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Abstract: Grey system is a theory which studies poor information specially, and it possesses wide suitability. Applying a step by
step optimum new information modeling method to construct new information background value of multi-variable non-equidistance
new information Grey model MGM(1,n), taking the mth component of each variable as initial value of response function, taking the
mean relative error as objective function, and taking the modified values of response function initial value as design variables, the
multi-variable non-equidistance new information Grey model MGM(1,n) was built. The proposed model can be used to build model in
non-equal interval and equal interval time series. It enlarges the scope of application and has high precision and easy to use. Example
validates the practicability and reliability of the proposed model.

Keywords: Multivariable, background value, non-equidistance sequence, a step by step optimum modeling, new information, opti-
mizing, non-equidistance MGM(1,n), least square method.

1. Introduction

The theory of Grey system is the study of the grey sys-
tem analysis, modeling, prediction, decision making and
control theory. Gray model is an important content of the
grey system theory, In the search for laws between data,
it makes up for the lack of available data mining method,
and provides a new scientific method for data mining.

Since professor Deng Ju Long bring about the grey
system theory in 1982, gray model is widely applied in
many areas [1,2]. Grey model has more types, mainly in-
cluding GM (1,1), GM (1,N), MGM (1,N) etc. where GM
(1,1) has been used widely and researched deeply , GM(1,N)
Can only be used for the qualitative analysis and cannot be
used to predict. Being an extension of GM (1,1) model in
case of n variable, MGM(1,N) model is neither a simple
combination of GM (1,1) model ,also differs from GM(1,n)
model.There are n differential equations contained n el-
ements In MGM(1,N) model ,but just a single first or-
der differential equation contained n element in GM(1,N)
model, then we can find their simultaneous solution , and
parameters in model MGM (1,N) can reflect the interre-

lating and interacting relationship among multiple vari-
ables. Because Study on MGM (1,N) model is much less
than that on GM (1,1) model so far, studying deeply on
it has important theory significance and application value.
Literature [1] have corrected and established optimization
MGM(1,N) model that regard the first component of the
sequence as the initial conditions of grey differential equa-
tion. According to the new information priority principle
of grey system theory, Literature [4] have corrected and es-
tablished multivariate variables new information optimiza-
tion MGM (1,N) model that regard the nth component of
the sequence X(1) as the initial conditions of grey differ-
ential equation. Literature [4] have established multivari-
ate new information MGM (1, N) model that regard the
nth component of X(1) as initial conditions of the grey
differential equation, and made optimal correction for the
initial value and background value coefficient(background
value is introduced in the form of z(1)i = qx

(1)
i (k + 1) +

(1 − q)x
(1)
i (k), (q ∈ [0, 1]), but these MGM (1,N) model

are equidistant model. Literature [6] built non equidistant
multivariable MGM (1,N) by means of homogeneous ex-
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ponential function fitting background value. However non-
homogeneous exponential function is more universal, then,
there are inherent defects in mechanism of the modeling.
Literature [7] built non equidistant multivariable MGM
(1,N). But its background value was generated by using
of the mean value, so the precision of the model needs to
be further improved. Literature [8] built non equidistant
multivariable MGM(1,N) through non homogeneous ex-
ponential function fitting background value, improving the
accuracy of the model. However the parameters only use
least square method without making a response function
optimization. Literature [9] analyzed the structure method
of background value of multivariable grey model MGM
(1,m), putting forward to utilizing rational interpolation
and numerical integration of trapezoid formula and ex-
trapolation to reconstruct background value by using of
the vector valued continued fraction theory, and improv-
ing the precision of simulating and forecasting model ef-
fectively for multivariate interval MGM (1,m) model. Lit-
erature [10] proposed a gradual optimization new informa-
tion equidistant GM (1,1) model by using of grey system
modeling method and new information principle. Based
on the GM (1,1) modeling, the model used the nth com-
ponent of the original data as initial conditions of the grey
differential equation. Parameters of the model were esti-
mated through the optimization of background value and
difference adjustment coefficient.

In this paper, taking the mth component of the data
as the initial value of solution of grey differential equa-
tion, absorbing new information modeling and a step by
step optimization method from literature [10], constructing
new information background value of multivariable non
equidistant grey new-information model MGM(1,n), tak-
ing minimum relative error as objective function and the
correction of initial value as design variables, multivari-
able non-equidistance grey new information optimization
model MGM(1,n) is established. The model is not only
suitable for the equidistant model, as well as including non
equidistance modeling. It extends the scope of application
of the grey model. In addition to high precision, the model
has great theoretical value and applied value.

2. Non-equidistant multivariate new
information optimization model based on a
step by step optimization modeling to
construct new information background
values

Definition 1: Suppose the sequence

X
(0)
i = [x

(0)
i (t1), x

(0)
i (t2), · · · , x(0)

i (tm)],

where i = 1, 2, · · ·, n. If

△tj = ti − tj−1 ̸= cost, (2 ≤ j ≤ m),

then X
(0)
i is called non-equidistant sequence.

Definition 2: Let X(1)
i denoted by

X
(1)
i = [x

(1)
i (t1), x

(1)
i (t2), · · · , x(1)

i (tm)],

the sequence X
(1)
i is called the first-order accumulated

generating operation of non equidistant sequence X
(0)
i , if

x
(1)
i (t1) = x

(0)
i (t1), x

(1)
i (tj) = x

(1)
i (tj−1)+x

(0)
i (tj)△tj ,

where i = 1, 2, · · ·, n, j = 2, 3, · · · ,m, △tj is same to
Definition 1.

Set the original data matrix of multivariable

X(0) = [X
(0)
1 , X

(0)
2 , · · · , X(0)

n ]T

=


x
(0)
1 (t1) x

(0)
1 (t2) · · · x(0)

1 (tm)

x
(0)
2 (t1) x

(0)
2 (t2) · · · x(0)

2 (tm)
· · · · · · · · · · · ·

x
(0)
n (t1) x

(0)
n (t2) · · · x(0)

n (tm)

 ,
(1)

where x
(0)
i (tj)(i = 1, 2, · · · , n, j = 1, 2, · · · ,m) is the

observed values of variable X
(0)
i in the moments of tj ,

[x
(0)
i (t1), x

(0)
i (t2), · · · , x(0)

i (tm)] is non equidistant sequence,
namely, the distance of tj − tj−1(j = 2, 3, · · · ,m) is not
constant.

In order to establish model, first taking the accumu-
lated raw data, a new matrix can be obtained, namely

X(1) = [X
(1)
1 , X

(2)
2 , · · · , X(1)

n ]T

=


x
(1)
1 (t1) x

(1)
1 (t2) · · · x(1)

1 (tm)

x
(1)
2 (t1) x

(1)
2 (t2) · · · x(1)

2 (tm)
· · · · · · · · · · · ·

x
(1)
n (t1) x

(1)
n (t2) · · · x(1)

n (tm)

 ,
(2)

where x
(1)
i (tj) (i = 1, 2, · · · , n) meet the definition 2,

namely,

x
(1)
i (tj) =x

(0)
i (t1) +

j∑
k=2

x
(0)
i (tk)∆tk, (j = 2, · · · ,m),

x
(0)
i (t1), (j = 1).

(3)

Multivariable non equidistant MGM (1, n) model is
first order differential equations containing n element

dx
(1)
1

dt = p11x
(1)
1 + p12x

(1)
2 + · · ·+ p1nx

(1)
n + q1,

dx
(1)
2

dt = p21x
(1)
1 + p22x

(1)
2 + · · ·+ p2nx

(1)
n + q2,

· · · · · ·
dx(1)

n

dt = pn1x
(1)
1 + pn2x

(1)
2 + · · ·+ pnnx

(1)
n + qn.

(4)

Note

A =

 p11 p12 · · · p1n
p21 p22 · · · p2n
· · · · · · · · · · · ·
pn1 pn2 · · · pnn

 , B =


q1
q2
...
qn

 ,
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then (4) may be written as

dX(1)(t)

dt
= AX(1)(t) +B. (5)

According to new information priority principle of grey
system theory, we regard the first component of the se-
quence x

(1)
i (tj)(j = 1, 2, · · · ,m) as initial conditions of

the grey differential equation, causing that new informa-
tion cannot be applied fully, If we regard mth component
of the sequence x

(1)
i (tj)(j = 1, 2, · · · ,m) as initial con-

ditions of the grey differential equation, causing that new
information can be applied fully, in which continuous time
response of (5) is

X(1)(t) = eAtX(1)(tm) +A−1(eAt − I)B, (6)

where eAt = I +

∞∑
k=1

Ak

k!
tk, I is unit matrix.

In order to obtain A and B, we integral the both side
on the interval [tj−1, tj ],

x
(0)
i (tj)∆tj =

n∑
k=1

pik

∫ tj

tj−1

x
(1)
i (tj)dt+ qi∆tj , (7)

x
(0)
i (tj) =

n∑
k=1

pik

∫ tj

tj−1

x
(1)
i (tj)dt

∆tj
+ qi. (8)

Let

z̄
(1)
i (tj) =

∫ tj
tj−1

x
(1)
i (tj)dt

∆tj
,

The traditional background value calculation formula
actually use trapezoidal areaz(1)i (tj)∆tj , thus, there is big
error. But we obtain Parameter matrix Â and B̂ by means
of regarding z

(1)
i (tj) =

∫ tj
tj−1

x
(1)
i (tj)dt as background

value calculation x
(1)
tj in the interval [tj−1, tj ] that is more

suitable for whitening equation (4). According to exponen-
tial rule of gray forecast model and modeling theory and
method [10] of a step by step optimization new informa-
tion non-equidistant GM (1, 1) model, we take x

(1)
i (t) =

aie
bit + ci, where ai, bi, ci are the undetermined coeffi-

cient. The literature [10] analyzed thought and method of a
step by step optimization new information non-equidistance
GM (1, 1) model and the key of modeling is whitening

grey derivative dx
(1)
i

(tj)

dt . If we choose reasonable whiten-
ing grey derivative, accuracy of modeling will be improved.
The method to obtain whitening grey derivative with the
most intuitionist and easy to understand is a differential
quotient instead of derivative.

dx
(1)
i (tj+1)

dt
≈ x

(1)
i (tj+1)− x

(1)
i (tj)

tj+1 − tj
. (9)

dx
(1)
i (tj)

dt
≈ x

(1)
i (tj+1)− x

(1)
i (tj)

tj+1 − tj
. (10)

In fact, on the premise of X(t) being a derivative, the

Lagrange mean value theorem shows, x
(1)
i

(tj+1)−x
(1)
i

(tj)

tj+1−tj
is

a derivative value in a point of the interval (tk, tk+1) , that
is , derivative value can be thought as being known value,
the corresponding variable values are interval gray num-
bers (tj , tj+1). For the introduction of grey derivative cor-
rection coefficient correction of grey derivative, we adopt
grey derivative correction coefficient ρ and ξ to correct

grey derivative and construct modeling ρi
x
(1)
i

(tj+1)−x
(1)
i

(tj)

tj+1−tj
.

Actually, we don’t knowξi(tj) and ρi(tj). We take step
by step optimization method, and, the steps are as follows:

1) Obtain original data x
(0)
i .

2)Take initial value of the iteration step number repeat-
edly s = 0, ai(s) = ai(0) = 0, so,

ξi(s) =
eai(s)

eai(s) − 1
− 1

ai(s)
=

1

2
,

ρi(s) =
ai(s)(1 + e−ai(s))

2(1− e−ai(s))
= 1.

Taking linear regression to whitening values x(1)
i (tj) =

([1− ξi]x
(1)
i (tj)+ ξi)x

(1)
i (tj+1), We obtain the whitening

values of parameter:

âi(s+1) = −ρi(s)
Si(s)xy

Si(s)xx
, (11)

where

x
(1)
i(s)(tj) = [1− ξi(s)x

(1)
i(s)(tj)] + ξi(s)x

(1)
i(s)(tj+1),

x̄
(1)
i(s) =

1

m− 1

m−1∑
j=1

x
(1)
i(s)(tj),

yi(s)(tj) =
x
(1)
i(s)(tj+1)− x

(1)
i(s)(tj)

tj+1 − tj
,

ȳi(s) =
1

m− 1

m−1∑
j=1

yi(s)(tj),

Si(s)xx =
m−1∑
j=1

[x
(1)
i(s)(tj)− x̄

(1)
i(s)]

2,

Si(s)xy =

m−1∑
j=1

[x
(1)
i(s) − x̄

(1)
i(s)][yi(s)(tj)− ȳi(s)].

Then, we construct the linear regression to get index
model Ms+1:

x̂
(1)
i(s)(tj+1) = ĉi(s+1)e

−âi(s+1)(tj−tm) + b̂i(s+1), (12)
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where

ĉi(s+1)

= 1
m∑
j=1

[e−âi(s+1)(tj−tm) − 1

m

m∑
j=1

e−âi(s+1)(tj−tm)]2

×{
m∑
j=1

( [e−âi(s+1)(tj−tm) − 1

m

m∑
j=1

e−âi(s+1)(tj−tm)]

×[x
(1)
i(s)(tj)−

1
m

m∑
j=1

x
(1)
i(s)(tj)] ) },

(13)

b̂i(s+1) =
1
m

m∑
j=1

x
(1)
i(s)(tj)−

ĉi(s+1)
1
m

m∑
j=1

e−âi(s+1)(tj−tm).

(14)

After finding out âi, b̂i, ĉi, z
(1)
i (tj) can be solved, and

then get

z̄i
(1)(tj) =

∫ tj
tj−1

x
(1)
i (tj)dt

∆tj
= x

(1)
i (tj).

Set pi = (pi1, pi2, · · · , pin, qi)T , (i = 1, 2, · · · , n),
pi can be to achieved the value p̂i by the least square method.

p̂i = (p̂i1, p̂i2, · · · , p̂in, q̂i)T
= (LTL)−1LTYi, (i = 1, 2, · · · , n), (15)

where,

L =


z̄
(1)
1 (t2) z̄

(1)
2 (t2) · · · z̄(1)n (t2) 1

z̄
(1)
1 (t3) z̄

(1)
2 (t3) · · · z̄(1)n (t3) 1

· · · · · · · · · · · · · · ·
z̄
(1)
1 (tm) z̄

(1)
2 (tm) · · · z̄(1)n (tm) 1

 , (16)

Yi = [x
(0)
i (t2), x

(0)
i (t3), · · · , x(0)

i (tm)]T . (17)

We can get discrimination value of A and B:

Â =

 p̂11 p̂12 · · · p̂1n
p̂21 p̂22 · · · p̂2n
· · · · · · · · · · · ·
p̂n1 p̂n2 · · · p̂nn

 , B̂ =


q̂1
q̂2
...
q̂n

 .

Computation value of new information MGM (1, n)
mode is

X̂
(1)
i (tj) = eÂ(tj−tm)X

(1)
i (tm)+

Â−1(eÂ(tj−tm) − I)B̂.
(18)

We use the mth component of the data as initial value
of the grey differential equation and modify initial value,
namely, X(0)(tm) + β instead of X(0)(tm) ,which β is

vector β = [β1, β2, · · · , βn]
T . The fitting values of the

original data are obtained.

X̂
(0)
i (tj)

=


lim

∆t→0

X
(1)
i (t1)−Xi(1)(t1 −∆t)

∆t
, (j = 1),

X̂
(1)
i

(tj)−X̂
(1)
i

(tj−1)

tj−tj−1
, (j = 2, 3, · · · ,m).

(19)

The absolute error of ith variable is x̂(0)
i (tj)−x

(0)
i (tj).

Relative error of ith variables is

ei(tj) =
x̂
(0)
i (tj)− x

(0)
i (tj)

i(0)(tj)
× 100.

The mean value of relative error of ith variable is

1

m

m∑
j=1

| ei(tj) | .

The average error of all the data is

ē =
1

mn

n∑
i=1

m∑
j=1

| ei(tj) | .

Taking the average error f as objective function and as
design variables, using the optimization function of Matlab
7.5 optimization method or other method for solving, all
parameters are obtained.

3. Precision inspecting for the model

The inspecting means contain residual analysis, correla-
tion degree analysis, and post-error analysis [7,12,13]. The
displacement relative degree,

the speed related degree, the acceleration degree, and
the total related degree are calculated simultaneity. These
kinds of related degrees are called related degrees of C-
type [14], which can be used to both of the whole analysis
and the dynamic analysis. The following related degree in-
spection of C-type is employed in this paper.

1) To calculate the three-layer related degrees.
Displacement related degree d(0)(tj):

d(0)(tj) =
x(0)(tj)

x̂(0)(tj)
, (20)

where,j = 1, 2, · · · ,m.
Speed related degree d(1)(tj):

d(1)(tj) =
x(0)(tj+1)− x(0)(tj)

x̂(0)(tj+1)− x̂(0)(tj)
,

where j = 1, 2, · · · ,m− 1.

(21)
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Acceleration related degree d(2)(tj):

d(2)(tj) =
x(0)(tj+1)− 2x(0)(tj) + x(0)(tj−1)

x̂(0)(tj+1)− 2x̂(0)(tj) + x̂(0)(tj−1)
,

where j = 1, 2, · · · ,m− 1.

(22)

2) To calculate the three-layer related comprehensive
degree at tj :

D(t1) =
d(1)(t1) + d(0)(t1)

2
, D(tm) = d(0)(tm), (23)

D(tj) =
d(0)(tj)+d(1)(tj)+d(2)(tj)

3 ,

where j = 2, 3, · · · ,m− 1.

(24)

3) To calculate the total related degree of the model
x̂(0)(tj) :

D =
1

m

m∑
j=1

D(tj), j = 1, 2, · · · ,m. (25)

When 0.6 < D ≤ 5
3 , the precision of the model is

”Good”. When −0.30 ≤ D ≤ 0.60, the precision of the
model is ”better”. When D < −0.30 or D > 5

3 , the preci-
sion of the model is ”bad” [14].

4. Model applications

Example 1: On the contacting strength calculation, prin-
cipal curvature function F (ρ) and the coefficient ma,mb

, with the point contacting ellipse length and short radius
a, b. Parameters are generally processed by consulting ta-
ble .The data extracted from the table 1 [11].

Table1 The values of F (ρ),ma, and mb

No. 1 2 3 4 5
F (ρ) 0.9995 0.9990 0.9980 0.9970 0.9960
ma 23.95 18.53 14.25 12.26 11.02
mb 0.163 0.185 0.212 0.228 0.241
No. 6 7 8 9 10
F (ρ) 0.9950 0.9940 0.9930 0.9920 0.9910
ma 10.15 9.46 8.92 8.47 8.10
mb 0.251 0.260 0.268 0.275 0.281
No. 11 12 13 14 15
F (ρ) 0.9900 0.9890 0.9880 0.9870 0.9860
ma 7.76 7.49 7.25 7.02 6.84
mb 0.287 0.292 0.297 0.301 0.305
No. 16 17 18 19 20
F (ρ) 0.9850 0.9840 0.9830 0.9820 0.9810
ma 6.64 6.47 6.33 6.19 6.06
mb 0.310 0.314 0.317 0.321 0.325
No. 21 22 23 24 25
F (ρ) 0.9800 0.9790 0.9780 0.9770
ma 5.95 5.83 5.72 5.63
mb 0.328 0.332 0.335 0.338

The coefficient mb of the oval short radius b is noted
as tj , principal curvature function F (ρ) is noted as X1, the
coefficient ma of the oval short radius a is noted as X2.
Establishing non-equidistance new information optimum
GM(1,2) model with the proposed method, the model pa-
rameters are as follows:

A =

[
−0.3787 0.0243
16.4555 −8.1528

]
, B =

[
0.7945
196.8118

]
,

β =

[
−0.0025205
0.070706

]
.

Principal curvature function fitting value is

F̂ (ρ) = [1.00020, 1.00040, 0.99990, 0.99837,
0.99682, 0.99534, 0.99396, 0.99262,
0.99136, 0.99022, 0.98912, 0.98808,
0.98710, 0.98621, 0.98539, 0.98446,
0.98351, 0.98276, 0.98200, 0.98112,
0.98034, 0.97955, 0.97875, 0.97806].

.
The absolute error of principal curvature function is

q = [ 0.6772, 1.4183, 1.8995, 1.3741,
0.8205, 0.3375,−0.0406,−0.3793,

−0.6374,−0.7824,−0.8821,−0.9236,
−0.8975,−0.7944,−0.6079,−0.5405,
−0.4899,−0.2399,−0.0003, 0.1195,
0.3396, 0.5505, 0.7532, 1.0631].

The relative error (percent) of principal curvature func-
tion is:

e = [ 0.067753, 0.141972, 0.190329, 0.137826,
0.082379, 0.033920,−0.004080,−0.038197,

−0.064259,−0.078950,−0.089106,−0.093386,
−0.090839,−0.080488,−0.061650,−0.054871,
−0.049785,−0.024408,−0.000026, 0.012178,
0.034655, 0.056231, 0.077018, 0.108810].

The average value of relative error is 0.069713%.
The precision of the model is ”Good”. The average

value of relative error of without optimization for new in-
formation model is 0.14657%. So, optimization model has
very high precision.

Example 2: Refer to reference [7] of data for water ab-
sorption rate affecting the pure PA66 mechanics perfor-
mance, according to mechanics performance test on PA66
samples with different water absorption rate, get the bend-
ing strength and flexural modulus of PA66 and the ex-
perimental data of the tensile strength changing with the
water absorption rate. tj is water absorption rate, X(0)

1

is the bending strength (Mpa), X(0)
2 is the flexural mod-

ulus (Gpa), X(0)
3 is the tensile strength (Mpa). The data is

shown in table 2.
Table2 Absorption rate’s influence for mechanics per-

formance of pure PA66

c⃝ 2012 NSP
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No. 1 2 3 4 5
tj 0 0.0607 0.1071 0.1662 0.2069

X
(0)
1 83.4 84.9 84.5 84.2 84.4

X
(0)
2 2.63 2.64 2.61 2.65 2.66

X
(0)
3 84.2 84.4 86.3 84.3 81.3

No. 5 6 7 8 9
tj 0.4344 0.5243 0.8524 0.9756

X
(0)
1 78.4 75.4 59.5 54.1

X
(0)
2 2.52 2.32 1.90 1.72

X
(0)
3 74.9 75.7 73.2 66.9

According to the method mentioned in this paper, set up
the non-equidistant model MGM (1,2). The model param-
eters are shown as follows:

A = 104 ×

 0.1155 −4.2174 0.0172
0.0046 −0.1662 0.0007
−0.0291 1.0613 −0.0043

 ,

B =

185.1780
6.1876
97.9652

 , ρ =

−1.16073
−0.03880
1.4395

 .

The fitted value of X(0)
3 is

X̂
(0)
3 = [ 87.3769, 85.6852, 84.1890,

82.7884, 81.5031, 78.2813,
74.7615, 70.7947, 67.0939].

The absolute error of X(0)
3 is

q = [ 3.1769, 1.2852,−2.1110,
−1.5116, 0.2031, 3.3813,
−0.9385,−2.4053, 0.1939].

The relative error (percent) of X(0)
3 is

e = [ 3.7730, 1.5228,−2.4461,
−1.7931, 0.2499, 4.5144,
−1.2398,−3.2859, 0.2899].

The average value of relative error is 2.1239%.
The precision of the model is ”Good”. The average

value of relative error of without optimization for new in-
formation model is 3.6153%. So, optimization model has
very high precision.

5. Conclusion

In view of multivariable non-equidistance sequence that
multiple variables affect restrict mutually, we construct the
multivariable non-equidistance new information optimiza-
tion grey model MGM(1,n). In modeling, applying a step
by step optimum new information modeling method to con-
struct new information background value of multi-variable
non-equidistance new information Grey model MGM(1,n),
regarding mth component of the data as initial conditions

of the grey differential equation, taking the minimum rela-
tive error as objective function, and taking revising correc-
tion values of the initial value as design variables. The new
model is not only suitable for equidistance modeling, also
suitable for non-equidistant model. It enlarge the scope of
application of the grey model and has high precision, easy
to use and so on. Actual examples show that the model is
practical and reliable with important practical and theoret-
ical significance. It is worth using widely.
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