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In this paper we discuss an approach to quantum computation where the basic informa-
tion units (qubits and quregisters) are replaced by density operators and the restriction
to unitary operators as logical gates is lifted through the introduction of the more gen-
eral concept ofjluantum operatioif [17], [1]). This perspective is especially suited to
provide a physical description of open systems. In particular, we illustrate the advan-
tages of this approach over the standard one and show that it can account for two im-
portant irreversible transformations already considered in the literature: the irreversible
conjunction] AN D and the fuzzy-like Lukasiewicz disjunctiah.
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1 Introduction

At first sight, it would seem as though irreversibility did not fit in very well with quan-
tum computation: one of the most evident advantages of the latter, when compared to
classical computation, is given by the fact that its reversible gates allow us to trace the evo-
lution of a system during the computation process with no loss of information whatsoever.
Indeed, investigations in mainstream quantum computation have prevailingly considered
computational situations for which this description pattern is adequatk [1R], [10]).
However, as we will discuss below, there are phenomena that can be hardly accounted for
if we keep to the standard paradigm: decoherence, noise, measurements in the middle of
a computation - roughly put, any computational process that involves an interaction with
an environmentof sorts - call into play an unavoidable loss of information that renders
the process itself irreversible. To conveniently describe such situations, alongside with the
kind of processes that are dealt with by the standard approach, a new, more comprehensive
perspective has been recently developped in quantum computation (see e.g. [17], [1]). The
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aim of this paper is to survey this new approach and to describe some original applications
of such.

In particular, in Section 2 we review the basics of the standard approach to quantum
computation. In Section 3 and in Section 4 we introduce a different framework, where the
basic information units (qubits and quregisters) are replaced by density operators and the
restriction to unitary operators as logical gates is lifted in favour of a more liberal attitude
which leads to the introduction of the more general concegquahtum operationWe also
mutually compare both frameworks and contend that the latter has a decisive edge over
the former. Section 5 is devoted to the development of a logical perspective on quantum
computation. Finally, in Section 6, building upon previous work by our research group, we
show that the quantum operations framework can account for two important irreversible
transformations already considered in the literature: the irreversible conjurictidhD
and the fuzzy-like Lukasiewicz disjunctian. We show, in fact, that theA N D connective
is expressible through a quantum operation via Kraus’ Theorem, while the tukasiewicz
disjunction can be approximated by means of a special class of quantum operations.

2 The standard approach to quantum computation

In this section we shall try to bridge the current formal models of quantum compu-
tational theory [?] - proceeding via quantum gates operating on pure states - and a novel
approach according to which:

e the carriers of information need not be pure states, but, more generally, density oper-
ators qumixe3 ([?], [?]);

¢ the operations acting thereupon need not be unitary operators ( [1], PLE17]D-

Itis well-known that in quantum mechanics a physical system is associated to a Hilbert
spaceH. Any pure state of the system, mathematically represented by a unit vedtar of
is a maximal information quantity, i.e. a piece of information on the physical system that
could not be consistently augmented by any further observation.

Let us first consider a simple physical systéwhose associated Hilbert spaces.
Let B = {|0),|1)} be the orthonormal canonical basis®@f. In this simple case, the
general form of a pure staj¢) is

a0y +b11),

wherea andb are complex numbers which, in virtue of the unitarity hypothesis, must abide
by the conditionja|® + |b]*> = 1. In the quantum computational parlance, the vegtor

is calledqubit and acts as the quantum counterpart of the classical bit. As dictated by the
Born rule, |a|® yields the probability thatz) is detected in the stat@) as the outcome
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of a possible measure, and dually fof° and|1). Logically speaking)0) and|1) can
be naturally interpreted as meaning "falsity” and "truth”, respectively; in accordance with
this convention,|a|2 (respectively,|b\2) can be read as the probability that) is false
(respectively, true).

Switching to spherical coordinates, the general form of a qubitan be written also
as

[y) = e (cosg |0) + ¢? sing |1>)

where the global phase facigf can be omitted since it has no observable effect. By vary-
ing the values ofl and¢, we are in a position to induce a bijective correspondence between
qubits and surface points of the Bloch-Poiricaphere. This circumstance suggests the
geometric representation of Fig. 1.

|7)

Figure 2.1: The Bloch-Poincaisphere.

Observe that orthogonal vectors @ need not be orthogonal vectors in the Bloch-
Poincaé representation: orthogonal vectorsGp, in fact, are geometrically represented
by unit vectors having opposite directions.

Scientific investigation, however, often requires a mathematical representation not just
of a simple physical system, but rather of a number of physical systems interacting with
one another. Suppose, then, that the physical systésncomposed by: (sub-)systems,
saySi, ..., S,. Let H% be the Hilbert space associateddpg for 1 < i < n. The space
H associated t& will be the tensor product(®* ®--- ® H° of the spaces associated
to Si,...,S,. It S; = S; for everyi, j, we resort to the notatiom™H°: in place ofH:
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® @M%,

As we have seen, qubits "live” in the spa€8. Quregistersare the tensor product
analogues of qubits: by quregister, in fact, we mean any unit vectof{?. Quregisters
are the quantum counterpart of classical registers - i.e. finite strings of bits.

We will call any unit vector of the formy) = |z, ..., z,,) of ®"C? ann-configuration,
wherez,, ..., z,, are variables ranging over the 46t 1}. It is not hard to see that one can
identify eachn-configuration with a natural numbeére [0,2" — 1], fori = 2" 1z +
2"=2g5 + ... + z,. Intuitively, anyn-configuration can be read as a natural number in its
binary codification. In other words, one can concisely express a qurejgists

) = %2 5" 1l 4))

wherec; is a complex numbet| j)) is then-configuration corresponding to the number
andS?_ ;" c;|? = 1. Let® (2"C?) be the set of all quregisters of'C2. We denote by

R = @1 (R (®"C?))

the set of all quregisters i@? or in a tensor product of2. Summing up, a quregister is a
pure state either of a simple-flimensional) or of a compound physical system.

Like in the classical case, also in quantum computation the evolution of a state is de-
scribed by the application ofgateto a register (alternatively, if we adopt a logical perspec-
tive, we can see registers as sentences and gates as logical connectives). In the standard pre-
sentation of classical computation, a gate isresversiblefunction f: {0,1}" — {0, 1}:
it is not possible to retrieve the values of the inputs by a sheer analysis of the output. In
other words, we are in no position to trace a state resulting from the application of a gate
back to the initial states to which the gate had been applied. On the other hand, in quantum
computation gates arenitary operator$ mappingn-tuples of quregisters into quregisters.

Because of the unitarity constraint, quantum gates are alvessible Classical
gates, as we have observed, generally fail to be such. Note that, however, any irre-
versible functionf : {0,1}" — {0,1}™ can be transformed into a reversible function
f: {0,1}m*" — {0,1}"T™ such thatVay, ..., Tn, Tna1, Tnam

f(@1, ey @y Tpg 1, Trpn) = (:vl, oy Ty (X1, Tm) —T—(azmﬂ...mern))

where T is the componentwise) sum moduto By way of example, consider the
classicalAnd truth table. It is immediate to see that it represents a typical many-to-one

1An operatorUU is unitary whenevet Ut = Ut U = I, whereUt is the adjoint of the operatd¥ andI is
the identity operator.
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irreversible transformatioffi:

Ll

0
0
0
— 1

From f we can obtain its reversible matgh: {0,1}* — {0,1}3 , calledclassical Toffoli
gate If we set to0 the third component of the input, we encode in a reversible way the
behaviour of the classical binary conjunction:

(0,0,00 — (0,0,0)
(0,0,1) — (0,0,1)
(0,1,00 — (0,1,0)
(0,1,1) — (0,1,1)
(1,0,00 — (1,0,0)
(1,0,1) — (1,0,1)
(1,1,00 — (1,1,1)
(1,1,1) — (1,1,0)

Observe that the third coordinate of each input (calledatinglla bit) plays no role other
than guaranteeing that inputs and outputs have the same lengths.

The quantum generalisation of the classical Toffoli gate (denotéB(By*1)) can be
naturally defined in the following way:

Definition 2.1. For anyn, m > 1, the Toffoli gate is the unitary operat@ (™1 such
that, for every element:, ..., z,)®@|y1, ..., ym) ®|2) of the computational basg™+"+1)
2(shortened agr) @ |y) ® |2)),

T (o) @ ly) @ 12)) = [@) @ |y) @ |wymF2) -

For instance(1:1:1) trasforms any factorised vectdr) ® |y) @ |z) into the vector
obtained by leaving the first two factors (referred to asdhetrol bit§ unchanged, while
replacing|z) (thetarget bi) by |my5rz>

Similary to the classical case, we can define a quantum versianfn the following
way:

2We callcomputational basjausing the symbaB(™), the orthonormal basis for the spag&C2 given by the
set of alln-configurations
{lz1, .y zn) 1 z; € {0,1}}.
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Definition 2.2. (the quantunAnd):
And(j9) ® ) = T (j9) ® o) @ |0)).

Restricting ourselves tB(), the computational basis of*C?, we obtain the following
reversible table, where the target bits represent just the values of the classical conjunction
truth table:

|000) — |000)
|001) — |001)
010) — |010)
011) — |011)
|100) — [100)
|101) — |101)
|110) — [111)
I111) —  [110).

3 From quregisters to density operators

The only situations we have been considering so far are cases of applications of quan-
tum gates to pure states which yield, in a reversible way, quregisters as outputs. However,
more often than not either we lackcamplete knowledgabout the physical systems we
are investigating, or such systems are not isolated from the rest of the universe. Evidently,
guregisters are not the appropriate tools for a correct mathematical description of what is
going on in such cases as these.

In actual practice, a prepared state seldom corresponds to a pure state. Let us consider
the simplest case of an observable (i.e. a self-adjoint operdtat)ose spectral decompo-

sition is Z ar Py, wherePy,, y := |¢r) (Y| is the projection operator onto the span of

[tk The real numberg; represent the possible values tHamay assume. If the phyS|caI
system is in a pure staté;), the probability of getting the resuli, is pr, = |(¥q |w>| .

In general, however, the preparing instrument fluctuates in such a way that successive
preparations of the system may correspond to different states. Suppog® tisgirepared
with relative frequencyy, (s, > 0, s = 1). Then, the probability valug;, should be
k

replaced by the following expression:
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where

p= Zsk OXCAE

It turns out thap is a density operator, where:
Definition 3.1. A density operatois a non-negative self-adjoint operator of trdce

In quantum computational jargon, a density operatapiC? is calledqumix We will
denote the set of all density operatorsifC? by D (®"C?). The density operatgrof our
example represents a mixed state of all possible pure statgseach with weight equal to
si. It does no harm to formulate quantum mechanics in terms of density operators only [9],
since pure states are special cases of density operators in that every pyig, statéquely
determines a density operatbr,, (more on that will be said presently). In what follows,
we will consider these two alternative but equivalent formulations as different viewpoints
on (or rather descriptions of) pure quantum states, calling them, respectjuetgister
world andqumix world The term "world”, as a matter of fact, should be understood as
devoid of any metaphysical connotation: the same pure state can be seen as an object in the
quregister world (the unit vectdy)) or as an object in the qumix world (the corresponding
projection operatop, ).

Why do qumixes matter to quantum computation? As hinted in our Introduction, and
as discussed more amply in [1], there are several phenomena (such as measurements in the
middle of a computation, noise, or decoherence) that are very difficult or even impossible to
account for in the usual unitary approach to the subject. On the other hand, the non-unitary
(i.e. irreversible) approach can adequately deal with them. In fact, although quantum
computations may allow measurements in the middle of a computation, the state of the
computation after such a measurement is a mixed state. Moreover, noise and, in particular,
decoherence are serious obstacles for the implementation of quantum computer devices.
These phenomena are modelled by non-unitary operations that turn pure states into mixed
states.

A set of quregisters can be used in order to generate, by convex combination, the set of
all mixed states. Formally:
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Theorem 3.1. For every density operatgr, there exists an orthonormal sequence of qureg-
isters|v;) and a sequence of real numberswith ) \; = 1,s.t.p = > A\iPjy,).

In general, however, this representation is by no means unique. Actually, a density
operator with degenerate eigenvalues can be decomposed in infinitely many ways by using
sequences of orthonormal vectors [2].

This failure to admit a unique decomposition entails the untenability of an epistemic
interpretation of mixed states. If, in fact, we were to interpret the representation, +
(1 —=X) Py, of p as the system we are considering is either in the statg or in the
state|ys), but we lack a complete knowledge aboUf then a different representation
XP‘E> + (1-2X) P of the same density operator could by full right be interpreted as
"the system is either in the stgte; ) or in the statg ), ), but we lack a complete knowledge
aboutit’, which is absurd. On the contranyrepresents a state which is different frof),

[2). [Br) or ).

Let us give a physical exemplification of mixed states. As is well known, the polarisa-
tion state of a photon through a density operator is represented as a linear combination of
the pure stateg,” and Pgown;

p=AP)T + (1—\) Pgovn,

whered is an arbitrary direction. The possible values\ahduce a bijection between
such convex combinations and the real intef®al]; in particular, ifA assumes the extreme
values of the interval collapses onto one of the projection operatBf$ (for A = 1) and
Pgown(for A = 0). From a physical viewpoint, such pure states express the fact that
the photon izompletely polarisedh the stateP,” or in the statePs°", respectively. Of
courseP,” andPgown™ represent pure states, being projection operators. With the exception
of these limiting cases, in all the other linear combinations both coefficients are nonzero -
physically, this means that our photon is not completely polarised.

Itis possible to provide a geometrical insight into the qumix world (at least for qumixes
of C?) just as we did for the quregister world. Recall from [2] that the Pauli matriges
o2 andos and the identity matriyd form a basis for the space of all operator€33t If we
write an operator as a linear combination of these basis elements, its trace coincides with
the coefficient of the identity matrix%(acts as a normalisation coefficient). Consequently,
every density operatgr of C? can be written as

1
p= 5(7’101 +roop + 1303 + 1),

with 7 4+ 73 + r2 < 1. Once again, therefore, we get a bijective correspondence with
the Bloch-Poincar sphere; density operators, however, may correspond not only to surface
points of this sphere, but to inner points as well. A simple proof can show that, if we
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represent the density operagoof C2 in the formAP,y + (1 — ) Pjy,), the idempotency
property of projection operators implies th@t+ r3 + r3 = 1 whenever\ = 1 or A = 0;
in all the remaining cases, on the other harfds- r3 + r2 < 1.

In this geometrical perspective, a vector corresponds to a maximal information bit ac-
cording as it reaches the surface of the sphere or not. In detail: if the length of the vector
in the three-dimensional spherelisthen we have: iy% + 73 + r2 = 1; ii) a surface point
on the sphere; iii) a pure state; iv) a maximal piece of information. If its length is less than
1, then we have: iy? + r3 + r2 < 1; ii) an inner point of the sphere; iii) a mixed state;

iv) a non-maximal piece of information. For all these reasons, it is appropriate to claim
that density operators are generalisations of quregisters: every qubit is a particular case of
qumix, and this holds not only fa€? but also for tensor product spaces with a finite but
otherwise arbitrary number of dimensions.

0) 00|
v )
1) |11

Figure 3.2: The Bloch-Poincarsphere and the three-dimensional sphere: two different representa-
tions, inC? andR? respectively, of quantum information quantities.

It is easy to see how every unit vector in the Bloch-Poiacghere is the counterpart
of a projection operator.

4 From quantum gates to quantum operations

In the preceding section we have described the quantum counterpart of classical bits
and classical gates and we have pondered the advantages of resorting to density operators
rather than unit vectors in the description of some physical systems, such as e.g. open
systems. In general, an open physical system can be regarded as the result of the interaction
between a principal system and @mvironment This new resulting system can be finally
considered as a closed system. Formally speakingidgfthe density operator associated
with the principal system angl.,,., is the density operator associated with the environment,
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we represent the compund system-environment state by means of the tensor product state
P ® penw o, because of the fact thatand p,.,,,, are coupled with each other. Let us now
consider a particular input state? p...,,, and letU be a transformation acting on the same
system-environment state. If we want to focus on the principal gtate have tdrace out
the environment state by means of an operatitmt can be mathematically described as
the partial trace over p,,,.,.

The resulting statg’ (calledreduced stateof the principal system after the transfor-
mationU has been applied is given by:

€(p) = trenu[U(p ® penv)U+] (4.1)

wheretr.,., is short fortry, H being the space wheyg,,,, "lives”. The partial trace is
a particular example ajuantum operation

Definition 4.1. A quantum operation is a trace preserving, completely positive linear map
from linear operators to linear operators in a finite-dimensional Hilbert space, which out-
puts a density operator whenever it is applied to a density opefator.

All the requirements which collectively make up Definition 4.1 amount to the preser-
vation of some important feature:

e aquantum operation is a mahich outputs a density operator whenever itis applied
to a density operatorSince density operators are self-adjoint, this means that in this
case both the inputs and the outputs of a quantum operation have real eigenvalues;

e a quantum operation isteace preserving mapas a consequence, probabilities are
preserved,;

e a quantum operation islanear map,that is a map which preserves linear combina-
tions. This requirement is crucial since, given that any mixed state can be expressed
as a linear combination of pure states, a quantum operation applied to a mixed state
will transform a linear combination of states into another linear combination of pure
states.

e a quantum operation is eompletely positive mapand so it preserves positivity,
extending it to an arbitrary number of dimensions.

3As Nielsen and Chuang point out [?], although it is not possible, in general, to assume that the system and
the environment start in product state, in many cases of practical interest it is reasonable to do so.
4SupposeH and K are finite-dimensional Hilbert spaces. For any Hilbert spdet L(H) be the space of
linear operators oft{. Thepartial trace over is the linear operatarry : L(H ® K) — L(H) such that for
all P € L(K), and for allQ € L(K), try (P ® Q) = Ptr(Q).
5A map A on an-dimensional Hilbert spacgf is completely positive if: i) it is positive, meaning that<
(i Al for all [+p;); ii) for all natural numbersn, the extended mafy,, ® A (wherel,, is them-dimensional
identity matrix) is also positive.
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A neat characterisation of quantum operations is due to Kraus [17], who proved the
following result (known a¥raus representation theorém

Theorem 4.1. Let A be an operator orl.(H). ThenA is a quantum operation iff there
exist a set of operator§A; } onH s.t.:

K2

2. for every density operatgr, A (p) = 3 4; (p), whereS™ 4;(p) = S (AipAf).

In other words, an operator whose arguments are themselves operators is a quantum
operation just in case it is expressible, when applied to density operators, as the sum of
extensions of operators which are "similar enough” (in the sense of item 1. in Theorem 4.1)
to quantum gates. This result will prove of fundamental importance for the approximation
results in the next section.

In the light of what we have just said, let us rewrite Equation 4.1 in terms of such a
representation.

Let |ex) be an orthonormal basis for the finite-dimensional state space of the environ-
ment and lep.,., = |eo){eo| be the initial state of the environment. Equation 4.1 can be
rewritten as

r e(p)
> (erUlp @ leo)(ea]UT |ex)

k
k

where E, = >, (ex|Uleo)(eo|. Observe that the last equation is a restatement of
Equation 4.1 in terms of operators on the principal system Hilbert space only. The elements
of the setF);, are known as operation elements for the quantum operatiérom the trace-
preserving requirementi((¢(p)) = 1) it follows that: 1 = tr(e(p)) = tr(>, ExpE; ) =
tr(X, Eif Exp) which imply 3°, Eif E), = I, that is the so-calledompleteness relation
holds. It should be noticed, however, that whenever measurement processes come into play,
the trace-preserving requirement generally fails. In these cases we do not have a complete
knowledge about the system: formatiy(e(p)) < 1, thereforey", E/ B, < I [17].

The main feature of the operation sum representation is that it characterises the dynam-
ics of the principal system while dispensing us from explicitly considering properties of
the environment: all we need to know is which elements of the set of operatcast on
the principal system alone. For, this representation allows us to choose, among a number
of different environment interactions, the one that contains no irrelevant information about
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other systems. The operation sum representation provides therefore a useful mathematical
description of the interaction between system and environment. Still, it would be interest-
ing to gain some insight into the converse problem: given a set of oper&folis there

any reasonable model of an environmental system and the related dynamics which gives
rise to a quantum operation havitg, as its operation elements? Interestingly, Nielsen
and Chuang [?] have proved that for any quantum operatiavhere E;; are the corre-
sponding operation elements, there exists a model environfastose initial state is the

pure statdey), and model dynamics by a unitary operatband projectorP onto E such
thate(p) = tre(PU(p ® |eg)(eo|)UT P). In order to properly appreciate the difference
between quantum operations and quantum gates, it may be expedient to briefly comment
on the main properties of the former. The trace class requirerfiefit(e(p)) < 1 for

any p) is there because-(e(p)) represents the probability that the measurement outcome
described by occurs given the initial state Let us just observe that, as a special case, if
our quantum operatioais trace-preserving we have thaic(p)) = 1. The linearity re-
guirement can be easily justified by statistical arguments which rest on Bayes’ Theorem [?].
Therefore, to round off our justification of the above definition, all we are committed to do

is to give a motivation of the requirement that our map be completely positive. Given an
observabld/, the expectation value @ with respect tq is tr(pU) = . pi (i|U|1;).

This observation easily implies thap;|U|«;) must be positive. Why, however, should our
map becompletelypositive? This constraint arises since it is highly desirable that a positive
operatorU on the principal system should remain positive whenever it is extended to the
global system which includes the environment system as well. Let us now briefly recap the
most important differences between quantum gates and quantum operations:

e Unlike quantum gates, quantum operations can be applied to mixed states: in fact,
quantum operations admit density operators (that are, in general, mixed states) both
as inputs and as outputs.

e The quantum operation modatludesthe quantum gate model. In fact, it is possible
to extend in a natural way the action of quantum gates to density operators: for all
unitary operator®/ € H we can define an associated niajrom © (H) to ®(H) in
the following way: for anyp € ©(H), U(p) = UpU™. It follows from the fact that
forany|y), if Uly) = |¢) thenU P, ,U" = Py, thatU is an appropriate extension
of U. It turns out thatl/ is a trace preserving quantum operation, calledtary
quantum operationGiven a quantum gaté and a qubit), U|vy) andU(PW)) are
statistically indistinguishable (i.@\qp)(w = |UY) (ypU )8,

e The quantum operation modptoperly includes the quantum gate model. Quan-
tum operations need not be unitary and therefore can represent irreversible physical

S|t is easy to show thatl andA perform the same rotation in the Bloch-Poirieaphere.
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phenomena. An example of non-unitary quantum operation is the partial trace intro-
duced in footnote 4 and another interesting example will be introduced in the next
section.

e Finally, a quantum gate is by definition an isometry, whereas a quantum operation
generally fails to be norm preserving and may give rise to a loss of information. For
example, pure states are not closed under the action of quantum operations. It may
happen that a non-unitary quantum operation transform a pure state into a genuine
mixed state.

5 Quantum computation: A logical perspective

Thequantum circuit with mixed states approdtas plenty of advantages over its main
competitor: as Aharonov, Kitaev and Nisan [1] have proved, although this model is polino-
mially equivalent in computational power to the standard unitary model, it can solve several
problems that cannot be disposed of in the unitary model - e.g. measurements in the middle
of computation, noise, decoherence. In fact, the state of a computation after a measurement
is generally a mixed statewhile quantum noise and decoherence are nonunitary operations
as well.

Under this perspective, the quregister world appears even more just a fragment of the
wider qumix world. The latter is all the more useful in that, beside providing us with an
opportunity to give an account of the physical systems described in the former, it yields as
a plus a formal description of irreversible operations on arbitrary mixed states.

IRREVERSIBLE
OPERATIONS

REVERSIBLE BIJECTION

- 5

REVERSIBLE
OPERATIONS

OPERATORS

QUREGISTERS QUMIXES
WORLD WORLD

In view of the above, it is all too natural to select as a basis for the convex body of
density operator®(®"C?) the two projection operatorB)y and Py, here notated for

ie Mn|Y)
(WM M |9)
satisfying thecompleteness equation [?]y M,j’M,C =1

k

"The state of a system after the measureme , where M, is the measurement operator,
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short Py and Py, respectively. We come to select the class of density operators of the
following formé:

oy =1 =Nk, P} + Nk, P!
wherek,, is the parametrisation factg% andX € [0,1] C R ([?], [?], [?], [15]). Under
this perspective, the probability that a density operater D (@™ C?) is true (or false) is
given byp(p) = trPy'(p) (or trFg (p)).

Assuming once again the logical perspective, one may wonder what is the import of
widening the class of quantum computational connectives as we have done. A remarkable
consequence of this liberalisation is the appearance of irreversible quantum computational
counterparts of connectives belonging to well-known nonclassical logics. Before mention-
ing a few cases in point, let us establish a notational convention: henceforth, some quantum
gates will be indicated with small Roman letters, while their extensions to density opera-
tors will be denoted by capital letters. For example, given the quantum negatioN@ate
NOTp will denote the operatdNotpNot.

In the previous sections we have introduced the And gate as an example of reversible
gate. Now we define two irreversible connectives:

Definition 5.1. (The irreversible conjunctiohAN D). If o, 7 are density operators,

IAND(0,7) = Pp(ayp(r)

TAND is irreversible for, ifc # @,7 # 7 but p(c) = p(d) and p(7) = p(7), then
TAND(o,7) = TAND(7,7). Some of the properties dfAN D are summarised in the
next

Lemma5.1. 1. JAND is associative and commutative;
2. IAND(p, Py) = Py;
3. IAND(p, P1) = pp(p);
4. p(IAND(p,0)) = p(p)p(o).
Proof. Straightforward application of the definitions. O

Another example of irreversible connective is given by a quantum counterpart of the
disjunction connective of Lukasiewicz logie][

Definition 5.2. (The tukasiewicz disjunction). ¥ € ®(®"C?) andr € D(®™C?) and
@ is truncated sum (i.enin(x + y, 1), forz,y € [0, 1]),

_ 1
TDT = Pp(o)@p(r)

8By P} we refer to the extension df, to the dimensiom. In other words P = "1 P.
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The operation® is also clearly irreversible: i& # 7,7 # 7 but p(o) = p(d) and
p(T) = p(7), theno & 7 = 7 & 7. More than that, the unique reversible application of
the tukasiewicz disjunction turns out to arise wher= P}* andr = PJ". The following
properties are easily seen to hold:

! if <1
Lemma5.2. 1. o@7={ "P@)op) plo)@pr) <1
P, otherwise;

2. plo®T)=p(o)dp(r)

Vo
A e i
W i Tl e e
) o B
LT A At
7 i ey

Figure 5.3: The tukasiewicz function

6 Approximating irreversible connectives via quantum operations

Leaving aside thd AN D for the moment, we remark from the outset that, for a logi-
cian, a connective liked is appealing and puzzling at once:

e It is appealing, because it arises naturally within the mixed state approach and en-
joys nice algebraic properties: in fact, it has been widely studied from a universal
algebraic viewpoint (see for exampl@][[?]). Moreover, it represents a promising
bridge towards other more or less remote areas of logical research, like fuzzy logic.

e On the other hand, it is puzzling because it does not fit easily within the framework
we have been establishing so far: not only it fails to be a quantum gati,iduiot
even a quantum operatioithis is easy to see, since any quantum operation must be
in particular an operator, hence linear; ahds not such. It looks like even the more
liberal approach we have adopted is not encompassing enough to let it in.

A justification for this irreversible connective is therefore in order, and the aim of this
section is to provide some. The strategy we will follow is due to Hector Freytes and his
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collaborators (partly published ir?]), and aims at giving a Stone-Weierstrass type ap-
proximation result via quantum operations. The upshot of this theorem is that, although
these irreversible fuzzy-like connectives are not themselves quantum operations, they can
be probabilistically approximated by means of such.

The Stone-Weierstrass theorem is one of the most celebrated results in complex analysis
and general topology. In its simplest version, it says that every continuous complex-valued
function on any bounded closed real interval can be approximated by means of polynomial
functions (this much is due to Weierstrass; Stone generalised the result to any arbitrary
compact Hausdorff space). In a more rigorous fashion, this theorem can be stated as fol-
lows:

Theorem 6.1. Let f be a continuous complex-valued function defined on the real interval
[a,b]. For everye € R, there exists a polynomial functiaf over the complex fiel@
such that for any: € [a, b] we have f(x) — P(z)| < e.

We are now about to examine a version of this theorem (cp. [?] for a more technical and
compact presentation), yielding a probabilistical approximation of the connectives defined
in Definitions 5.1 and 5.2 by means of polynomial quantum operations. The proofs of all
the results contained in the present section are fully developped in [?]. Let us, however,
proceed gradually. Our first goal is associating a polynomial quantum operation to each
real polynomial; this can be done as follows. A generic real polynoffal, ..., z,,) inn
variables can be written in the form

Qi

ajx; =,

1

n
j=1i=

wheremax; max;{«;;} = deg(P) andca;; > 0. For example, if we fixa; = 7,a2 =
6,n = 3,m = 2, and we lein;; be thei, j entry in the following matrix:

2 31
2 1 2

2 2.1, 2
Tririrs + 6rireTs.

we obtain the polynomial

We recall from the previous sections that every density opetstoC? has the matrix
representatios (r1oy + re0s + r3os + I). Expanding and letting = 157, 3 = 1152,

we get
1 1+r3 ri—irg) [l-a f
2\ri+iry 1—r3 g al’

Now, matrices of the above form have an interesting property, If.., A,, are such
matrices, upon replacing each scalaby avariable z; (i < n), the diagonal elements of
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the tensor product matrix

A= (®kAl) Q- (®kAn)

are the members of the set

Dy, ey ) = {(1 —2)® 2 . (1 —z,) P s oy + B = kyi € {1,...,n}}

For any set of variableéx;, ..., z,, }, monomials inDy (x4, ..., z,,) are better behaved
n
than garden variety monomialg ax;. However, each such monomial can be represented

=1
in terms of monomials iy (z1, ..., z,,). In fact, we have the following

n

Lemma 6.1. Let{z1,...,x,} be a set of variables and Ief] az;* be a monomial. Let

i=1

n
moreoverk be a natural number s.k > > «;. Then

i=1

H ar]® = Z dm,m and

=1 mEDy(x1,...,Tn)
n
1-— H (lil';“ E Ym M,
i=1

’VneDk(fL'lw--va'n)
whered,,, v, € {0,1}.

We now have all the ingredients we need to spell out the crucial definitipalphomial
guantum operatiomssociated to a polynomial.

Definition 6.1. Let P(z1,...,x,) = Y. [] ajz; " be a polynomial s.t.:

m
j =1

=

Jj=

n
1. foreveryj <m, [[ ajz;" €Dg(z1, ..., x,);
2

2

2. 0 < P(xq,...,2n) < 1 whenever, ..., z, € [0,1]".

The polynomial quantum operatioR* associated t@ is the function:

P*: @D (C?arrow @"F D(C?)
Definition 6.2. s.t. foroy, ..., o, in ®(C?) we have:

* 1 nk—
P ((®k01) ®- & (®kan)) = (Qn/c—l "+t I) & PP(p(o1)yep(0n))
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This definition is far less complicated than it might seem at first sight: let us, then, take
some of the mystery out of it and see what it boils down to. Let us be given a polynBmial
which has the following two characteristics: i) it is the sum of "well-behaved” monomials
(by Lemma 6.1, this entails no loss of generality); ii) it outputs value.,iti] whenever
all of its input values are if0,1]. To this polynomial we associate an operaftr on
®@"*®(C?) which, when applied to the argumefito,) ® - -- ®@ (®Fa,) (for oy, ..., 04,
in ©(C?)), outputs the density operator whose probability of truth (in the above specified
sense) is just the result of the application of the polynomial funckida the probabilities
of o4, ..., o, (@ppropriately lifted to the space having the "right” dimension via the tensor
product with the normalised identity matrixt— @"*~1 I).

The label we used in Definition 6.1 is not a misnomer. In fact, we have as a fundamental
result that:

Theorem 6.2. Polynomial quantum operations are quantum operations.

Let us now reflect for a while on a special feature of the connective¥ D and&.
Both have the property that, if applied to a given pair of density operatorgheir output
is a density operator whose probability of truth isimary continuous functioof the prob-
abilities of o, . Abstracting away from these specific examples, we attain the following

Definition 6.3. Let F' : [0, 1]™arrow]0, 1] be a continuous functioMhe continuous quan-
tum connectivassociated td’ is the function

F* : @D (C?)arrowd(C?)
s.t. foroy, ..., 0, in ®(C?) we have:

F*(®%01) ® - @ (®%02)) = pr(p(or),...p(on))-

It is clear that, in general, continuous quantum connectives are not quantum opera-
tions. Nonetheless, they admit of a Stone-Weierstrass-style probabilistical approximation
by means of quantum operations in the following sense: for every continuous quantum
connective we can find a polynomial quantum operation which is "probabilistically indis-
tinguishable” from it. More precisely:

Theorem 6.3. Let F' : [0, 1]™arrow[0, 1] be a continuous function, |ét* be the continu-
ous quantum connective associateditpand lety = min{min(1 — F'), min(F)}. Then
there exists a polynomial quantum operatiBi : @"*®(C?)arrow @™ D(C?) (associ-
ated to some polynomial functiadn) s.t. for every0 < ¢ < pu there exists a constanit/

such that for every = (2%01) ® - - ® (®F0,) we have that:

p(P*(0)) ~ 3=p(F*(0)] < e
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We must, however, emphasise a disanalogy between the cases of the connectives
TAND and® . While the former complies with the conditions of Theorem 4.1 and can
therefore be considered a quantum operation to all intents and purposes, rendering any re-
course to Theorem 6.3 unnecessary, the latter fails to be such and can only be approximated
by a polynomial quantum operation by means of Theorem 6.3 [?].
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