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1 Introduction containing the class of principallS-algebras and they

) presented a triple construction of decomposable
In 1983 T. S. Blyth and J. C. Varletd] introduced (s aigebras generalizing the construction of principal
MS-algebras which are algebras of type (2,2,1,0,0)ys algebras. Moreover, they proved that there exists a
abstracting de Morgan algebras and Stone algebras. Igne_to-one correspondence between the decomposable
[10] they investigated the lattice of subvarieties of \15ajgebras and the decomposabl&triples. Recently,
MS-algebras and characterized its members by identitiesy Badawy [1] introduced a quadruple construction of the
In 1996 Sevcovi€ [19 investigated a larger variety of (|ass of all modulaGMS-algebras. Also, A. Badawy2[
algebras containingViS-algebras, so-called generalized 3] and [4] introduced the notion ofl_ -filters of principal
MS-algebras GMS-algebras). In such algebras the MS-algebras, the notion of De Morgan filters of
distributive identity need not be necessarily satisfied. '”decomposabIMSalgebras and the congruences induced
[11] T. S. Blyth and J. C. Varlet presented a constructionby De Morgan filters of decomposabMS-algebras,
of someMS-algebras from the subvariel§, from Kleene respectively. A. Badawy and M.S. Ra@] [ntroduced the
algebras and distributive lattices. This was a constractio qiion of closure ideals oMS-algebras. R. Beaze@]

by means of triples which were successfully uged iNintroduced the notion of congruence pairs  for
construction of Stone algebras (sd&,[L4]), distributive K,-algebras.

p-algebras (see [16]), modularalgebras (seelll]), ec.  The aim of this paper is to introduce a subvariety of
T. S. Blyth and J. V. Varlet 12 improved their  Gysalgebras containing the variety &b-algebras, the
construction from 11] by means of quadruples and they g, cajled generalized,-algebras. We introduce and
showed that each member Kf; can be constructed in  consiryct  principal  generalizedKz-algebras  from
this way. In [L5] M. Haviar presented a simple quadruple generalized Kleene algebras and bounded lattices by
construction of locally boundek-algebras which works  means of triples. Also we define isomorphism between
with pairs of elements only. In 2012 A. Badawy, D. o principalGKy-triples and we show that two principal
Guffova and M. Haviar §] introduced a simple triple G, aigebras are isomorphic if and only if their
construction of principaMS-algebras and they showed ,sqqciated principaBKo-triples are isomorphic. In the
that there exists a one-to-one correspondence between thg 5| part of this paper, we introduce the concept of

principalMS-algebras and the principddS-triples. They  gngruence pairs for the class of princif@#,-algebras.
also introduced the class of decomposktfizalgebras
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Then, we show that every congruence relatbron a
principal generalizedK,-algebra L can be uniquely
determined by a congruence paif;,6,), where
61 € Con(L°°) andB, € Con(D(L)).

2 Preliminaries

A modular GM-algebra L is GM-algebra where
(L;V,A,0,1) is a modular lattice.

A generalizedMS-algebra (or GMS-algebra) is a
universal algebrdL;Vv,A,°,0,1) where(L;V,A,0,1) is a
bounded lattice and the unary operatiorsatisfies the
identities:

In this section, we present certain definitions and(15) (XAY)°=X°Vy°,

important results taken mostly fronv,p,10] and [17],
those will be required in the paper.

An MS-algebra is an algebré.;V,A,°,0,1) of type
(2,2,1,0,0) where(L;V,A,0,1) is a bounded distributive
lattice and the unary operatiérsatisfies:

(1) x<x°
(2) (xAY)" =X Vy°,
(3) Ir=0.

The clasaVIS of all MS-algebras forms a variety. The
members of the subvarietyl of MS defined by the
identity

(4) x=x°

(14) x=x°°,
(16) r =0.
A modular GMSalgebra is a GMS-algebra

(L;Vv,A°,0,1) where L = (L;V,A,0,1) is a modular
lattice.

The classGMS of all GMS-algebras forms a variety
and containing the class of all modulaMS-algebras and
the latter containing the clasdS of all MS-algebras.

The main immediate consequences of these axioms are
summarized in the following result (sed)).

Lemma 2.1.LetL be aGMS-algebra. Then we have

(1) =1,
(2 x<y=x">y°,
(3) x° =x°°°,

are called de Morgan algebras and the members of the(4) (xVy)° =X AY°,

subvarietyK of M defined by the identity
(5) xAX* <yVvy’

are called Kleene algebras. The subvari¢pyof MS
is defined by the additional two identities:

(6) XAX® =X°AX,
(7) xAX <yVYy°.

The classS of all Stone algebras is a subvarietyM§
and is characterized by the identity

(B)xAXx® =0.

The subvarietyd of MS characterized by the identity
(9) xvx°=1

is called the class of Boolean algebras.

A generalized de Morgan algebra (@GM-algebra) is
a universal algebré; v,A,~,0,1) where(L; V,A,0,1) is
a bounded lattice and the unary operation of involution
satisfies the identities:

(10) x=x"",
(11) (xAy)” =x"Vy~,
(12) 1 =0.

A generalized Kleene algebr@K-algebra). is aGM-
algebra satisfying the identity.

(13) xAXx <yVvy .

(5) (XAY)™ =X Ay,
(6) (xVy)™ =X Vy™.

3 Principal generalizedK;-algebras

In this section we give a simple triple construction of a
principal GKz-algebra from a tripléK, D, ¢ ), whereK is
a GK-algebraD is a bounded lattice angl : K — D is a
lattice homomorphism of into D.

Firstly we introduce certai®GMS-algebras, which are
called generalizeH,-algebras (briefly\GK;-algebras).

Definition 3.1. A GKy-algebra is aGMS-algebra L
satisfying
(D XAX =X°AX,
(2)xAX° <yVy°.
The classGK, of all GK»-algebras contains the class
K, of all Ky-algebras.

A modularGK»-algebral is a GKy-algebra, whenever
L is a modular lattice. The clasaGK, of all modular
GK»-algebras contains the clags and the class of all
modularS-algebras.

For anyGKjz-algebra., we have two important subsets
of L which play basic roles of this paper, nam&lf =
{xe L:x=x"}, the set of all closed elements bfand
D(L) = {x e L: x> =0}, the set of all dense elements of
L. One can observe the following.

Lemma 3.2.LetL € GK,. Then
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(1) L*°={xeL:x=x°} is aGK-algebra,
(2) D(L) = {xe€ L: x> =0} is afilter ofL.

Therefore(L°°,[d), ¢ (L)) is a principalGKa-triple.
We say that(L°°,[d),¢ (L)) the principalGK,-triple

Also, we have two other important subsets of aassociated with.

GKz-algebral which are given in the following Lemma.
Lemma 3.3.LetL € GK». Then
(1) LN ={xAXx°:x€eL} ={xeL:x<x}is an ideal of

(2) Lv {xvx°:xeL}={xeL:x>x}is afilter of
L. MoreoverD(L) C LY.

Proof. (1). Clearly, Oc L". Letx,y € L". Thenx < x° and
y < y. By  Definition 3.1(2), we get
X=XAX <yVy> =V, Itfollows thatx’ > y*° >y. Then
X°AY® > xy implies (xVy)° =x° Ay > xVy. Then
xVy e LM Letx e L" be such thaz < x for somez ¢ L.
Thenz < x < x° < 7. Hencez € L. ThenL" is an ideal
of L.

(2). By duality of (1), we get that" is a filter of L. Let
x € D(L). Thenx =xVx° € LY, asx’ = 0. Therefore
D(L) C LY

Now we consider certain algebras of the clas&kp-
algebras which the so-called princifgaK,-algebras.
Definition 3.4. A GKj-algebral is called a principaGKj-
algebra if it satisfies the following conditions:

(1) ThefilterD(L) is principal, i.e. there exists an element
d € L such thaD(L) = [d),

(2) (xAy)vd = (xvd)A(yvd) foreveryx,yelL,ie.d
is a distributive element df,

(3)x=x°A(xVvd) for everyx € L.

Clearly, the class of all princip&K»-algebras contains the
classGK of all GK-algebras and the class of all principal
modularS-algebras.

Definition 3.5. An (abstract) principalGKy-triple is
(K,D, ), where

1)K = (K;V,A,°,0k,1k) is aGK-algebra,

(2)D = (D;V,A,0p,1p) is a bounded lattice,

(3) ¢ : K — D is a(0,1)-lattice homomorphism fronk

into D and¢(a) = Op for anya € K.

Let L be a principalGK;-algebra with the smallest
dense elemend. Define the mapp(L) : L°° — [d) by
¢(L)(a) =avdforeveryaec L.

Lemma 3.6.Let L be a principalGKs,-algebra with the
smallest dense elememt. Then (L°°,[d),¢(L)) is a
principal GKo-triple.

Proof. By Lemma 3.2(1),L°° is a GK-algebra and by
Lemma 3.2(2)D(L) = [d) is a bounded lattice. It is easy
to observe thap (L) is a(0,1)-lattice homomorphism. So
we prove only thatp(L)(x) = d for any x € L°°". Let

x € L°°". Thenx = aA a° for somea € L°°.

p(L)(ana’) = (ana’)vd
= (ana’)v(dvd®)asd®=0
= dVvd° by (2) of definition 3.1 (2)
=d.

Now we construct principalGKs-algebras from
principal GK,-triples, which is one of the main results of
this paper.

Theorem 3.7.Let (K,D,¢) be a principalGK-triple.
Then
L={(ax):acK,xeD,x<¢(a)}

is a principalGK,-algebra if we define

(a,x) Vv (b,y) = (avb,xVvy)
(a,x) A (b,y) = (aAb,xAY)
(ax)° = (a%,¢(a%))
1|__(1K D)
O = (Ok,0p).

Moreover, %0~ K andD(L) = D.

Proof. ClearlyL is a sublattice oK x D. Itis observed that
0. = (0k,0p) and 1 = (1k,1p) are the smallest and the
greatest elements &f respectively. Therb is a bounded
lattice. Now for everya,x), (b,y) € L, we have

@x) A (@,x)" = (a,x) A@”,¢(@”)) =
(ana*,xA¢(a°)) = (a,x).

Then(a,x) < (a,x)°°. Also, we have
[(@x)A(b,y)* = ((aAb)®,¢((anb)?))

= (@ vb’ e (@) ve(b))

= (@x)° Vv (by)",
and

17 =0..

Thereforel is aGMS-algebra. Now we prove thatis a
GKy-algebra. Recallp(c) = Op, Vc € K. For every
(a,x) € L, we have

(a,X)A(a,X) ana’,xAn¢(a’))
ana’, xA¢(a)Ag(
ana’, xA¢(ana?))
ana’,xA0p)asana’ € K"
ana’,0p),
ana’,¢(a)ng(a’))
ana’, xA¢(ana?))
ana’,0p) asana’ € K",
Then (a,x)/\(a,x) = (a,X)°° A (a,Xx)°. Similarly we can
deduce thata,x) A (a,x)° < (b,y) Vv (b,y)°. To prove that
the GK»-algebral is principal, we firstly proceed to prove
thatL°° is aGK-algebra.

L ={(a,x) eL: (a,x)° = (a,X)}
{(ax)eL: (@, ¢(@”)) =(ax)}
{(a,x)eL:acK,xeD,x=¢(a)}
{(a.¢(a)) racKj.

a’)) asx< ¢(a)

(a,x)*° A (a, x)

A~ N N N N N~
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ObviouslyL®° = K under the isomorphisita, ¢ (a)) — a.
It follows that L°° is a GK-algebra. Now we prove that
D(L) is a principal filter ofL.
o

D(L) = {(a,x) e L: (a,x)° = (0k,0p)}

={(ax)eL: (@, ¢(@)) =(0,0p)} )

= {(1k,x) : xe D} a=a
Clearly D(L) = D under the isomorphisnilk,x) — X. l
Then(1k,0p) — Op implies that(1k,0p)) is the smallest 0

dense element df. SoD(L) = [(1«,0p))
Now, we prove thatlk,Op) is a distributive element df. K D

For any(a,x), (b,y) € L, we have Fig. 1: K is a Kleene algebra and D is a bounded modular lattice

((ax)A(by)) V (1k,0p) =

(anb)V ik, (xAy)VOp)

(@vik)A(bVvik),(xVv0p)A(yVOp)) Then (K.D.&" | incipal GKodtripl d by th

av 1k, xVO0p) A (bV 1k,yVOp) ien (K,D,¢) is a principal GKp-triple and by the
principal GKjy-construction we obtain a principal

(a,%) V (1k,0p)) A ((b,y) V (1k, 0p)). GK»-algebral such that

L=1{(0,0),(a,0),(1,0),(1,%),(1,2),(L,y),(1,1)}

and

~ T~ o~

Also, we get
(@,x)°A((a,x)V(1k,0p)) = (a,¢(a)) A (aV 1k,xV Op)

= (an(avik),¢(a) AX)) 0_ 0_
_ (a.x) asx< p(a), (0,07 =(1,1),(a,0)" = (,0),

. - . (10°=(1x°=(12=(1y)°=(1,1)°=(0,0).

ThereforeL is a principal GKz-algebra. The proof is ) .
complete. The algebrd. is represented in Figure 2. The shaded
Corollary 3.8. Let L be a principal GKy-algebra elements form aGK-algebraL°® which is obviously
constructed from the princio@Ko-trile (K.D 2) Then isomorphic toK. One can also observe that the filEz(L)

P peio-trip IR is isomorphic to the given latticdd. Moreover, the
QLY ={(ax)eL:ac K"}, homomorphism ¢(L) : L% — D(L) defined by
(L' ={(a,0p) eL:acK"}. ¢(L)(c¢(c) = (c¢(c) VvV (L) is a

o (0,1)-homomorphism andg(L)(a,0) = (0,0) for all

Corollary 3.9. Let L be a principal GKz-algebra 5 ¢ K/, Hence the tripleL%, D(L), ¢ (L)) is a principal
constructed from the princip@Ko-triple (K, D, ¢). Then G ,-triple.

(1) L is a modulaiGK,-algebra, wheneve( is a modular
GK-algebra andD is a modular lattice,

(2) L is aKy-algebra, wheneve is a Kleene algebra and
D is a distributive lattice,

(3) L is a modularS-algebra, wheneve is a Boolean
algebra an® is a modular lattice,

(4) L is a Stone algebra, wheneeiis a Boolean algebra
andD is a distributive lattice.

We shall say that the princip&K;-algebralL from
Theorem 3.7 is associated with the princi@H,-triple
(K,D,¢) and the construction df described in Theorem
3.7 will be called a principaGK,-construction.

We illustrate the principalGK,-construction on the
following example.

Example 3.10.Let K be the three-elemer®K-algebra L
and letD be the DiamondWs (see Figure 1). Fig. 2: L is theGKz-algebra associated witlK, D, ¢)
Define a homomorphism : K — D by the rule It is observed in the following Theorem that every
principal GK»-algebra can be obtained by the principal
$(0)=¢(a)=0and ¢(1) =1. GKj-construction.
(@© 2015 NSP
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Theorem 3.11.Let L be a principalGK,-algebra with the

smallest dense elemerd. Let (L°°,[d),¢(L)) be a

principal GKo-triple associated with. Then the principal

GKy-algebra L; associated with (L°°,[d),¢ (L)) is
isomorphic toL.

Proof. Define the mapf : L — L1 by f(X) = (x°°,xVv d)
for everyx € L. SincexVvd < x°Vvd = ¢(L)(x>°), then
f(X) € L.

Now for anyx,y € L, we have

f(xAy) = (xAy)*, (xAy) vd)

= (x° Ay, (xVVd) A (yV d)) by definition 3.4(3)

= (X°,xVd)A(y°,yvd)

= f)AE(y),
and
f(xvy) = ((xVvy)”,(xvy)vd)
= (xX*Vvy”, (xvd) Vv (yvd))
= (x*°,xVvd)V(y°,yvd)
= f(x) vy,
also

f(x°) = (x°°,x° v d)
= (X", ¢(L)(x))
= (f(x))°.

Therefore f is a homomorphism ofGK;-algebras. To
suppose

prove that f is an injective mapping,

f(x) = f(y). Then we have®® = y*° andxvd =yVvd.

Consequently, by Definition 3.4(3), we get
X=X°A(xVvd)=y°A(yvd)=y.

Now we prove thatf is a surjective map. Lefa, x) € L;.
Setz=aAx. Sincex < ¢(L)(a),ac L°° andx € D(L),
then we have
f(z) = ((aAnx)*, (anx)vd)
= (a” Ax>?,(avd) A (xVvd)) by definition 3.4(3)
= (anl,(avd)Ax)asa®™ =ax*=1andx>d
= (a,¢(L)(a) AX)

= (a,x).

Thereforef is an isomorphism and = L ;.

4 Isomorphisms of principal GK»-algebras

where a is an isomorphism ofK and K;, B is an
isomorphism oD andD; such that the diagram

¢
K—D

al IB

K1—>D1

$1

commutes. The following Theorem shows that the
principal GK»-algebras are represented by the principal
GK>-triples uniquely.

Theorem 4.2. Two principal GKs-algebras are
isomorphic if and only if their associated principal
GK>-triples are isomorphic.

Proof. Let g: L1 — L, be an isomorphism of principal
GKz-algebras. It is obvious thafg|L{°,g|D(L1)) is an
isomorphism between the principalGK;-triples
(Ly°,D(L1),$(L1)) and (L3, D(Lz). § (Lz)), whereg]|Ls®
and g|D(Ly) are restrictions ofg to L{° and D(Lj)
respectively. Conversely, 1€K;,D1, ¢1) and (K, D2, ¢2)
be the principal GK,-triples associated to principal
GK»-algebrad ; andL, respectively and let

(a,B): (Kg,D1,¢1) — (Kz2,D2,¢2)

be an isomorphism of princip&@K,-triples. Let us denote
by L; and L, the principal GK,-algebras associated to
principal GKj-triples (Ki,D1,¢1) and (Kz,Dg,¢2),
respectively. Consider the mappigg L/1 — L’2 defined
by the ruleg(a,x) = (a(a),B(x)). It is clear thatg is a
(0,1)-lattice isomorphism.

Moreover, we have

Thereforeg is an isomorphism of principa@bK,-algebras.
The next Theorem 4.3 together with the previous
Theorem 4.2 and Theorem 3.11 show that there is a
one-to-one correspondence between principal
GKz-algebras and princip&K,-triples.

Theorem 4.3.Let (K, D, ¢) be a principalGK,-triple and
let L be its associated princip@K,-algebra. Then

In this section we define an isomorphism between two

principal GKy-triples and we show that two principal
GKy-algebras are isomorphic if and only if their

associated princip@K,-triples are isomorphic.

Definition 4.1. An
GKo-triples (K,D, ¢) and (K1,D1,¢1) is a pair(a,f),

isomorphism of the principal

(L.D(L), (L)) = (K,D, ).

Proof. From Theorem 3.7, we have the two isomorphisms
a :L°*° — K defined bya(a,¢(a)) =aandf : D(L) —
D defined byf(1k,Xx) = x. It remains to prove that the
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diagram pair. Then (a,b) € 6; and (xy) € 6 imply
(L) (avx,bvy) € 6.

L — D(L) Proof. Let (a,b) € 8; and(x,y) € 6,. Then by the above
Definition 5.1, we ge{avd,bvd) € 6. It follows that
al B (avdvx,bvdVy) € 6,. Sinced < x,y, then(avx,bVy) e

Ky — D 6. Inthe following theorem, we give a characterization for
¢ congruence pairs of a princip@K,-algebra. This is a one

is commutative. Lez € L°°. Thenz= (a,¢(a)) for some
a< K and we have

B(¢(L)(2) = B((a,¢(a))V (1k,0p))
= B(aVvik,¢(a)VvOp)
= B(1k,¢(a))
=¢(a)

=¢(a(a¢(a))).

The proof is complete.

5 Congruence pairs of principal
GKs-algebras

of the main results of this paper.

Theorem 5.4.Let L be a principalGK,-algebra with a
smallest dense elemetit Then every congruence relation
6 of L determines a congruence pafb e, bp)).
Conversely, every congruence paif;,6) uniquely
determines a congruence relatich on L satisfying
B> = 61 andB, = G by the rule

(x,y) € 8 & (x°°,¥°°) € B, and(xvd,yvd) € 6,

Proof. Let 8 be a congruence on. Then it is clear that
(6L, Bp (L)) is @ congruence pair. Conversely, L6, 6>)
be a congruence pair and l8tbe the relation define on
L by the above rule. Clearly is an equivalent relation
onL. We proceed to prove th# is a lattice congruence.
Let(a,b),(a1,b1) € 6. Then(a>®,b>°), (a3°,bf°) € 6, and

In this section we introduce the concept of congruencel@V d,bVv d), (a1 v d,by vVd) € 6,. Since, € Con(L™)
pairs in principalGK,-algebras. Also we characterize any andé; € Con(D(L)), then we get

congruence relation on a princip@K,-algebra in terms
of congruence pair.

Let L be aGKj-algebra. For a congruence relatién
onL, let6.-- andBp(.) are denote the restrictions 6fto
L°® andD(L) respectively. Obviouslyg - and 6p ) are
congruence relations oh*® and D(L) respectively. We
useCon(L) to denote the lattice of all congruenceslon
Also we useA andO to denote the identity and universal
congruences of L respectively. Thus
(BLeo, Bp(L)) € Con(L>) x Con(D(L)).

((ana1)®,(bAby)®) = (@ Aag”,b™ AbY°) € 64,
((anag)vd,(bAbp)vd)
=((avd)A(aivd) , (bvd)A(bpVvd)) € 6.
and
((avay)®,(bvby)®?) = (@™ va®,b® vbi°) € 64,
((avag)Vvd,(bVvb)vd)
=((avd)V(aivd) , (bvd)Vv(biVvd)) € 6.
It follows that (ana;,bAb;), (aVva,bVvhb) €0,

Now we introduce the notion of congruence pairs for and therefore6 is preserved by the meet and join

principal GK»-algebras.

Definition 5.1. Let L be a principalGK,-algebra with a

smallest dense elementd. An arbitrary pair

(61,6,) € Con(L°°) x Con(D(L)) is called congruence
pair of L if (a,b) € 6; implies(avd,bvd) € 6.

From Definition 5.1, we immediately obtain the
following results

Lemma 5.2. Let L be a principalGK,-algebra with a
smallest dense elemetht Then we have the following

(1) (A, ®) is a congruence pairs df, for every @ €
Con(D(L)),

(2) (y,0) is a congruence pairs of, for every
Y € Con(L*°).
For the principalGK,-algebra, we have the following

lemma.

Lemma 5.3. Let L be a principalGK,-algebra with a
smallest dense elemedt Let (61,8,) be a congruence

operations of L. In order to show thétis preserved by
the unary operation°, we let (a,b) € 6. Then
(a°°,b°°) € 61. Hence(a",b°) € 6;. By the Definition of
congruence pair, (a° v d,b° v d) € 6. Then
(a°°°,b°°) € 6; and (&° vd,b°vd) € 6, imply that
(a°,b°) € 8. Thereforef is a congruence oh.

Now, we show thatf-- = 6, and p) = 6. Let
a,b € L°° be such thata,b) € 6;. Then(a®°,b*°) € 6;.
By the Definition of congruence pair, we have
(avd,bvd) € 6. Hence(a,b) € 6. It follows that
(a,b) € B and B < B . Conversely, leta,b) € 6.
Then (a,b) € 8 implies (a,b) = (a°°,b°°) € 6;. Thus
B> < 61 Then 6; = 6. The equality 6 = 6p)
follows straight from the definition off. For the
uniqueness of. Let 6 and6 be two congruence relation
on L with B = 6. = 6; and GD(,_> = GD(,_) = 0,. Let
(xy) € 6. Then (x*°y°) € 6~ and
(xvdyvd) € 6. Hence (x°,y°) € 6 and
(xvdyvd) e éD(,_). Therefore (x°,y*°) € 6 and
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(x vdyvd € 6 Then we deduce that
(xy) = (XA (xVvd),y”A(yvd)) € 6. Henceb < 6.
Also, we can gef < 6. Thenf = 6.

A one-to-one correspondence between the congruenc

lattice of a principalGKy-algebralL and the set of all

congruence pairs df is obtained immediately by the next

corollary.
Corollary 5.5. Let L be a principalGKz-algebra with a

smallest dense elemend. Then the setA(L) of
congruence pairs of L is a sublattice of
Con(L*?) x Con(D(L)) and 6 > (6i,6pr)) is an
isomorphism ofcon(L) andA(L).

Proof. Let (61,6:), (Y1, y2) € A(L). Then, it is easy to
verify that (61 A 1, 62 A 2) € A(L). Now, we proceed to
show that(6; vV 11,6,V yr) € A(L). Let (a,b) € 61V ¢n.
Then there is a sequenae-= ap, ay,...,an = b in L°° such
that (aj_1,a) € 61 U 1, whenever 1< i < n. Then
(g_1Vd,aVvd) € 6,U s by Definition 3.1. Thus we
haveavd =g Vvd,a vd, --,anvd=Dbvd € D(L).
The above result leads t@\Vvd,bvd) € 6,V ¢r and
hence(61 V Yn, 6,V yr) € A(L). Thus we conclude that
A(L) is a sublattice ofCon(L°°) x Con(D(L)). The last
part of the Corollary is obvious and the proof is finished.
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