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Abstract: The paper presents two new generalized integral formulae involving product of generalized Bessel function of the first kind
wv (z) and general class of polynomialsSm

n [x] which are presented in terms of the generalized Wright hypergeometric function. Some
interesting special cases of the main results are also considered. The results presented here are of general character and easily reducible
to new and known integral formulae. The results are obtainedwith the help of an interesting integral due to Oberhettinger.
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1 Introduction

In view of importance of the Bessel function a large
number of integral formulae involving this function have
been developed by many authors. For example, Choi and
Agarwal [8] derived unified integrals involving Bessel
functions. Further, Ali [5] gave unified integrals
associated the hypergeometric function. Recently, many
useful integral formulae associated with the generalized
Bessel functions have been studied by Agarwal [1]-[3],
Agarwalet al. [4] and Choi and Agarwal [7].
Many integral formulae involving products of Bessel
functions have been developed and play an important role
in several physical problems. In fact, Bessel functions are
associated with a wide range of problems in diverse areas
of mathematics. These connections of Bessel functions
with various other research areas have led many
researchers to the field of special functions. Among many
properties of Bessel functions, they also have investigated
some possible extensions of the Bessel functions.
In this paper, two generalized integral formulae have been
established involving product of generalized Bessel
function of the first kind wv (z) and general class of
polynomials Smn [x], in terms of the generalized Wright
hypergeometric function.

For this we recall following known functions.
The general class of polynomialsSm

n [x] defined by (cf.
[13]):

Sm
n [x] =

[ n
m ]

∑
k=0

(−n)mk

k!
An,kxk (n = 0,1,2, . . .) , (1)

where m is an arbitrary positive integer and the coefficient
An,k(n,k ≥ 0) are arbitrary constants, real or complex.
The polynomial family Smn [x] gives a number of known
polynomials as its special cases on suitably specializing
the coefficients An,k.
A useful generalization wv (z) of the Bessel function has
been introduced and studied in [6]. The generalized Bessel
function of the first kind, wv (z) is defined forz ∈ C\ {0}
and b,c,v ∈ C with ℜ(v) > −1 by the following series
([12]):

wv (z) =
∞

∑
l=0

(−1)lcl
(

z
2

)v+2l

l!Γ (v+ l+ 1+b
2 )

, (2)

whereΓ (z) is the Gamma function [14] andC denotes set
of complex numbers.
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A unification of the generalized hypergeometric series
pFq (.) is due to Wright [16]-[18] and Fox [10] who gave
the generalized (Wright) hypergeometric function [15]:

pΨq

[

(α1,A1) , . . . ,
(

αp,Ap
)

;z
(β1,B1) , . . . ,

(

βq,Bq
)

;

]

=

∞

∑
k=0

∏p
j=1 Γ (αj+A jk)

∏q
j=1Γ (βj+Bjk)

zk

k!
, (3)

where the coefficients A1, . . . ,Ap and B1, . . . ,Bq are real
positive numbers such that

1+
q

∑
j=1

Bj−
p

∑
j=1

A j ≧ 0. (4)

A special case of (3) is

pΨq

[

(α1,1) , . . . ,
(

αp,1
)

;z
(β1,1) , . . . ,

(

βq,1
)

;

]

=

∏p
j=1 Γ (αj)

∏q
j=1Γ (βj)

pFq

[

α1, . . . ,αp ;z
β1, . . . ,βq ;

]

, (5)

wherepFq(.) is the generalized hypergeometricseries [12],
defined as:

pFq

[

α1, . . . ,αp ;z
β1, . . . ,βq ;

]

=
∞

∑
n=0

(α1)n. . .(αp)n zn

(β1)n. . .(βq )nn!
, (6)

where(α)n is the Pochhammer symbol defined (forλ ∈
C) by [12]:

(α)n=

{

1, (n= 0)
α (α+1) . . .(α+n−1), (n∈ N={1,2, · · ·})

=
Γ (α+n)

Γ (α)
(α ∈C\Z−

0 ) (7)

andZ−
0 denotes the set of non positive integers.

We also take the following integral formula given by
Oberhettinger [11]:

∫ ∞

0
xµ−1(x+ a+

√

x2+2ax)−λ dx

= 2 λ a−λ
(a

2

)µ Γ (2µ)Γ (λ − µ)
Γ (1+λ + µ)

, (8)

provided 0< ℜ(µ)< ℜ(λ ).

2 Main Results

In this part, two generalized integral formulae involving
product of generalized Bessel function of the first kind
wv (z) and general class of polynomialsSm

n [x] are
established, which are expressed in terms of the
generalized Wright hypergeometric function.

Theorem 2.1 Let λ ,b,c,v,µ ∈ C with R (v) > −1, x >
0,n,k ≥ 0, and 0<R (µ)<R (λ + v). Then we obtain

∫ ∞

0
xµ−1(x+ a+

√

x2+2ax)−λ Sm
n

(

y

x+ a+
√

x2+2ax

)

×wv

(

y

x+ a+
√

x2+2ax

)

dx

=
[ n

m ]

∑
k=0

(−n)mk

k!
An,k yk+v 21−µ−vaµ−λ−k−vΓ (2µ)

×2Ψ3

[

(λ + k+ v− µ ,2), (λ + k+ v+1,2)
(

v+ 1+b
2 ,1

)

, (1+ µ +λ + k+ v,2),

;
(λ + k+ v,2);

−y2c
4a2

]

. (9)

Theorem 2.2 Let λ ,b,c,v,µ ∈ C with R (v) > −1,
x > 0,n,k ≥ 0, and 0<R (µ)<R (λ +v). Then we have

∫ ∞

0
xµ−1(x+ a+

√

x2+2ax)−λ Sm
n

(

xy

x+ a+
√

x2+2ax

)

×wv

(

xy

x+ a+
√

x2+2ax

)

dx

=
[ n

m ]

∑
k=0

(−n)mk

k!
An,k yk+v 21−µ−k−2vaµ−λΓ (λ − µ)

×2Ψ3

[

(2µ +2k+2v,4), (λ + k+ v+1,2)
(

v+ 1+b
2 ,1

)

, (1+ µ +λ +2k+2v,4),

;
(λ + k+ v,2);

−y2c
16

]

. (10)

Proof. By making use of product of (1) and (2) in the
integrand of (9) and interchanging the order of integral
sign and summation, which is verified by uniform
convergence of the series, we find

∫ ∞

0
xµ−1(x+ a+

√

x2+2ax)−λ Sm
n

(

y

x+ a+
√

x2+2ax

)

×wv

(

y

x+ a+
√

x2+2ax

)

dx
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=
[ n

m ]

∑
k=0

(−n)mk

k!
An,kyk.

∞

∑
l=0

(−1)lcl

l! Γ
(

v+ l+ 1+b
2

)

( y
2

)v+2l

×
∫ ∞

0
xµ−1(x+ a+

√

x2+2ax)−λ−k−v−2ldx. (11)

By conditions of Theorem 2.1

0<R (µ)< R (λ + v)< R(λ + v+ k+2l), R (v)>−1,

we use the integral formula (8) to the integral in (11) and
get following expression:

∫ ∞

0
xµ−1(x+ a+

√

x2+2ax)−λ Sm
n

(

y

x+ a+
√

x2+2ax

)

×wv

(

y

x+ a+
√

x2+2ax

)

dx

=
[ n

m ]

∑
k=0

(−n)mk

k!
An,k yk+v21−µ−vaµ−λ−k−vΓ (2µ)

×
∞

∑
l=0

Γ (λ + k+ v− µ+2l)

l! Γ (v+ l+1+b
2 ) Γ (1+ µ +λ + k+ v+2l)

×Γ (λ + k+ v+1+2l)
Γ (λ + k+ v+2l)

(−cy2

4a2

)v+2l

.

Now we use (3) to get the desired formula (9).
By similar manner as in proof of Theorem 2.1, we can
prove the integral formula (10).

3 Special cases

In this section, we consider some special cases of the
main results derived in the preceding section.

For example, if we setn = 0, then we observe that the
general class of polynomialsSm

n [x] reduces to unity, i.e.
Sm

0 [x]→ 1, and we get the following known results due to
Choiet al. [9]:

Corollary 3.1 The following integral holds
∫ ∞

0
xµ−1(x+ a+

√

x2+2ax)−λ

×wv

(

y

x+ a+
√

x2+2ax

)

dx

= yv21−µ−vaµ−λ−vΓ (2µ)

×2Ψ3

[

(λ + v− µ ,2), (λ + v+1,2)
(

v+ 1+b
2 ,1

)

, (1+ µ +λ + v,2) ,

;
(λ + v,2) ;

−y2c
4a2

]

, (12)

provided the conditions of Theorem 2.1 be satisfied.

Corollary 3.2 Suppose the conditions of Theorem 2.2 be
satisfied, then we have

∫ ∞

0
xµ−1(x+ a+

√

x2+2ax)−λ

×wv

(

xy

x+ a+
√

x2+2ax

)

dx

= yv21−2v−µaµ−λ Γ (λ − µ)

×2Ψ3

[

(2µ +2v,4), (λ + v+1,2)
(

v+ 1+b
2 ,1

)

, (1+ µ +λ +2v,4),

;
(λ + v,2) ;

−y2c
16

]

. (13)

Indeed, forb = c = 1, the generalized Bessel function
defined by (2), reduces to the well known Bessel function
of the first kindJv [6], defined forz ∈ C \ {0} andv ∈ C

with R(l)>−1 as:

Jv (z) =
∞

∑
l=0

(−1)l( z
2

)v+2l

l! Γ (v+ l+1)
.

Hence, on settingb = c = 1, in above corollaries, we
obtain the following known results due to Choi and
Agarwal [7]:

Corollary 3.3 The following integral holds true
∫ ∞

0
xµ−1(x+ a+

√

x2+2ax)−λ

×Jv

(

y

x+ a+
√

x2+2ax

)

dx

= yv21−µ−vaµ−λ−vΓ (2µ)

×2Ψ3

[

(λ + v− µ ,4), (λ + v+1,2)
(v+1,1), (1+ µ +λ + v,2) ,

;
(λ + v,2) ;

−y2c
4a2

]

. (14)

Corollary 3.4 Let the conditions of Theorem 2.2 be
satisfied, then we have

∫ ∞

0
xµ−1(x+ a+

√

x2+2ax)−λ

× Jv

(

xy

x+ a+
√

x2+2ax

)

dx

= yv21−µ−2vaµ−λ Γ (λ − µ)

×2Ψ3

[

(2µ +2v,4), (λ + v+1,2)
(v+1,1), (1+ µ +λ +2v,4) ,

;
(λ + v,2) ;

−y2

16

]

. (15)

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


80 N. Menaria et al.: Integral formulas involving product...

Further, the polynomial familySm
n [x] gives a number of

known polynomials as its special cases on suitably
specializing the coefficientsAn,k. To illustrate this, we
give one more example.
If we setm = 2 andAn,k = (−1)k , then the general class
of polynomials

S2
n[x]→ xn/2Hn

(

1
2
√

x

)

, (16)

where Hn (x) denotes the well known Hermite
polynomials, and defined by

Hn (x) =
[n/2]

∑
k=0

(−1)k n!
k! (n−2k)!

(2x)n−2k. (17)

Now, on puttingm = 2,An,k = (−1)k and taking relation
(16) into account, Theorems 2.1 and 2.2 yields to the
following results involving the Hermite polynomial and
the generalized Bessel function:

Corollary 3.5 Let λ ,b,c,v,µ ∈ C with R (v) > −1, x >
0,n,k ≥ 0, and 0<R (µ)<R(λ + v). Then we obtain

∫ ∞

0
xµ−1(x+ a+

√

x2+2ax)−λ− n
2 y

n
2

×Hn

(

1

2
√

X

)

.wv (X)dx

=
[ n

2 ]

∑
k=0

(−n)2k

k!
(−1)kyk+v21−µ−vaµ−λ−k−vΓ (2µ)

×2Ψ3

[

(λ + k+ v− µ ,2), (λ + k+ v+1,2)
(

v+ 1+b
2 ,1

)

, (1+ µ +λ + k+ v,2),

;
(λ + k+ v,2);

−y2c
4a2

]

, (18)

whereX is defined as:

X =
y

x+ a+
√

x2+2ax
.

Corollary 3.6 Let λ ,b,c,v,µ ∈ C with R (v) > −1,
x > 0,n,k ≥ 0, and 0< R (µ) < R(λ + v). Then the
following integral holds:

∫ ∞

0
xµ−1+ n

2 (x+ a+
√

x2+2ax)−λ− n
2 y

n
2

×Hn

(

1

2
√

Y

)

wv (Y )dx

=
[ n

2 ]

∑
k=0

(−n)2k

k!
(−1)nyk+v21−µ−k−2vaµ−λ Γ (λ − µ)

×2Ψ3

[

(2µ +2k+2v,4), (λ + k+ v+1,2)
(

v+ 1+b
2 ,1

)

, (1+ µ +λ +2k+2v,4),

;
(λ + k+ v,2);

−y2c
16

]

, (19)

where

Y =
xy

x+ a+
√

x2+2ax
.

4 Concluding remarks

Various Bessel functions, trigonometric functions and
hyperbolic functions are particular cases of generalized
Bessel function defined by (2). Therefore, we observe that
our main results can lead to yield numerous other
interesting integrals involving various Bessel functions
and trigonometric functions by suitable specializations of
arbitrary parameters in the theorems. Further, on giving
suitable special values to the coefficientAn,k, the general
class of polynomials give many known classical
orthogonal polynomials as its particular cases. These
include Hermite, Laguerre, Jacobi, the Konhauser
polynomials and so on.

We conclude with the remark that, using our results
one can find numerous other interesting integrals
involving various Bessel functions, trigonometric
functions and orthogonal polynomials by the suitable
specializations of arbitrary sequences in the theorems.
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