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Abstract: Because of containing several model waveforms and transmission speed of each model are various, the source signal of
rub-impact acoustic emission (AE) will lead to waveform distortion in propagation process, and it is difficult to achieve exact source
location by traditional time difference of arrival algorithm. A chaotic neural network technique was introduced to calculate the location
of AE source. Numerous researches show that rotor rub-impact fault has sufficient non-linear features, so obtain the characteristics of
the non-linear dynamics which reveal the AE source form the rub-impact data by using the chaos theory and use it as the input of the
neural network to get the localization. We propose a modifiedGaussian Mixed Model (GMM) with an embedded Time Delay Neural
Network (TDNN). It integrates the merits of GMM and TDNN. Simulation results prove, theoretically and practically, that it can locate
AE source efficiently and provide the basis for the rotor rub-impact fault diagnosis, so it has good application prospectand is worth to
research further more.
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1. Introduction

Malfunction diagnosis technologies based on rotor rub-
impact of AE determines the occurrence of rub-impact by
AE signal, and finds the location of rub-impact by AE
source location technique quickly. Using acoustic emis-
sion technology can detect the malfunctions online and in
real-time, find the location of acoustic emission fast and
lossless, estimate the property and risk, and so on, pro-
viding the important information to analysis the cause of
malfunctions and solve them.

The common positioning method is TDOA location
method[1-2], which calculates the AE source location by
the time difference of different homologous signals reach-
ing to different sensors. However, in the structure of the
rotor system, the propagation path between the rub source
and the sensor is often non-continuous, non-single-media
and complex. During the dissemination, the signal of Multi-
modal AE waves inspired by rub-impact distorts seriously
because of the impacts of dispersion, boundary conditions,
frequency dispersion, pattern conversion and so on, cou-
pled with the impact of instrument response, the mapping

between the AE source and the signal detected by sensor
is nonlinear, so it is difficult to model accurately and de-
fine the time difference, and the threshold set of emitting
trigger sound event depends on the practical experience of
engineering staff. Because of these factors, the exact lo-
cation of rub-impact source in rotor system becomes very
difficult.

In order to minimize the impacts of human factors, in-
telligent optimization algorithms have been widely used in
the damage location. In intelligent algorithms, neural net-
work technology, which breaks through the limitations of
digital computer based on traditional linear processing has
its unique characteristics and is a continuous-time dynamic
system with highly nonlinear large scale. Thus is widely
used in the fields of structural damage diagnosis, pattern
recognition, control optimization and intelligent informa-
tion processing[3-5].

When rotor rub, the vibration has obvious nonlinear
characteristic related to rubbing conditions closely and un-
certainty of chaotic nature[6-7]. Some scholars conduct
theoretical calculation and experimental research on the
malfunction of rub-impact in the use of the fractal theory,
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apply the fractal dimension to the vibration malfunction
diagnosis of rotor system and achieve good results[8-10].

This paper takes account of TDNN and GMM with
their respective advantages, and introduces a way of com-
bining GMM and TDNN. It embeds TDNN into the GMM
and takes maximum likelihood (ML) as the common goal
of the training of GMM and TDNN. So the TDNN can
be able to learn the difference between the feature vec-
tor, and the feature vector set mapping can increase the
likelihood of sub-space. We propose a two-stage learn-
ing method, which alternately updates the parameters of
GMM and TDNN, can inhibit the effect of invalid charac-
teristic parameters, and enhances the role of the effective
characteristic parameters.

This letter utilizes the chaotic characteristics of rub-
bing signal to extract the most revealing acoustic emission
sources of non-linear dynamics of characteristics quantity-
the correlation dimension, largest Lyapunov index and the
Kolmogorov entropy. It use these as the input of neural
network to generate the intelligent localization of the rub-
bing acoustic emission source, Experimental results show
the feasibility of the positioning method.

2. Gaussian Mixed Model (GMM) with an
Embedded Time Delay Neural Network
(TDNN)

GMM can be seen as a HMM of one state. The proba-
bility density function of a M-order GMM is consist of
weighted summation of M Gaussian probability density
function, which can be expressed as[11-12]:

p(xt |λ) =
M
∑

i=1

pibi(xt) (1)

Thext here is a D-dimensional random vector,xt de-
scribes feature vector of feature parameters in AE signal;
bi(xt),i = 1, 2, ..., M are members of density;pi,i =
1, 2, ..., M are the mixing weights. Each of the members
of density is the Gaussian function of bothui as a mean
vector and

∑

i as a covariance matrix, which can be ex-
pressed as:

bi(xt) = 1

(2π)D/2|
∑

i
|1/2

e
[− 1

2
(xt−ui)

T
∑

−1

i
(xt−ui)] (2)

Herepi must satisfy the condition:
M
∑

i=1

pi = 1

Complete Gaussian mixture density is consist of the
parameterized mean vectors, covariance matrixes and mix-
ing weights of all members of density. It can be defined as
follows:

λi = {pi, ui,
∑

i}, i = 1, 2, ..., M (3)

For the recognition of Rotor Collision Acoustic Emis-
sion signal, each type of Rotor Collision Acoustic Emis-
sion signal is represented by a GMM and his (her) model

parameterλi.For the listX = X1, X2, ..., XT of T testing
vectors, its GMM likelihood probability can be written as:

L(X |λ) = log P (X |λ ) =
T
∑

t=1
log p(Xt |λ) (4)

Time Delay Neural Network (TDNN) has been widely
used in pattern recognition, it has the ability to compare
and associate the current input and previous input. There-
fore, network input must be in accordance with the order
of time sequence. There are TDNN networks with feed-
back and without feedback, and this paper mainly uses
the network without feedback. Delayed vectors are trans-
formed in non-linear manner, and the transform results
are linearly weighted as output. The proposal of embed-

Figure 1: TDNN without feedback model

ding TDNN into GMM is advanced based on the merits
of GMM and TDNN. It takes advantage of GMM’s ability
to express data distribution and learning ability of TDNN
to data structure. TDNN learns time information of vector
sequences and balances the requirement of variable inde-
pendent which is needed by maximum likelihood probabil-
ity. They are trained as a whole, commonly use maximum
likelihood probability.

A two-stage approach is used to train the model. The
process of the TDNN training and GMM training are alter-
nating. EM method is used when training GMM. Because
TDNN network is a kind of multi-layer Perceptron net-
work (MLP), BP method with momentum is used when
training TDNN.

Training process described as follows:
1. Determine the structure of GMM model and TDNN

network;
2. Give convergence conditions and the largest number

of iterations;
3. Select the initial parameters of TDNN network and

GMM model randomly;
4. Fix the TDNN parameters, input feature vectors and

get all of the residual vectors of the TDNN;
5. Use EM[11] method to modify the weights, means

and variances of Gaussian distributions;
6. Fix the GMM parameters, an expression of likeli-

hood probability will be got, then the TDNN parameters
can be modified by means of BP method with momentum;

7. If the training conditions or number of iterations are
satisfied, stop, or turn to 4.
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Because the two-step iterative method for model pa-
rameters is adopted, in the iteration of neural network pa-
rameters, the weights, the mean vectors and variances of
the Gaussian distributions are fixed.

Regardless of GMM or TDNN, the above methods are
theoretically obtained point of local maxima. Therefore, it
is necessary for us to train from more initial values and
step sizes so that better model parameters can achieve.

3. CHAOTIC TIME SERIES ANALYSIS

Researching on chaos from the time series is dating from
the theory of reconstruction of phase space put forward
by Packed and so on in 1980. For the time evolution of
any variable deciding the long-term evolution of system,
it contains the information of long-term evolution of all
variables, so we can study the chaotic behavior by a single
variable time series which decides the long-term evolution
of system. The constants of attractors including correlation
dimension, Kolmogorov entropy and Lyapunov exponent,
have been playing an important role in charactering the
chaotic nature.

3.1. Phase Space Reconstruction

Phase space reconstruction was first introduced, aiming
at restoring the chaotic attractor in the high-dimensional
phase space. Takens have proved that a suitable embedding
dimension m can be found, ifm > 2d+ 1 (d is the dimen-
sion of dynamical system), then the regular track can be
recovered in the embedding dimension space. So the se-
lections of the time delay and the embedding dimension
have great significance in the Phase Space Reconstruction.

Autocorrelation function method is a very mature way
to solve the time delay[13-16], and it’s mainly used to ex-
tract the linear correlation between the sequences. In gen-
eral, for the chaotic time series, it needs to calculate its au-
tocorrelation function first and then figures the curve of the
autocorrelation function with the timeτ . When the func-
tion value decreases to 1-1/e of the initial value, the ob-
tained timeτ is the time of the phase space reconstruction.

The Cao method proposed by Liangyue Gao is mainly
used to obtain the embedding dimension of time series, the
process of specific computation is shown in references[15-
16]. In this method, if the time series is the attractor, when
m > mo , will stop changing, that is +1 is the minu-
mum. Actually, whenE1(m) > 0.99 for the first time,
E1(m) will stop changing. Because all values are indepen-
dent for the random time series, for any embedding dimen-
sion,E1(m) is equal to 1 permanently. But for the chaotic
sequence, the value ofE1(m) relates to the value of m,
which is not a constant value. So undulations ofE1(m) is
as the measure of the deterministic component in signals
in a sense.

3.2. The largest Lyapunov index

Lyapunov index is the index of divergence in the quanti-
tative initial closed orbit and the chaotic traffic of the es-
timated syetem,and it can reflect the level of the chaotic
traffic from the chaotic dynamic system.λ < 0 represents
the contraction of the phase space orbits and the stability
of movement and it is not sensitive to initial conditions.
Whenλ > 0, the orbits of the phase space is separated
rapidly, and it’s sensitive to initial conditions for a long
time, so the motion is in chaotic state. Geliboji has veri-
fied that if Lyapunov index is greater than zero, it can be
sure that the chaos is present.

The Small Data Method[11] is a method of the maxi-
mum Lyapunov exponent, calculating the chaotic time se-
ries {x1, x2, ..., xN}. Given the chaotic time series , the
embedding dimension m, and the time delayτ , then the
number of vectors in the reconstructed phase space isM =
N − (m − 1)τ , the phase points in m-dimensional phase
space is
{

Yj = {xj , xj+τ , ..., xj+(m−1)τ}j = 1, 2, ..., M
m > 2d + 1

(5)

the nearest pointYjj of each pointYj is found in the
phase space, and limits the temporary separation, so

dj(0) = min
jj

||Yj − Yjj || |j − jj| > P (6)

whereP is the average period of the time series. Then
calculate out the distancedj(i) after discrete time steps of
every point on the phase spaceYj , that is

dj(i) = |Yj+i−Yjj+i|, i = 1, 2, ..., min(M−j, M−jj)(7)

Finally, the average of allln dj(i) of j coorelated with
every i is calculated, that is

y(i) = 1
q∆t

q
∑

j=1

ln dj(i) (8)

whereq is the number ofdj(i), ∆t is the period of sam-
ples. Use the least square method to obtain the regression
line, then the slope of the line is the maximum Lyapunov
index.

3.3. Correlation Dimension

GP Algorithm[13,14,17] is proposed by Grassberger and
Procaccia in 1983, which calculates the correlation dimen-
sion of attractor from the time series.

For a pair of phase points and on m-dimensional space,
suppose the distance between them isrij(m), defined as

rij(m) = ||Yi − Yj || = max
k

|xi+k − xj+k| (9)

wherek = 0, 1, ..., m − 1. The definition of the corre-
lation integral function is:

Cm(r) = 1
M(M−1)

M
∑

i=1

M
∑

j=1

H(r − rij(m)) (10)
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wherer is the radius of super ball inm-dimensional
phase space;M is the number of vectors of the reconstruc-
tion phase space; is Heaviside function:

H(x) =

{

1 x ≥ 0
0 x < 0

(11)

When the valuer is in a certain range, the correlation
integral function is as shown in (12),

Cm(r) = KrD(m) (12)
D(m) is called the correlation dimension, the formula

is equation (13) below.

D(m) = lim
r→0

ln Cm(r)
ln(r) (13)

In practice,m is usually increasing from small to large,
but D is constant, that is the straight line inlnCm(r)-
ln(r). Apart from the slope of a straight line with 0 and
∞, inspect the best-fitting straight line during them, and
the slope of the straight line isD.

3.4. Kolmogorov Entropy

Kolmogorov entropy is used to measure the degree of con-
fusion or disorder of the system movement13,14,17. Con-
sidering a n-dimensional dynamical system, its phase space
is divided into each n-dimensional cube box with side length
r, for an attractor of the state space and the trackx(t)
falling on the attract domain, take a very small amount of
time intervalτ ,P (i0, i1, ...im) describes the joint proba-
bility when the starting time of the system orbit is in the
i0-th lattice,t = τ is in thei1-th lattice andt = mτ is in
theim-th lattice. So the defination of Kolmogorov entropy
is:

K = − lim
τ→0

lim
r→0

lim
m→∞

1
mτ

im
∑

i=i0

P (i) lnP (i) (14)

The defination of Renyi entropy with q orders is:

Kq = − lim
τ→0

lim
r→0

lim
m→∞

1
mτ

1
q−1 log2

im
∑

i=i0

P q(i) (15)

whereK0 is the topological entropy,K1 is the Kol-
mogorov entropy andK2 is the Renyi entropy with two
orders, and in general,K2 is a good estimation ofK1.

The relationship ofK2 andCm
2(r) is:

K2 = − lim
τ→0

lim
r→0

lim
m→∞

1
mτ

lnCm
2(r) (16)

For the discrete time series, the fixed delay timeτ and
the embedding dimensionm, (16) can be simplified as:

K2 = − lim
r→0

1
mτ

lnCm
2(r) (17)

Because that whenr → 0, the relationship ofCm
2(r)

andr is shown as:

K2 = lim
r→0

1
mτ

ln rD

Cm
2(r)

(18)

In the actual calculation, figure the curve ofr − K2 to
study the best linear fitting line, then the intercept of that
line in the vertical axis is the required stable estimation of
Kolmogorov entropyK.

4. EXPERIMENTAL ANALYSIS

The test uses three-supporting two cross-rotor system, the
rub-impact between dynamic and static components of the
rotor system achieves to simulate through a rub-impact
bracket installed in the rotor base. The rub-impact bracket
is installed between the bearing 1 and 2, a retractable screw
is installed on the screw hole of the top of the bracket, fac-
ing the pivot center along the radial axis, and adjusting the
screw can produce rub-impact, as shown in Fig.2. Two sen-
sors are installed on the bearing 1 and 2 respectively. Sen-

Figure 2: Rotor rub-impact testing equipment

Figure 3: The measured acoustic emitted signals received bysen-
sor

sor 1 is on the bearing 1, sensor 2 is on the bearing 2, AE
is on the pivot center. When two sensors receive the sound
source signal of rotor friction, the sampling frequency is
2MHz, and points are 32768. Fig.3 is, when two sensors
are respectively at(x1, y1, (0, 0)) and(x2, y2) = (43, 0)
and the distance between AE source and sensor 1 is 20cm,
the sound source signal of rotor friction received by the
sensor.

It can be seen from Fig.4 (a) that when the correla-
tion function drops to 1-1/e, the delay valueτ takes 17.
In Fig.4 (b), the blue line indicates the trend ofE1(m),
when m=13,E1(m)0.99 for the first time, so the minimum
of embedding dimension is 14. At the same time,E2(m)
changes with the change of m, verifying the chaotic na-
ture of the rub-impact from another point of view. The data
from Fig.4 (c) is conducted on linear line fitting, the corre-
lation dimension can be obtained asD=2.5052. The aver-
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(a)Time delayτ

(b)Embedding dimensionm

(c)Correlation dimensionD

Figure 4: Chaotic characteristics of AE signal of sensor 1

age period P = 100, so it can find the maximum Lyapunov
index is 0.0023, and the Kolmogorov entropy is 0.0077.

It can be seen from Fig.5 (a) that time delayτ=18. In
Fig.5 (b), when m=10,E1(m)0.99 for the first time, so the
minimum of embedding dimension is 11. The data from
Fig.5 (c) is conducted on linear line fitting, the correlation
dimension can be obtained asD=2.2513. The average pe-
riod P = 100, so it can find the maximum Lyapunov index
is 0.00046, and the Kolmogorov entropy is 0.0065.

This paper receives the correlation dimension, largest
Lyapunov index, the Kolmogorov entropy and another three
characteristic variables of acoustic emitted signals received
by two sensors as the inputs of algebraic neural network.
As the AE source is on the axis of rotation, so the coor-
dinates of the friction sound source are one-dimensional
variables and the number of neurons exported by the net-
work is 1.

The test of rotor friction performs 100 times, and ’sym4’
is used to pretreat the original signal to eliminate the in-
terference of noise on the original signal. The denoised
signals after the normalization will divide the dates into
2 parts, 90 groups of which are as the training samples,
where the correlation dimension, largest Lyapunov index
and the Kolmogorov entropy are as the input variables to
train the neural network, and the remaining 10 groups of
which are as the test samples to test the predicted effects of
model. Use the network designed in this paper to test the

(a)Time delayτ

(b)Embedding dimensionm

(c)Correlation dimensionD

Figure 5: Chaotic characteristics of AE signal of sensor 2

remaining 10 test samples, and the comparison between
the predicted results and the actual results is as shown in
Table 1.

Table 1: Comparison of Stiffness and Damping Coefficients Un-
der 2 Sets of Rotor Unbalance

Sound source location
(from sensor 1)(cm) Network prediction (cm) error(%)
3 3.0148 0.49
5 4.9736 0.53
8 8.0659 0.82
10 10.1092 1.09
15 15.1871 1.25
18 18.2033 1.13
22 21.7655 1.07
27 27.3209 1.19
35 34.7164 0.81
40 39.8375 0.41

From Table 1 we can see that, the non-dynamics fea-
tures expressing the source signal of rub-impact acoustic
emission (AE), which extracted from the chaotic time se-
ries, are used into the GMM with TDNN, and the precision
of sound source location is very high, all errors are col-
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lected in1%. The distance between two sensors is 43cm,
when the sound source is at the symmetrical position such
as 3cm and 40cm, the error of prediction results are nearly
the same. This is also indirectly proved the feasibility of
the proposed algorithm in this paper applied into the rub-
bing position.

5. CONCLUSIONS

When the rotor is rubbing, the vibration has obvious non-
linear characteristic. This article extracts the featuresthat
can describe the chaotic nature of system such as correla-
tion dimension, Kolmogorov entropy and Lyapunov index,
and make them as the inputs of algebraic neural network
applied to the Acoustic Emission source location of fric-
tion. Experimental results show that the method can pre-
dict the location of acoustic emission sources, and over-
come many problems of the TDOA location method, as
well as simplify the computation.
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