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In this paper we discuss an approach to quantum computation where the basic informa-

tion units (qubits and quregisters) are replaced by density operators and the restriction

to unitary operators as logical gates is lifted through the introduction of the more gen-

eral concept ofquantum operation( [17], [1]). This perspective is especially suited to

provide a physical description of open systems. In particular, we illustrate the advan-

tages of this approach over the standard one and show that it can account for two im-

portant irreversible transformations already considered in the literature: the irreversible

conjunctionIAND and the fuzzy-like Łukasiewicz disjunction⊕.
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1 Introduction

At first sight, it would seem as though irreversibility did not fit in very well with quan-

tum computation: one of the most evident advantages of the latter, when compared to

classical computation, is given by the fact that its reversible gates allow us to trace the evo-

lution of a system during the computation process with no loss of information whatsoever.

Indeed, investigations in mainstream quantum computation have prevailingly considered

computational situations for which this description pattern is adequate ( [?], [12], [10]).

However, as we will discuss below, there are phenomena that can be hardly accounted for

if we keep to the standard paradigm: decoherence, noise, measurements in the middle of

a computation - roughly put, any computational process that involves an interaction with

an environmentof sorts - call into play an unavoidable loss of information that renders

the process itself irreversible. To conveniently describe such situations, alongside with the

kind of processes that are dealt with by the standard approach, a new, more comprehensive

perspective has been recently developped in quantum computation (see e.g. [17], [1]). The
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aim of this paper is to survey this new approach and to describe some original applications

of such.

In particular, in Section 2 we review the basics of the standard approach to quantum

computation. In Section 3 and in Section 4 we introduce a different framework, where the

basic information units (qubits and quregisters) are replaced by density operators and the

restriction to unitary operators as logical gates is lifted in favour of a more liberal attitude

which leads to the introduction of the more general concept ofquantum operation. We also

mutually compare both frameworks and contend that the latter has a decisive edge over

the former. Section 5 is devoted to the development of a logical perspective on quantum

computation. Finally, in Section 6, building upon previous work by our research group, we

show that the quantum operations framework can account for two important irreversible

transformations already considered in the literature: the irreversible conjunctionIAND

and the fuzzy-like Łukasiewicz disjunction⊕. We show, in fact, that theIAND connective

is expressible through a quantum operation via Kraus’ Theorem, while the Łukasiewicz

disjunction can be approximated by means of a special class of quantum operations.

2 The standard approach to quantum computation

In this section we shall try to bridge the current formal models of quantum compu-

tational theory [?] - proceeding via quantum gates operating on pure states - and a novel

approach according to which:

• the carriers of information need not be pure states, but, more generally, density oper-

ators (qumixes) ( [?], [?]);

• the operations acting thereupon need not be unitary operators ( [1], [16], [?], [?]).

It is well-known that in quantum mechanics a physical system is associated to a Hilbert

spaceH. Any pure state of the system, mathematically represented by a unit vector ofH,

is a maximal information quantity, i.e. a piece of information on the physical system that

could not be consistently augmented by any further observation.

Let us first consider a simple physical systemS whose associated Hilbert space isC2.

Let B = {|0〉 , |1〉} be the orthonormal canonical basis ofC2. In this simple case, the

general form of a pure state|ψ〉 is

a |0〉+ b |1〉 ,

wherea andb are complex numbers which, in virtue of the unitarity hypothesis, must abide

by the condition|a|2 + |b|2 = 1. In the quantum computational parlance, the vector|ψ〉
is calledqubit and acts as the quantum counterpart of the classical bit. As dictated by the

Born rule, |a|2 yields the probability that|ψ〉 is detected in the state|0〉 as the outcome
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of a possible measure, and dually for|b|2 and |1〉. Logically speaking,|0〉 and |1〉 can

be naturally interpreted as meaning ”falsity” and ”truth”, respectively; in accordance with

this convention,|a|2 (respectively,|b|2) can be read as the probability that|ψ〉 is false

(respectively, true).

Switching to spherical coordinates, the general form of a qubit|ψ〉 can be written also

as

|ψ〉 = eiξ

(
cos

θ

2
|0〉+ eiφ sin

θ

2
|1〉

)

where the global phase factoreiξ can be omitted since it has no observable effect. By vary-

ing the values ofθ andφ, we are in a position to induce a bijective correspondence between

qubits and surface points of the Bloch-Poincaré sphere. This circumstance suggests the

geometric representation of Fig. 1.

Figure 2.1: The Bloch-Poincaré sphere.

Observe that orthogonal vectors inC2 need not be orthogonal vectors in the Bloch-

Poincaŕe representation: orthogonal vectors inC2, in fact, are geometrically represented

by unit vectors having opposite directions.

Scientific investigation, however, often requires a mathematical representation not just

of a simple physical system, but rather of a number of physical systems interacting with

one another. Suppose, then, that the physical systemS is composed byn (sub-)systems,

sayS1, ..., Sn. LetHSi be the Hilbert space associated toSi, for 1 ≤ i ≤ n. The space

H associated toS will be the tensor productHS1 ⊗ · · · ⊗ HSn of the spaces associated

to S1, ..., Sn. If Si = Sj for everyi, j, we resort to the notation⊗nHSi in place ofHSi
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⊗ · · · ⊗ HSi .

As we have seen, qubits ”live” in the spaceC2. Quregistersare the tensor product

analogues of qubits: by quregister, in fact, we mean any unit vector in⊗nC2. Quregisters

are the quantum counterpart of classical registers - i.e. finite strings of bits.

We will call any unit vector of the form|φ〉 = |x1, ..., xn〉 of⊗nC2 ann-configuration,

wherex1, ..., xn are variables ranging over the set{0, 1}. It is not hard to see that one can

identify eachn-configuration with a natural numberi ∈ [0, 2n − 1], for i = 2n−1x1 +
2n−2x2 + ... + xn. Intuitively, anyn-configuration can be read as a natural number in its

binary codification. In other words, one can concisely express a quregister|φ〉 as

|φ〉 = Σ2n−1
j=0 cj || j〉〉

wherecj is a complex number,|| j〉〉 is then-configuration corresponding to the numberj,

andΣ2n−1
j=0 |cj |2 = 1. Let R

(⊗nC2
)

be the set of all quregisters of⊗nC2. We denote by

R :=
∞⋃

n=1

(
R

(⊗nC2
))

the set of all quregisters inC2 or in a tensor product ofC2. Summing up, a quregister is a

pure state either of a simple (2-dimensional) or of a compound physical system.

Like in the classical case, also in quantum computation the evolution of a state is de-

scribed by the application of agateto a register (alternatively, if we adopt a logical perspec-

tive, we can see registers as sentences and gates as logical connectives). In the standard pre-

sentation of classical computation, a gate is anirreversiblefunction f : {0, 1}n → {0, 1}:
it is not possible to retrieve the values of the inputs by a sheer analysis of the output. In

other words, we are in no position to trace a state resulting from the application of a gate

back to the initial states to which the gate had been applied. On the other hand, in quantum

computation gates areunitaryoperators1 mappingn-tuples of quregisters into quregisters.

Because of the unitarity constraint, quantum gates are alwaysreversible. Classical

gates, as we have observed, generally fail to be such. Note that, however, any irre-

versible functionf : {0, 1}m → {0, 1}n can be transformed into a reversible function

f̃ : {0, 1}m+n → {0, 1}n+m such that:∀x1, ..., xn, xn+1, xn+m

f̃(x1, ..., xn, xn+1, xn+m) =
(
x1, ..., xn, f (x1,...,xm) +̂(xm+1...xm+n)

)

where+̂ is the (componentwise) sum modulo2. By way of example, consider the

classicalAnd truth table. It is immediate to see that it represents a typical many-to-one

1An operatorU is unitary wheneverUU+ = U+U = I, whereU+ is the adjoint of the operatorU andI is

the identity operator.
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irreversible transformationf :

(0, 0) → 0

(0, 1) → 0

(1, 0) → 0

(1, 1) → 1.

Fromf we can obtain its reversible match̃f : {0, 1}3 → {0, 1}3 , calledclassical Toffoli

gate. If we set to0 the third component of the input, we encode in a reversible way the

behaviour of the classical binary conjunction:

(0, 0, 0) → (0, 0, 0)

(0, 0, 1) → (0, 0, 1)

(0, 1, 0) → (0, 1, 0)

(0, 1, 1) → (0, 1, 1)

(1, 0, 0) → (1, 0, 0)

(1, 0, 1) → (1, 0, 1)

(1, 1, 0) → (1, 1, 1)

(1, 1, 1) → (1, 1, 0)

Observe that the third coordinate of each input (called theancilla bit) plays no role other

than guaranteeing that inputs and outputs have the same lengths.

The quantum generalisation of the classical Toffoli gate (denoted byT (n,m,1)) can be

naturally defined in the following way:

Definition 2.1. For anyn,m ≥ 1, theToffoli gate is the unitary operatorT (n,m,1) such

that, for every element|x1, ..., xn〉⊗|y1, ..., ym〉⊗|z〉 of the computational basisB(n+m+1)

2(shortened as|x〉 ⊗ |y〉 ⊗ |z〉),

T (n,m,1)(|x〉 ⊗ |y〉 ⊗ |z〉) = |x〉 ⊗ |y〉 ⊗
∣∣xnym+̂z

〉
.

For instance,T (1,1,1) trasforms any factorised vector|x〉 ⊗ |y〉 ⊗ |z〉 into the vector

obtained by leaving the first two factors (referred to as thecontrol bits) unchanged, while

replacing|z〉 (thetarget bit) by
∣∣xy+̂z

〉
.

Similary to the classical case, we can define a quantum version ofAnd in the following

way:

2We callcomputational basis, using the symbolB(n), the orthonormal basis for the space⊗nC2 given by the

set of alln-configurations

{|x1, ..., xn〉 : xi ∈ {0, 1}} .
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Definition 2.2. (the quantumAnd):

And(|ψ〉 ⊗ |ϕ〉) = T (1,1,1)(|ψ〉 ⊗ |ϕ〉 ⊗ |0〉).

Restricting ourselves toB(3), the computational basis of⊗3C2, we obtain the following

reversible table, where the target bits represent just the values of the classical conjunction

truth table:

|000〉 → |000〉
|001〉 → |001〉
|010〉 → |010〉
|011〉 → |011〉
|100〉 → |100〉
|101〉 → |101〉
|110〉 → |111〉
|111〉 → |110〉 .

3 From quregisters to density operators

The only situations we have been considering so far are cases of applications of quan-

tum gates to pure states which yield, in a reversible way, quregisters as outputs. However,

more often than not either we lack acomplete knowledgeabout the physical systems we

are investigating, or such systems are not isolated from the rest of the universe. Evidently,

quregisters are not the appropriate tools for a correct mathematical description of what is

going on in such cases as these.

In actual practice, a prepared state seldom corresponds to a pure state. Let us consider

the simplest case of an observable (i.e. a self-adjoint operator)A whose spectral decompo-

sition is
m∑

k=1

akP|ψk〉, whereP|ψk〉 := |ψk〉 〈ψk| is the projection operator onto the span of

|ψk〉. The real numbersak represent the possible values thatA may assume. If the physical

system is in a pure state|ψj〉, the probability of getting the resultak is pk = |〈ψa |ψ〉|2.

In general, however, the preparing instrument fluctuates in such a way that successive

preparations of the system may correspond to different states. Suppose that|ψ〉 is prepared

with relative frequencysk (sk > 0,
∑
k

sk = 1). Then, the probability valuepk should be

replaced by the following expression:
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m∑

k=1

sk |〈ψ | ψk〉|2 =
m∑

k=1

sk 〈ψ | ψk〉 · 〈ψk | ψ〉∗

= 〈ψ|
m∑

k=1

sk |ψk〉 〈ψk|ψ〉

= 〈ψ | ρ | ψ〉

where

ρ =
m∑

k=1

sk |ψk〉 〈ψk| .

It turns out thatρ is a density operator, where:

Definition 3.1. A density operatoris a non-negative self-adjoint operator of trace1.

In quantum computational jargon, a density operator in⊗nC2 is calledqumix. We will

denote the set of all density operators in⊗nC2 by D(⊗nC2). The density operatorρ of our

example represents a mixed state of all possible pure states|ψk〉, each with weight equal to

sk. It does no harm to formulate quantum mechanics in terms of density operators only [9],

since pure states are special cases of density operators in that every pure state|ψk〉 uniquely

determines a density operatorP|ψ〉 (more on that will be said presently). In what follows,

we will consider these two alternative but equivalent formulations as different viewpoints

on (or rather descriptions of) pure quantum states, calling them, respectively,quregister

world andqumix world. The term ”world”, as a matter of fact, should be understood as

devoid of any metaphysical connotation: the same pure state can be seen as an object in the

quregister world (the unit vector|ψ〉) or as an object in the qumix world (the corresponding

projection operatorP|ψ〉).
Why do qumixes matter to quantum computation? As hinted in our Introduction, and

as discussed more amply in [1], there are several phenomena (such as measurements in the

middle of a computation, noise, or decoherence) that are very difficult or even impossible to

account for in the usual unitary approach to the subject. On the other hand, the non-unitary

(i.e. irreversible) approach can adequately deal with them. In fact, although quantum

computations may allow measurements in the middle of a computation, the state of the

computation after such a measurement is a mixed state. Moreover, noise and, in particular,

decoherence are serious obstacles for the implementation of quantum computer devices.

These phenomena are modelled by non-unitary operations that turn pure states into mixed

states.

A set of quregisters can be used in order to generate, by convex combination, the set of

all mixed states. Formally:
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Theorem 3.1.For every density operatorρ, there exists an orthonormal sequence of qureg-

isters|ψi〉 and a sequence of real numbersλi with
∑
i

λi = 1, s.t.ρ =
∑
i

λiP|ψi〉.

In general, however, this representation is by no means unique. Actually, a density

operator with degenerate eigenvalues can be decomposed in infinitely many ways by using

sequences of orthonormal vectors [2].

This failure to admit a unique decomposition entails the untenability of an epistemic

interpretation of mixed states. If, in fact, we were to interpret the representationλP|ψ1〉 +
(1− λ)P|ψ2〉 of ρ as ”the system we are considering is either in the state|ψ1〉 or in the

state |ψ2〉, but we lack a complete knowledge about it”, then a different representation

λP|ψ1〉 +
(
1− λ

)
P|ψ2〉 of the same density operator could by full right be interpreted as

” the system is either in the state
∣∣ψ1

〉
or in the state

∣∣ψ2

〉
, but we lack a complete knowledge

about it”, which is absurd. On the contrary,ρ represents a state which is different from|ψ1〉,
|ψ2〉,

∣∣ψ1

〉
or

∣∣ψ2

〉
.

Let us give a physical exemplification of mixed states. As is well known, the polarisa-

tion state of a photon through a density operator is represented as a linear combination of

the pure statesPup
θ andP down

θ :

ρ = λPup
θ + (1− λ) P down

θ ,

whereθ is an arbitrary direction. The possible values ofλ induce a bijection between

such convex combinations and the real interval[0, 1]; in particular, ifλ assumes the extreme

values of the interval,ρ collapses onto one of the projection operatorsPup
θ (for λ = 1) and

P down
θ ( for λ = 0). From a physical viewpoint, such pure states express the fact that

the photon iscompletely polarisedin the statePup
θ or in the stateP down

θ , respectively. Of

coursePup
θ andP down

θ represent pure states, being projection operators. With the exception

of these limiting cases, in all the other linear combinations both coefficients are nonzero -

physically, this means that our photon is not completely polarised.

It is possible to provide a geometrical insight into the qumix world (at least for qumixes

of C2) just as we did for the quregister world. Recall from [2] that the Pauli matricesσ1,

σ2 andσ3 and the identity matrixI form a basis for the space of all operators ofC2. If we

write an operator as a linear combination of these basis elements, its trace coincides with

the coefficient of the identity matrix (12 acts as a normalisation coefficient). Consequently,

every density operatorρ of C2 can be written as

ρ =
1
2

(r1σ1 + r2σ2 + r3σ3 + I) ,

with r2
1 + r2

2 + r2
3 ≤ 1. Once again, therefore, we get a bijective correspondence with

the Bloch-Poincaŕe sphere; density operators, however, may correspond not only to surface

points of this sphere, but to inner points as well. A simple proof can show that, if we
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represent the density operatorρ of C2 in the formλP|ψ1〉+(1− λ)P|ψ2〉, the idempotency

property of projection operators implies thatr2
1 + r2

2 + r2
3 = 1 wheneverλ = 1 or λ = 0;

in all the remaining cases, on the other hand,r2
1 + r2

2 + r2
3 < 1.

In this geometrical perspective, a vector corresponds to a maximal information bit ac-

cording as it reaches the surface of the sphere or not. In detail: if the length of the vector

in the three-dimensional sphere is1, then we have: i)r2
1 + r2

2 + r2
3 = 1; ii) a surface point

on the sphere; iii) a pure state; iv) a maximal piece of information. If its length is less than

1, then we have: i)r2
1 + r2

2 + r2
3 < 1; ii) an inner point of the sphere; iii) a mixed state;

iv) a non-maximal piece of information. For all these reasons, it is appropriate to claim

that density operators are generalisations of quregisters: every qubit is a particular case of

qumix, and this holds not only forC2 but also for tensor product spaces with a finite but

otherwise arbitrary number of dimensions.

Figure 3.2: The Bloch-Poincaré sphere and the three-dimensional sphere: two different representa-

tions, inC2 andR3 respectively, of quantum information quantities.

It is easy to see how every unit vector in the Bloch-Poincaré sphere is the counterpart

of a projection operator.

4 From quantum gates to quantum operations

In the preceding section we have described the quantum counterpart of classical bits

and classical gates and we have pondered the advantages of resorting to density operators

rather than unit vectors in the description of some physical systems, such as e.g. open

systems. In general, an open physical system can be regarded as the result of the interaction

between a principal system and anenvironment. This new resulting system can be finally

considered as a closed system. Formally speaking, ifρ is the density operator associated

with the principal system andρenv is the density operator associated with the environment,
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we represent the compund system-environment state by means of the tensor product state

ρ ⊗ ρenv
3, because of the fact thatρ andρenv are coupled with each other. Let us now

consider a particular input stateρ⊗ ρenv, and letU be a transformation acting on the same

system-environment state. If we want to focus on the principal stateρ, we have totrace out

the environment state by means of an operationε that can be mathematically described as

thepartial trace4 overρenv.

The resulting stateρ′ (calledreduced state) of the principal system after the transfor-

mationU has been applied is given by:

ε(ρ) = trenv[U(ρ⊗ ρenv)U+] (4.1)

wheretrenv is short fortrH,H being the space whereρenv ”lives”. The partial trace is

a particular example ofquantum operation:

Definition 4.1. A quantum operation is a trace preserving, completely positive linear map

from linear operators to linear operators in a finite-dimensional Hilbert space, which out-

puts a density operator whenever it is applied to a density operator.5

All the requirements which collectively make up Definition 4.1 amount to the preser-

vation of some important feature:

• a quantum operation is a mapwhich outputs a density operator whenever it is applied

to a density operator. Since density operators are self-adjoint, this means that in this

case both the inputs and the outputs of a quantum operation have real eigenvalues;

• a quantum operation is atrace preserving map: as a consequence, probabilities are

preserved;

• a quantum operation is alinear map,that is a map which preserves linear combina-

tions. This requirement is crucial since, given that any mixed state can be expressed

as a linear combination of pure states, a quantum operation applied to a mixed state

will transform a linear combination of states into another linear combination of pure

states.

• a quantum operation is acompletely positive map, and so it preserves positivity,

extending it to an arbitrary number of dimensions.

3As Nielsen and Chuang point out [?], although it is not possible, in general, to assume that the system and

the environment start in product state, in many cases of practical interest it is reasonable to do so.
4SupposeH andK are finite-dimensional Hilbert spaces. For any Hilbert spaceH let L(H) be the space of

linear operators onH. Thepartial traceoverH is the linear operatortrK : L(H⊗ K) → L(H) such that for

all P ∈ L(K), and for allQ ∈ L(K), trV (P ⊗Q) = Ptr(Q).
5A mapA on an-dimensional Hilbert spaceH is completely positive if: i) it is positive, meaning that0 ≤

〈ψi|A|ψi〉 for all |ψi〉; ii) for all natural numbersm, the extended mapIm⊗A (whereIm is them-dimensional

identity matrix) is also positive.
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A neat characterisation of quantum operations is due to Kraus [17], who proved the

following result (known asKraus representation theorem):

Theorem 4.1. Let A be an operator onL(H). ThenA is a quantum operation iff there

exist a set of operators{Ai} onH s.t.:

1.
∑
i

A+
i Ai = I;

2. for every density operatorρ, A (ρ) =
∑
i

Âi (ρ), where
∑
i

Âi(ρ) =
∑
i

(AiρA+
i ).

In other words, an operator whose arguments are themselves operators is a quantum

operation just in case it is expressible, when applied to density operators, as the sum of

extensions of operators which are ”similar enough” (in the sense of item 1. in Theorem 4.1)

to quantum gates. This result will prove of fundamental importance for the approximation

results in the next section.

In the light of what we have just said, let us rewrite Equation 4.1 in terms of such a

representation.

Let |ek〉 be an orthonormal basis for the finite-dimensional state space of the environ-

ment and letρenv = |e0〉〈e0| be the initial state of the environment. Equation 4.1 can be

rewritten as

ρ′ = ε(ρ)

=
∑

k

〈ekU [ρ⊗ |e0〉〈e0]U+|ek〉

=
∑

k

EkρE+
k ,

whereEk =
∑

k〈ek|U |e0〉〈e0|. Observe that the last equation is a restatement of

Equation 4.1 in terms of operators on the principal system Hilbert space only. The elements

of the setEk are known as operation elements for the quantum operationε. From the trace-

preserving requirement (tr(ε(ρ)) = 1) it follows that: 1 = tr(ε(ρ)) = tr(
∑

k EkρE+
k ) =

tr(
∑

k E+
k Ekρ) which imply

∑
k E+

k Ek = I, that is the so-calledcompleteness relation

holds. It should be noticed, however, that whenever measurement processes come into play,

the trace-preserving requirement generally fails. In these cases we do not have a complete

knowledge about the system: formallytr(ε(ρ)) < 1, therefore
∑

k E+
k Ek < I [17].

The main feature of the operation sum representation is that it characterises the dynam-

ics of the principal system while dispensing us from explicitly considering properties of

the environment: all we need to know is which elements of the set of operatorsEk act on

the principal system alone. For, this representation allows us to choose, among a number

of different environment interactions, the one that contains no irrelevant information about
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other systems. The operation sum representation provides therefore a useful mathematical

description of the interaction between system and environment. Still, it would be interest-

ing to gain some insight into the converse problem: given a set of operatorsEk, is there

any reasonable model of an environmental system and the related dynamics which gives

rise to a quantum operation havingEk as its operation elements? Interestingly, Nielsen

and Chuang [?] have proved that for any quantum operationε, whereEk are the corre-

sponding operation elements, there exists a model environmentE, whose initial state is the

pure state|e0〉, and model dynamics by a unitary operatorU and projectorP ontoE such

that ε(ρ) = trE(PU(ρ ⊗ |e0〉〈e0|)U+P ). In order to properly appreciate the difference

between quantum operations and quantum gates, it may be expedient to briefly comment

on the main properties of the former. The trace class requirement (0 ≤ tr(ε(ρ)) ≤ 1 for

anyρ) is there becausetr(ε(ρ)) represents the probability that the measurement outcome

described byε occurs given the initial stateρ. Let us just observe that, as a special case, if

our quantum operationε is trace-preserving we have thattr(ε(ρ)) = 1. The linearity re-

quirement can be easily justified by statistical arguments which rest on Bayes’ Theorem [?].

Therefore, to round off our justification of the above definition, all we are committed to do

is to give a motivation of the requirement that our map be completely positive. Given an

observableU , the expectation value ofU with respect toρ is tr(ρU) =
∑

i pi〈ψi|U |ψi〉.
This observation easily implies that〈ψi|U |ψi〉must be positive. Why, however, should our

map becompletelypositive? This constraint arises since it is highly desirable that a positive

operatorU on the principal system should remain positive whenever it is extended to the

global system which includes the environment system as well. Let us now briefly recap the

most important differences between quantum gates and quantum operations:

• Unlike quantum gates, quantum operations can be applied to mixed states: in fact,

quantum operations admit density operators (that are, in general, mixed states) both

as inputs and as outputs.

• The quantum operation modelincludesthe quantum gate model. In fact, it is possible

to extend in a natural way the action of quantum gates to density operators: for all

unitary operatorsU ∈ H we can define an associated mapÛ from D(H) to D(H) in

the following way: for anyρ ∈ D(H), Û(ρ) = UρU+. It follows from the fact that

for any|ψ〉, if U |ψ〉 = |φ〉 thenUP|ψ〉U+ = P|φ〉 thatÛ is an appropriate extension

of U . It turns out thatÛ is a trace preserving quantum operation, calledunitary

quantum operation. Given a quantum gateU and a qubit|ψ〉, U |ψ〉 andÛ(P|ψ〉) are

statistically indistinguishable (i.e.̂U |ψ〉〈ψ| = |Uψ〉〈ψU+|)6.

• The quantum operation modelproperly includes the quantum gate model. Quan-

tum operations need not be unitary and therefore can represent irreversible physical

6It is easy to show thatA andÂ perform the same rotation in the Bloch-Poincaré sphere.
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phenomena. An example of non-unitary quantum operation is the partial trace intro-

duced in footnote 4 and another interesting example will be introduced in the next

section.

• Finally, a quantum gate is by definition an isometry, whereas a quantum operation

generally fails to be norm preserving and may give rise to a loss of information. For

example, pure states are not closed under the action of quantum operations. It may

happen that a non-unitary quantum operation transform a pure state into a genuine

mixed state.

5 Quantum computation: A logical perspective

Thequantum circuit with mixed states approachhas plenty of advantages over its main

competitor: as Aharonov, Kitaev and Nisan [1] have proved, although this model is polino-

mially equivalent in computational power to the standard unitary model, it can solve several

problems that cannot be disposed of in the unitary model - e.g. measurements in the middle

of computation, noise, decoherence. In fact, the state of a computation after a measurement

is generally a mixed state7, while quantum noise and decoherence are nonunitary operations

as well.

Under this perspective, the quregister world appears even more just a fragment of the

wider qumix world. The latter is all the more useful in that, beside providing us with an

opportunity to give an account of the physical systems described in the former, it yields as

a plus a formal description of irreversible operations on arbitrary mixed states.

In view of the above, it is all too natural to select as a basis for the convex body of

density operatorsD(⊗nC2) the two projection operatorsP|0〉 andP|1〉, here notated for

7The state of a system after the measurement is Mn|ψ〉√
〈ψ|M+

n Mn|ψ〉
, whereMn is the measurement operator,

satisfying thecompleteness equation [?]:
∑
k

M+
k Mk = I.
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short P0 and P1, respectively. We come to select the class of density operators of the

following form8:

ρn
λ = (1− λ)knPn

o + λknPn
1

wherekn is the parametrisation factor12n−1 andλ ∈ [0, 1] ⊂ R ( [?], [?], [?], [15]). Under

this perspective, the probability that a density operatorρ ∈ D(⊗nC2) is true (or false) is

given byp(ρ) = trPn
1 (ρ) (or trPn

0 (ρ)).
Assuming once again the logical perspective, one may wonder what is the import of

widening the class of quantum computational connectives as we have done. A remarkable

consequence of this liberalisation is the appearance of irreversible quantum computational

counterparts of connectives belonging to well-known nonclassical logics. Before mention-

ing a few cases in point, let us establish a notational convention: henceforth, some quantum

gates will be indicated with small Roman letters, while their extensions to density opera-

tors will be denoted by capital letters. For example, given the quantum negation gateNot,
NOTρ will denote the operatorNotρNot.

In the previous sections we have introduced the And gate as an example of reversible

gate. Now we define two irreversible connectives:

Definition 5.1. (The irreversible conjunctionIAND). If σ, τ are density operators,

IAND(σ, τ) = ρ1
p(σ)p(τ)

IAND is irreversible for, ifσ 6= σ, τ 6= τ but p(σ) = p(σ) and p(τ) = p(τ), then

IAND(σ, τ) = IAND(σ, τ). Some of the properties ofIAND are summarised in the

next

Lemma 5.1. 1. IAND is associative and commutative;

2. IAND(ρ, P0) = P0;

3. IAND(ρ, P1) = ρP (ρ);

4. p(IAND(ρ, σ)) = p(ρ)p(σ).

Proof. Straightforward application of the definitions.

Another example of irreversible connective is given by a quantum counterpart of the

disjunction connective of Łukasiewicz logic [?]:

Definition 5.2. (The Łukasiewicz disjunction). Ifσ ∈ D(⊗nC2) andτ ∈ D(⊗mC2) and

⊕ is truncated sum (i.e.min(x + y, 1), for x, y ∈ [0, 1]),

σ ⊕ τ = ρ1
p(σ)⊕p(τ)

8By P n
0 we refer to the extension ofP0 to the dimensionn. In other words,P n

0 = In−1 ⊗ P0.
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The operation⊕ is also clearly irreversible: ifσ 6= σ, τ 6= τ but p(σ) = p(σ) and

p(τ) = p(τ), thenσ ⊕ τ = σ ⊕ τ . More than that, the unique reversible application of

the Łukasiewicz disjunction turns out to arise whenσ = Pn
0 andτ = Pm

0 . The following

properties are easily seen to hold:

Lemma 5.2. 1. σ ⊕ τ = { ρ1
p(σ)⊕p(τ), if p(σ)⊕ p(τ) ≤ 1

Pn
1 , otherwise;

.

2. p(σ ⊕ τ) = p(σ)⊕ p(τ)

Figure 5.3: The Łukasiewicz function

6 Approximating irreversible connectives via quantum operations

Leaving aside theIAND for the moment, we remark from the outset that, for a logi-

cian, a connective like⊕ is appealing and puzzling at once:

• It is appealing, because it arises naturally within the mixed state approach and en-

joys nice algebraic properties: in fact, it has been widely studied from a universal

algebraic viewpoint (see for example [?], [?]). Moreover, it represents a promising

bridge towards other more or less remote areas of logical research, like fuzzy logic.

• On the other hand, it is puzzling because it does not fit easily within the framework

we have been establishing so far: not only it fails to be a quantum gate, butit is not

even a quantum operation. This is easy to see, since any quantum operation must be

in particular an operator, hence linear; and⊕ is not such. It looks like even the more

liberal approach we have adopted is not encompassing enough to let it in.

A justification for this irreversible connective is therefore in order, and the aim of this

section is to provide some. The strategy we will follow is due to Hector Freytes and his
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collaborators (partly published in [?]), and aims at giving a Stone-Weierstrass type ap-

proximation result via quantum operations. The upshot of this theorem is that, although

these irreversible fuzzy-like connectives are not themselves quantum operations, they can

be probabilistically approximated by means of such.

The Stone-Weierstrass theorem is one of the most celebrated results in complex analysis

and general topology. In its simplest version, it says that every continuous complex-valued

function on any bounded closed real interval can be approximated by means of polynomial

functions (this much is due to Weierstrass; Stone generalised the result to any arbitrary

compact Hausdorff space). In a more rigorous fashion, this theorem can be stated as fol-

lows:

Theorem 6.1. Let f be a continuous complex-valued function defined on the real interval

[a, b]. For everyε ∈ R+, there exists a polynomial functionP over the complex fieldC
such that for anyx ∈ [a, b] we have|f(x)− P (x)| < ε.

We are now about to examine a version of this theorem (cp. [?] for a more technical and

compact presentation), yielding a probabilistical approximation of the connectives defined

in Definitions 5.1 and 5.2 by means of polynomial quantum operations. The proofs of all

the results contained in the present section are fully developped in [?]. Let us, however,

proceed gradually. Our first goal is associating a polynomial quantum operation to each

real polynomial; this can be done as follows. A generic real polynomialP (x1, ..., xn) in n

variables can be written in the form

m∑

j=1

n∏

i=1

ajx
αij

i ,

wheremaxj maxi{αij} = deg(P ) andαij ≥ 0. For example, if we fixa1 = 7, a2 =
6, n = 3, m = 2, and we letαij be thei, j entry in the following matrix:

(
2 3 1
2 1 2

)

we obtain the polynomial

7x2
1x

3
2x3 + 6x2

1x
1
2x

2
3.

We recall from the previous sections that every density operatorρ in C2 has the matrix

representation12 (r1σ1 + r2σ2 + r3σ3 + I). Expanding and lettingα = 1−r3
2 , β = r1−ir2

2 ,

we get
1
2

(
1 + r3 r1 − ir2

r1 + ir2 1− r3

)
=

(
1− α β

β∗ α

)
.

Now, matrices of the above form have an interesting property. IfA1, ..., An are such

matrices, upon replacing each scalarα by avariablexi (i ≤ n), the diagonal elements of
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the tensor product matrix

A = (⊗kA1)⊗ · · · ⊗ (⊗kAn)

are the members of the set

Dk(x1, ..., xn) = {(1− x1)α1xβ1
1 , ..., (1− xn)αnxβn

n : αi + βi = k, i ∈ {1, ..., n}}

For any set of variables{x1, ..., xn}, monomials inDk(x1, ..., xn) are better behaved

than garden variety monomials
n∏

i=1

axαi
i . However, each such monomial can be represented

in terms of monomials inDk(x1, ..., xn). In fact, we have the following

Lemma 6.1. Let {x1, ..., xn} be a set of variables and let
n∏

i=1

axαi
i be a monomial. Let

moreoverk be a natural number s.t.k ≥
n∑

i=1

αi. Then

n∏

i=1

axαi
i =

∑

m∈Dk(x1,...,xn)

δmm and

1−
n∏

i=1

axαi
i =

∑

m∈Dk(x1,...,xn)

γmm,

whereδm, γm ∈ {0, 1}.

We now have all the ingredients we need to spell out the crucial definition ofpolynomial

quantum operationassociated to a polynomial.

Definition 6.1. Let P (x1, ..., xn) =
m∑

j=1

n∏
i=1

ajx
αij

i be a polynomial s.t.:

1. for everyj ≤ m,
n∏

i=1

ajx
αij

i ∈Dk(x1, ..., xn);

2. 0 ≤ P (x1, ..., xn) ≤ 1 wheneverx1, ..., xn ∈ [0, 1]n.

Thepolynomial quantum operationP ∗ associated toP is the function:

P ∗ : ⊗nkD(C2)arrow ⊗nk D(C2)

Definition 6.2. s.t. forσ1, ..., σn in D(C2) we have:

P ∗((⊗kσ1)⊗ · · · ⊗ (⊗kσn)) = (
1

2nk−1
⊗nk−1 I)⊗ ρP (p(σ1),...,p(σn))
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This definition is far less complicated than it might seem at first sight: let us, then, take

some of the mystery out of it and see what it boils down to. Let us be given a polynomialP

which has the following two characteristics: i) it is the sum of ”well-behaved” monomials

(by Lemma 6.1, this entails no loss of generality); ii) it outputs values in[0, 1] whenever

all of its input values are in[0, 1]. To this polynomial we associate an operatorP ∗ on

⊗nkD(C2) which, when applied to the argument(⊗kσ1) ⊗ · · · ⊗ (⊗kσn) (for σ1, ..., σn

in D(C2)), outputs the density operator whose probability of truth (in the above specified

sense) is just the result of the application of the polynomial functionP to the probabilities

of σ1, ..., σn (appropriately lifted to the space having the ”right” dimension via the tensor

product with the normalised identity matrix 1
2nk−1 ⊗nk−1 I).

The label we used in Definition 6.1 is not a misnomer. In fact, we have as a fundamental

result that:

Theorem 6.2. Polynomial quantum operations are quantum operations.

Let us now reflect for a while on a special feature of the connectivesIAND and⊕.

Both have the property that, if applied to a given pair of density operatorsσ, τ , their output

is a density operator whose probability of truth is abinary continuous functionof the prob-

abilities ofσ, τ . Abstracting away from these specific examples, we attain the following

Definition 6.3. Let F : [0, 1]narrow[0, 1] be a continuous function. Thecontinuous quan-

tum connectiveassociated toF is the function

F ∗ : ⊗nkD(C2)arrowD(C2)

s.t. forσ1, ..., σn in D(C2) we have:

F ∗((⊗kσ1)⊗ · · · ⊗ (⊗kσn)) = ρF (p(σ1),...,p(σn)).

It is clear that, in general, continuous quantum connectives are not quantum opera-

tions. Nonetheless, they admit of a Stone-Weierstrass-style probabilistical approximation

by means of quantum operations in the following sense: for every continuous quantum

connective we can find a polynomial quantum operation which is ”probabilistically indis-

tinguishable” from it. More precisely:

Theorem 6.3. Let F : [0, 1]narrow[0, 1] be a continuous function, letF ∗ be the continu-

ous quantum connective associated toF , and letµ = min{min(1 − F ),min(F )}. Then

there exists a polynomial quantum operationP ∗ : ⊗nkD(C2)arrow ⊗nk D(C2) (associ-

ated to some polynomial functionP ) s.t. for every0 < ε ≤ µ there exists a constantM

such that for everyσ = (⊗kσ1)⊗ · · · ⊗ (⊗kσn) we have that:

|p(P ∗(σ))− 1
M

p(F ∗(σ))| ≤ ε.
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We must, however, emphasise a disanalogy between the cases of the connectives

IAND and⊕ . While the former complies with the conditions of Theorem 4.1 and can

therefore be considered a quantum operation to all intents and purposes, rendering any re-

course to Theorem 6.3 unnecessary, the latter fails to be such and can only be approximated

by a polynomial quantum operation by means of Theorem 6.3 [?].
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