques.

McIntyer [12], who firstly introduced RSS method, used it to estimate the population mean of forage yields. [15]
provided the mathematical theory of this method. They proved that the estimated mean using RSS method is an unbiased
estimator to the population mean and it has less variance than usual SRS estimated mean. The recent monograph by [18]
summarized most of research linked to RSS method until that date. He presented the dramatic increase of using RSS
method in different statistical fields as well as its practical efficiency in various research fields. Importantly, [2] introduced
a new RSS procedure called Double RSS (DRSS). This proceduredepends mainly on repeating the usual RSS twice where
the produced sampling units can increase the efficiency of the estimated mean dramatically.

The RSS procedure was introduced to regression by [19] and [4]. In a recent paper, [1] extended the RSS method to
estimate spline regression models. In order to compare the fitted models, [1] found the new estimated parameters using
RSS have less variance than the estimated parameters using SRS. To enhance improvement, this paper develops spline
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model fitting by using DRSS as an alternative procedure to RSSand SRS. Mainly, this research proposes that the new
sampling procedure can improve model fitting by reduce variance of the estimated parameters.

1.1 Spline models with simple random sampling

A simple spline model forn data points(x1,y1),(x2,y2), ...,(xn,yn) that have been selected by SRS method, can be
expressed as follows

yi = β0+β1xi +
q

∑
j=1

β2 j(xi −K j)++ ei; i = 1, . . . ,n. (1)

whereyi is the response variable,xi is the predictor variable,β0,β1,β2 j are the model coefficients,e is the error term and
K j are the model knots;j = 1, ...,q, whereq is number of knots. These knots are usually selected from thedense set of
the predictor variable. The mathematical expression(a)+ means the non-negative part ofa; i.e. max(0,a). Here we call
the term(xi −K)+ by a linear spline basis function.

Settling the spline model (1) in matrix form gives

y = Xβ + ε, (2)

where the design matrices of this model are

y =




y1
y2
...

yn


 ; X =




1 x1 (x1−K1)+ · · · (x1−Kq)+
1 x2 (x2−K1)+ · · · (x2−Kq)+
...

...
...

. . .
...

1 xn (xn −K1)+ · · · (xn −Kq)+


 ;β =




β0
β1
β21
...

β2q




; ε =




e1
e2
...

en


 .

General model assumptions over the random error termε assume that E(ε) = 0 and Cov(ε) = Σ . During this research
we keep the random error term independent of the predictor variable.

Applying the generalized least square method on the above spline model produces the fit

ŷ = Xβ̂ (3)

whereβ̂ is the minimizer of the quadratic form

||y−Xβ ||2 = (y−Xβ)T(y−Xβ) (4)

with closed solutionβ̂ = (XT Σ−1X)−1XT Σ−1y. where the produced least square estimate is unbiased ; i.e E(β̂ ) = β ,
with covariance Cov(β̂) = (XT Σ−1X)−1. Simply, one can realized that variance of the model coefficientsβ̂i take the form
Var(β̂i) = [theith diagonal element of(XT Σ−1X)−1].

Alternative simple model assumption consider uncorrelated errors with constant variance such that Cov(ε) = σ2I ;
whereI is the identity matrix, which gives the least square estimate

β̂ = (XT X)−1XT y. (5)

Also, this leads the covariance matrix to be Cov(β̂) = σ2(XT X)−1 which simply means that

Var(β̂i) = σ2[theith diagonal element of(XT X)−1]. (6)

Model fitting needs to estimateσ2. Implementing Sum Square Errors (SSE) is a common approach to produce an unbiased
estimator forσ2 as

σ̂2 =
SSE
n− p

=
||y− ŷ||2

n− p
(7)

wheren is the sample size andp is number of terms in the candidate model.
The previous model fitting approach considered SRS method when select sampling units. However in this paper, we

investigate the DRSS method to estimate spline models and compare them with the regular RSS and SRS. The RSS
method, which selects sampling units after spread them in a proceeding manner, verified its quality in many practical
modeling situations, [18]. In what follows, we describe the regular RSS method for general statistics and for simple linear
regression in specific. Then, the DRSS procedure is also described.
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1.2 Ranked set sampling procedure

When the RSS procedure was firstly established, [12] divided sample units to distinguished subsamples then each
subsample had been ordered in a proceeding manner separately. The following Particular steps can summarize the
procedure.

–Step 1: Randomly selectm2 units from the target population.
–Step 2: Allocate them2 selected units as randomly as possible intom sets, each of sizem.
–Step 3:Rank the units within each set and select theith ranked unit from theith sample.
–Step 4:The whole process can be repeatedr cycles if needed to increase the sample size.

Generally, this procedure can be repeatedr times, where each repetition called a cycle, to generate thedesired RSS size
n = rm, wheren is the SRS sample size.

Essentially, RSS method is practically effective when sampling units are expensive or hard to measure, however rank
few units, without real quantification, is relatively cheaper. Attain order of sampling units can be made by an expert or an
analyst judgment visually or by any other relatively cheap method.

To generate DRSS units, procedure can be described as follows: Identifym3 units from the target population and divide
these units randomly intom sets each of sizem2. The procedure of ranked set sampling is applied on these sets to obtainm
ranked set sampling each of sizem, and again apply the ranked set sampling procedure on them ranked set sampling sets
obtained in the first stage to obtain a DRSS of sizem. The yielded DRSS set can be presented as{x(11)1,x(22)2, ...,x(mm)m}.

Introducing RSS methods to regression can be extended similarly as above. The only note to mention is that RSS units
can be yielded either by ordering the response variable or the predictor variable. In the following regression example,
we consider the case of ordering the response variabley to generate RSS units. Also, and for simple presentation, we
assume a simple regression model (i.e. the model has one predictor variablex). The SRS sample units can be denoted as
(xi,yi); i = 1,2, · · · ,n.

In this example, assume the desired RSS size ism = 3. For this purpose, consider we have the following 3
subsamples each of size 3 pairs:{(x1,y1)1,(x2,y2)1,(x3,y3)1}, {(x1,y1)2,(x2,y2)2,(x3,y3)2} and
{(x1,y1)3,(x2,y2)3,(x3,y3)3}. Before measuring any sample unit, order these subsamples separately according to the
response variable. Ordering can be performed by any relatively cheap method. Then from the first subsample, choose the
first minimum-response unit linked with the correspondencepredictor; which can be denoted by(x[1],y(1))1, from the
second subsample choose the second minimum-response pair(x[2],y(2))2 and finally, from the last subsample choose the
maximum-response pair(x[3],y(3))3. Generally in this research, the pair(x[i],y(i)) j means thatith predictor valuex[i]
corresponds to theith minimum-response valuey(i) from the jth subsample. So, the yielded RSS set of size 3 is
{(x[1],y(1))1,(x[2],y(2))2,(x[3],y(3))3} which can be used to estimate the regression model.

This paper implements the DRSS procedure to fit spline modelswhere either ranking the response variable or the
predictor variable can be achieved. Demonstration of the RSS to DRSS can be achieved straightforwardly. Simply we
need to regeneratem different RSS samples each of sizem as above to produce the following DRSS units:
{(x[11],y(11))1,(x[22],y(22))2, ...,(x[mm],y(mm))m}1,
{(x[11],y(11))1,(x[22],y(22))2, ...,(x[mm],y(mm))m}2,...,{(x[11],y(11))1,(x[22],y(22))2, ...,(x[mm],y(mm))m}r where r is number
of cycles that DRSS need to be repeated to achieve equalityn = rm.

The next two sections define the RSS and DRSS procedures, thathave been described above, for spline models.
Model’s parameters are estimated using the new DRSS method and the efficiency of these parameters are compared with
the estimated parameters concluded by RSS and SRS.

2 Spline model estimation using RSS techniques

Demonstrations of RSS procedures to select sample units andfit spline models are achieved in this section. Firstly, in
subsection (2.1), the RSS and DRSS sampling units are gained after rank the response variable and illustrated to estimate
the spline models. Then, in a similar fashion, in subsection(2.2), the entire process is applied again however this time
after rank a predictor variable. At the end of this section, we investigate the new sampling schemes. We realized that RSS
and DRSS, achieved better performance than SRS scheme when fitting spline models. Moreover, the DRSS scheme has
the best performance.
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2.1 Spline models with a ranked response

Mainly in this subsection, spline model fitting is achieved using RSS and DRSS units after order the response variable.
We illustrate the method described at the end of the introduction to produce the DRSS units. Now, the produced sample is
available to estimate the proposed spline model.

The linear spline model, after implement DRSS units, can be written similar to model (1) as follows

y(ii) j = β ∗
0 +β ∗

1x[ii] j +
q

∑
l=1

β ∗
2l(x[ii] j −Kl)++ e∗(ii) j; i = 1, . . . ,m; j = 1, . . . ,r. (8)

wherey(ii) j is ith smallest response unit that has been selected fromith RSS subsample in thejth cycle , x[ii] j is the
predictor variable that is associated withy(ii) j; β ∗

0 ,β
∗
1 andβ ∗

2l are model parameters ande(ii) j are the random error terms.
HereK1, ...,Kq are model knots; for a suitable number of knotsq. The produced model in matrix entity can be written as

y(DRSS) = X[DRSS]β
∗+ ε∗(DRSS) (9)

wherey(DRSS) =




y(11)1
...

y(mm)1
...

y(11)r
...

y(mm)r




; X[DRSS] =




1 x[11]1 (x[11]1−K1)+ · · · (x[11]1−Kq)+
...

...
...

. . .
...

1 x[mm]1 (x[mm]1−K1)+ · · · (x[mm]1−Kq)+
...

...
...

. . .
...

1 x[11]r (x[11]r −K1)+ · · · (x[11]r −Kq)+
...

...
...

. . .
...

1 x[mm]r (x[mm]r −K1)+ · · · (x[mm]r −Kq)+




β ∗ =
[
β ∗

0 β ∗
1 β ∗

21· · ·β ∗
2q

]T
; ε (DRSS) =

[
e∗(11)1

e∗(22)1
· · ·e∗(mm)r

]T
.

Similarly, we can produce the following RSS units{(x[1],y(1))1,(x[2],y(2))2, ...,(x[m],y(m))m}1,
{(x[1],y(1))1,(x[2],y(2))2, ..., (x[m],y(m))m}2,...,{(x[1],y(1))1,(x[2],y(2))2, ...,(x[m],y(m))m}r and introduce them to the model
in (9) however the new model matrices contain RSS units.

Model assumptions assume uncorrelated errors with non-constant variance and zero mean which means

E(ε(DRSS)) = 0 and Cov(ε(DRSS)) = diag{σ∗2
(1), ...,σ

∗2
(m), ...,σ

∗2
(1), ...,σ

∗2
(m)}mr×mr ≡ Σ∗. (10)

Keeping the non-constant variance assumption in (10) needs an appropriate method to estimate variance components. A
popular method to achieve this goal, when the likelihood is general, is by using Feasible Generalized Least Square
algorithm (FGLS), [13]. Computer statistical softwares are rich with packages that can compute this algorithm. For
example, the packageRFGLS in R software is a direct algorithm.

If a simple assumption is proposed by assuming constant variance hence, model assumptions becomes

E(ε(DRSS)) = 0 and Cov(ε(DRSS))≡ Σ∗ = σ∗2I . (11)

Under these assumptions, using the generalized least square method to minimize||y(DRSS)−X[DRSS]β
∗||2 produces

β̂
∗
= (XT

[DRSS]Σ
∗−1X[DRSS])

−1XT
[DRSS]Σ

∗−1y(DRSS) (12)

where the covariance matrix of these estimated coefficientsis Cov(β̂
∗
) = (XT

[DRSS]Σ
∗−1X[DRSS])

−1. This generates the

following estimated variance for the model coefficientβ̂ ∗
i

V̂ar(β̂ ∗
i ) = [theith diagonal entry of(XT

[DRSS]Σ̂
∗−1X[DRSS])

−1] (13)

whereΣ̂∗ is the estimated covariance matrix.
Considerably, the produced estimatorβ̂

∗
, either by using RSS or DRSS procedures, is an unbiased estimator for the

model parameterβ and their covariances satisfies Cov(β̂
∗
)≤ Cov(β̂) whereβ̂ is the least square estimate ofβ when using

SRS as defined in (5). Proof of the first property is given next while proof of the second property is attained numerically
as seen in the simulation study Table (1).
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To prove unbiasedness of theβ̂
∗
, we need to prove thatE(β̂

∗
) = β . Note that

E(β̂
∗
) = E((XT

[DRSS]Σ
∗−1X[DRSS])

−1XT
[DRSS]Σ

∗−1y(DRSS))

= (XT
[DRSS]Σ

∗−1X[DRSS])
−1XT

[DRSS]Σ
∗−1E(y(DRSS))

= (XT
[DRSS]Σ

∗−1X[DRSS])
−1XT

[DRSS]Σ
∗−1X[DRSS]β

= β
(14)

To demonstrate improvement of our new procedures, we define the relative efficiency concept of̂β ∗
i with respect toβ̂i

as follows

e f f (β̂ ∗
i , β̂i) =

V̂ar(β̂ i)

V̂ar(β̂
∗

i )
(15)

which indicates how much one of the estimators is better thanthe other one.
The second property with support of Table (1), can show that the fitted spline model using both RSS and DRSSare

more efficient than the fitted spline models using SRS where, eff(β̂
∗
, β̂ )≥ 1. However, the fitted spline model using DRSS

is the best.

2.2 Spline models with ranked predictor variable

In the same imperative manner that has been improved in the previous subsection, DRSS can be easily extended to fit
spline models where sampling units can be produced after order the predictor variable.

When the ranking is performed on the predictor variable, thesuggested spline model using DRSS is given by

y[ii] j = β ∗
0 +β ∗

1 x(ii) j +
q

∑
l=1

β ∗
2l(x(ii) j −Kl)++ e∗[ii] j ; i = 1, · · · ,m; j = 1, · · · ,r.

wherex(ii) j is ith smallest unit of the predictor variable from theith DRSS subsample in thejth cycle,y[ii] j is the response
variable that associate withx(ii) j; β ∗

0 ,β ∗
1 andβ ∗

2l are the model parameters,K1, ...,Kq are the model knots ande∗[ii] j is the
random error term.

Settle the above model in matrix form produces

y[DRSS] = X(DRSS)β
∗+ ε(DRSS). (16)

Matrices of the above model can be defined similarly as in model (9) with the same model assumptions.
Minimizing the least square criterion of||y[DRSS]−X(DRSS)β

∗||2 gives the solution

β̂
∗
= (XT

(DRSS)Σ
∗−1X(DRSS))

−1XT
(DRSS)Σ

∗−1y[DRSS]. (17)

The covariance matrix for the above estimated coefficient can be defined as follows

Cov(β̂
∗
) = (XT

(DRSS)Σ
∗−1X(DRSS))

−1. (18)

Importantly, the produced estimatorβ̂
∗

in (17) is unbiased estimator for the model parameterβ and its covariance
satisfies Cov(β̂

∗
)≤ Cov(β̂) whereβ̂ is the least square estimate ofβ when using SRS as defined in (5).

The second property with support of Table (2), can show that the fitted spline model using both RSS and DRSSare
more efficient than ones that fitted using SRS where, eff(β̂

∗
, β̂ ) ≥ 1. Magnificently, DRSS gained the best efficiency at

all.

3 Simulation study

To illustrate the practical performance of estimating spline models using RSS and DRSS schemes, computer artificial
studies were conducted with the following general set up. Data sets were generated from the curvilinear relation:yi =
f (xi)+ ei, such thatf (x) = 2 sin(x) exp(−x2) andx hasUni f orm(−2,2) distribution. The error termsei were assumed
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Table 1: Relative efficiencies of the simulation study when using DRSS and RSS spline models comparing to the SRS spline models.
Rank the response variable was achieved.

m = 2 m = 3 m = 4
r = 2 r = 3 r = 2 r = 3 r = 3 r = 6
n = 4 n = 6 n = 6 n = 9 n = 12 n = 24

RSS
β̂ ∗

0 1.151 1.107 1.208 1.187 1.482 1.410
β̂ ∗

1 1.149 1.093 1.208 1.188 1.469 1.396
β̂ ∗

21 1.150 1.117 1.210 1.176 1.417 1.389
β̂ ∗

22 1.152 1.153 1.194 1.179 1.431 1.390
β̂ ∗

23 1.147 1.126 1.211 1.181 1.416 1.397
DRSS

β̂ ∗
0 1.727 1.701 1.892 1.821 2.105 2.010

β̂ ∗
1 1.718 1.709 1.851 1.818 2.137 1.976

β̂ ∗
21 1.721 1.711 1.864 1.823 2.116 2.017

β̂ ∗
22 1.726 1.713 1.859 1.830 2.097 1.965

β̂ ∗
23 1.720 1.710 1.872 1.814 2.125 1.971

uncorrelated with 0 mean and 0.122 constant variance. We proposed RSS and samples of sizem = 2,3 and 4 units with
specific number of cyclesr to perform the relationn = rm, wheren is the SRS size. Both methods RSS and DRSS sample
were used to estimate the spline model with 3 knots.

Our specific selection for small number of knots;i.e q = 3, is to enhance comfortable visibility for the produced tables
where each table will only have 5 estimated parametersβ̂ ∗

0 , β̂
∗
1 , β̂

∗
21, β̂

∗
22 andβ̂ ∗

23. Despite the small number of knots we
used, performance of our method when we increase number of knots to be large is statistically indistinguishable.

For sake of comparison, the same smoothing model above was used to generate SRS samples of size
n = 4,6,9,12 and 24 where SRS, RSS and DRSS are compared based on the samenumber of measured units. The
yielded SRS samples were used to estimate spline models with3 knots. This small number of knots is to allow
comparison with the simulated RSS and DRSS that have the samenumber of knots. Last point to mention that all
configurations in this simulation study were ran with 10000 replicates.

3.1 Simulated spline models

According to the above simulation arrangements, RSS and DRSS samples were produced after ranking the response
variable as discussed in subsection (2.1). Then the generated data sets were used to estimate the following spline model

y(ii) j = β ∗
0 +β ∗

1x[ii] j +β ∗
21(x[ii] j −Kl)++β ∗

22(x[ii] j −K2)++β ∗
23(x[ii] j −K3)++ e∗(ii) j; i = 1, . . . ,m; j = 1, . . . ,r

wherey(ii) j is ith smallest response unit that has been selected fromith RSS subsample in thejth cycle ,x[ii] j is the
predictor variable that is associated withy(ii) j; β ∗

0 ,β
∗
1 ,...,β ∗

23 are model parameters ande is the random error term. Here
K1,K2,K3 are the model knots. We fitted this model under the proposed assumptions in (10) by using (12).

To enhance model comparison, the generated SRS samples in the above section (3) were used to estimate the spline
model (2) via (3).

Outputs of these simulation trails are summarized in terms relative efficiency of the model parameters in Table (1).
Relative efficienciese f f (β̂ ∗

i , β̂i) were computed using (15) for i = 1,2,3,4,5. These outputs show, with all sampling
sizes, that the RSS and DRSS spline models are more efficient than SRS spline models. Also, we can note that the DRSS
gained petter performance since it is more efficient than SRSand RSS.

To show effectiveness of extension of the RSS methods, samples were generated after ranking the predictor variable
as mentioned in subsection (2.2) to estimate the spline model. Then the produced RSS and DRSSsamples were used to
fit the spline model in (16) by using the estimated parameters in (17).

We compared the estimated RSS and DRSS spline models, after ranking the predictor variable, with the SRS spline
models. The results for these simulation experiments are summarized in Table (2).

A general conclusion can be summarized from both Tables (1) and (2) that RSS method is more efficient than SRS
when it used to fit spline models either the response variableor the predictor variable has been ordered. Consequently,
DRSS gained the best model efficiency. Also, the efficiency ofthe estimator has been increased according to the increment
in the ordered sample sizem.
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Table 2: Relative efficiencies of the simulation study when using DRSS and RSS spline models comparing to the SRS spline models.
Order the predictor variable was achieved.

m = 2 m = 3 m = 4
r = 2 r = 3 r = 2 r = 3 r = 3 r = 6
n = 4 n = 6 n = 6 n = 9 n = 12 n = 24

RSS
β̂ ∗

0 1.138 1.131 1.196 1.176 1.412 1.378
β̂ ∗

1 1.137 1.130 1.201 1.180 1.396 1.329
β̂ ∗

21 1.140 1.129 1.189 1.175 1.402 1.363
β̂ ∗

22 1.132 1.137 1.193 1.173 1.378 1.337
β̂ ∗

23 1.139 1.141 1.185 1.182 1.381 1.345
DRSS

β̂ ∗
0 1.714 1.713 1.853 1.811 2.105 2.011

β̂ ∗
1 1.721 1.701 1.871 1.807 2.114 1.998

β̂ ∗
21 1.709 1.700 1.862 1.814 2.117 2.100

β̂ ∗
22 1.711 1.711 1.867 1.813 2.120 2.037

β̂ ∗
23 1.715 1.712 1.859 1.820 2.109 1.986

Table 3: Relative efficiencies of the estimated parameters in the DRSS and RSS spline model comparing to the SRS model in the
practical example. Order the response and predictor variables were achieved.

m = 3 r = 8 n = 24

order the response variable RSS DRSS order the predictor variable RSS DRSS
β̂ ∗

0 1.273 1.887 β̂ ∗∗
0 1.205 1.853

β̂ ∗
1 1.256 1.891 β̂ ∗∗

1 1.211 1.846
β̂ ∗

21 1.251 1.876 β̂ ∗∗
21 1.196 1.861

β̂ ∗
22 1.244 1.895 β̂ ∗∗

22 1.213 1.858

4 Practical study

To illustrate the method that has been improved in this paperto real life applications, the environment study ”Air Pollution”
data set was used. The data set shows daily readings of air quality components in New York city from May 1, 1973 to
September 30, 1973. The data set have 154 observations with 6variables. More details about this study can be found in
[5].

Our investigations on this study is mainly to show efficiencyof using DRSS when fitting spline models. We studied
two variables of this study which are Ozone (which representthe mean ozone parts per billion from 1300 to 1500 hours)
as the response variable and Solar Radiation (which represent solar radiation in Langleys in the frequency band 4000-
7700 Angstroms from 0800 to 1200 hours) as the predictor variable. The transformation Ozone(1/3) was considered in
this paper.

Using set sizem = 3, RSS and DRSS samples were drawn from the Air Pollution dataset withr = 8 cycles. In the
first step, we ranked sample units with respect to the response variable to estimate the underlying relationship using spline
estimates. Later on, we ranked sampling units with respect to the predictor variable to estimate appropriate spline models.
And for the purpose of comparison, we selected a SRS of sizen = 24 and then we estimated spline models as regular.

A note to mention here is that variables of the study were ranked based on exactly measured values. This method
of ranking called ”perfect ranking”. We used this method because observations of this example were already measured.
However, and from practical point of view, the interesting attribute of RSS method is to use a relatively cheap ranking
method to order subsamples then measure a few units of these subsamples which reduces sampling costs.

In all above models, we considered number of knotsq = 2. Table(3) shows the relative efficiencies for the estimated
spline model parameters by using DRSS and RSS sample units when ordering either the response or the predictor.

As seen in this table, both spline models that were fitted using DRSS and RSS methods are more efficient than model
that was fitted using SRS method. Imperatively, the estimated parameters in the DRSS spline model have a superior
efficiency more than RSS and SRS.
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5 Conclusions and Discussion

This paper defined DRSS procedure for spline model fitting. Itproved that estimators of the underlying spline model using
DRSS units are more efficient than both RSS and SRS spline models. Tables of the simulation as well as practical studies
supported this claim.

Practically, in real data applications where sampling units are difficult or expensive to measure, RSS method and its
extension to DRSS are more beneficial than SRS when selectingsampling units because they can reduce sampling costs.
This means, ranking a small number of units, before measuring a subset, can reduce time and sampling expenditure.
Another practical point of view when ranking sampling units, analyst can consider a negligibly cost variable to achieve
ranking, so he can select either the response or the predictor variable which is cheaper. Also, he can select the relatively
cheapest predictor variable to rank among all other expensive predictors.

This paper establishes a paradigm for future research undergeneral linear model scenarios. Applying DRSS
procedure to other spline models like B-spline, natural cubic spline,...etc., to produce smooth regression models canbe
extended in the same simple manner. [14], Chapter 3, summarized these spline models which preparesan appropriate
infrastructure to implement RSS techniques. Moreover, statistical inferences for our improved models can be
investigated.
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