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Abstract: Today, according to the increasing spread of information which people deal with, taking advantage of methods such as
data mining to extract hidden knowledge from data is inevitable. Due to the extremely high volume of data in many applications
and higher importance of new data, storage of these data is not effective in cost, so clustering these data is more important because
of the data that are processed are always changing dynamically. Another problem in data mining is the issue of clusteringof graph
data stream. According to a number of existing algorithms for graph data stream clustering, choosing an appropriate algorithm has
been challenged, which its challenge is time and space complexity. On the other hand, the uncertainty in edge graph stream should be
taken into consideration to ensure reliable results that have not been investigated in studies so far. In this paper, a novel algorithm, for
clustering of graph data stream considering uncertainty isinvestigated in a dynamic environment. Generally, the maininnovation of
this paper is to provide an approach for clustering uncertain graph data stream possessing a concept drift and dynamic. The results of
the experiments conducted in this paper indicate the suitability of the proposed approach to this problem. Its time and space complexity
is also reasonable.
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1 Introduction

In the last recent years, creating graph databases (such as
social networks and bank transactions) has caused data
mining in graphs, or graph mining, to be considered a lot.
Graphs and sub-graphs are data structures used in
complicated object modeling. Graph is the main model
for data representation and it is used in so many fields like
chemistry informatics, biology informatics, social
networks, bank transactions, etc. A lot of researches have
been done on graphs and graph clustering is one of the
most important issues among them. Graph clustering is
mentioned in two different definitions: Node Clustering
Algorithm and Structural Clustering Algorithm.[1] One
of the important issues in graph clustering is the
clustering of graph streams. If the data in a problem is
data stream, no processing will be done after the storage,
because there will be a huge load of data which is
changing continuously, and also the new data have new
groups that did not exist in the old one. Data processing
after the storage is not possible due to the continuous

growth of database, therefore the data streams must be
processed while receiving, so that the data load will not
cause any problems and the dynamics in the groups of
data will be considered as well. Since the graph can be
very large, it needs to be partitioned and stored on
multiple machines in that case. If we have an upper bound
on the cluster size (called Maximum cluster size), we will
be able to do the distributed storage. No cluster will be
too big to fit in one machine.

Some examples of graph data streams whose their
clustering is considered a lot is as follows:

1.Protein-Protein Interaction Networks, in these
networks, relations and interactions among proteins
are represented as a graph. According to researches
done on these networks, those proteins having the
most interactions are classified in one group.

2.Social Networks, in the networks created from the
interactions among living creatures, specially human
beings, the relation between entities are described as
links in a graph, such as relations of people in the
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Internet and virtual networks, their interaction in bank
and financial communications and their connection in
broadcasting a rumor.

Clustering the mentioned networks expresses the
groups that have the largest number of relations, like the
groups of people broadcasting a rumor, or detecting the
groups of financial interactions that involve money
laundering, or the groups that broadcast a virus in a
computer network or in a human society. On the other
hand, each edge of the graph in this modeling denotes the
relation between two entities and the probability of that
edge denotes the intensity or strength of this relation. A
social network is created from people (or organizations)
that form the nodes. These nodes are linked to each other
by some special sorts of interdependencies like
friendship, kinship, common interests, common beliefs,
etc. Analysis of social networks expresses the social
relationships which are modeled by graph theory.

On the other hand, uncertainty in graph data is not
much considered, specially no such research has been
done on graph data streams. For instance, in studying
bank transactions like money laundering, the exact
amount of exchanges is not reported. Hence the edge
corresponded to these transactions are presented with a
probability value that involves uncertainty. In addition
,large scale data are imprecise and developers cannot be
completely confident that data about individuals, or the
connections between them, is accurate. For example, data
collected through automated sensors [16], anonymized
communication data (e.g. e-mail headers [16]), and
self-reporting/logging on Internet scale networks [16] as a
proxy for real relationships and interactions causes some
uncertainty. As those studying and utilizing social
networks have moved to enormous scales, they have
frequently lost some accuracy.in wild and uncontrolled
environments such as the Internet, biases can develop due
to application design (e.g. default friends on MySpace)
and malicious individuals (e.g. spammers building
network connections in some automated way). The result
of this noise is the introduction of tremendous levels of
uncertainty in the data[16]. It is real-life examples to
illustrate the applications of the proposed method. An
obvious approach is to convert clustering uncertain graph
data stream problem into the deterministic scenario by
using edge probabilities as edge weights[19]. we are the
first to formulate the clustering uncertain graph data
stream problem, as it relates to connectivity issues in the
presence of uncertainty [19]. In this paper, we take into
account the reliability of graph and construct an uncertain
graph data stream network, in which the reliability of
each interaction is represented as a probability that are
calculated based on the number of common neighbors of
two nodes [4].

Let G =< V,E,P > be a uncertain network, where V
is a set of vertices, E a set of edges and P a set of
probabilities of edge existence and presents the
probability of the vertices are connected in a graph. The

probability value is between 0 and 1 interval . In each
cluster, there is a constraint on the maximum number of
vertices. Since the graph can be very large, it needs to be
partitioned and stored on multiple machines in that case.
If we have an upper bound on the cluster size, we will be
able to do the distributed storage. No cluster will be too
big to fit in one machine. The aim is to detect all the
clusters and partition the vertices V into clusters C1, C2,
. . . , Ck, so that the sum probabilities values of the
inter-cluster edges is minimized. We want to cluster the
graph then the cost of clustering must be lowest that is
sum probabilities value of nodes in different clusters or
sum probabilities value of the inter-cluster edges . The
offline algorithms are inefficient in an online or streaming
fashion, because in the offline version it is considered that
there is the entire graph at the first and also they are not
incremental in nature and they are not designed to handle
massive inputs. In online and dynamic setting, the graph
may change rapidly with time due to additions and
deletions of vertices and edges. offline graph clustering
methods, like METIS, are mostly insensitive to the
clustering evolution, because they usually ignore the
emerging clusters and not designed for stream
applications. Then we can compare new algorithm with
another online algorithm [2]. Fig.1 shows example of
uncertain graph stream we want to cluster it such as result
of the clustering be correctly.

(a) Uncertain graph stream

(b) UGSC clustering

Fig. 1: Uncertain graph stream and result of UGSC
clustering
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Our improvements can be summarized as follows:

1.We propose a new clustering algorithm for an
uncertain graph data stream. There are edge insertions
and deletions in this algorithm.

2.We quantify the clusteringstableness of an uncertain
graph data stream. We compare the performance of
algorithm in two data sets.

3.We showweighted cut (the total probabilities value of
the inter-cluster) quality and throughput (number of
edge insertions or deletions is handled per unit
time[2]) experiments to compare Uncertain Graph
Stream Clustering algorithm with the offline one.

4.We implement Uncertain Graph Stream Clustering
algorithm on the Dblp and Youtube graphs stream.

This paper is organized as follows. The related work
is discussed in section 2. The algorithm of the proposed
method named Uncertain Graph Stream Clustering
(UGSC) is presented in section 3. After that in Section 4,
we present the experimental results. Finally, conclusion
and future works is presented in Section 5.

2 Related Work

In recent years, many researches have been done on graph
clustering. METIS offline clustering algorithm is a high
quality algorithm[13] but it is not designed for clustering
graph data stream. Aggarwal presented an algorithm for
online graph data stream. Since this algorithm does not
cover edge deletion, it is not usable for graph data stream
clustering in sliding windows [5]. Stanton and Kliot
designed some intelligent algorithms for the partitioning
of graph data streams to vertices assuming that the graph
is stored on the disk previously [10]. In [13], in order to
explore communities in evolving networks, Kawadia
presented a metric named Estrangement, but some
changes in clusters have been neglected in very dynamic
networks. In [15], Lin presented a framework for
analyzing the communities and changes in them. Gupta
presented a clustering method for analyzing the biological
networks, but the algorithm was offline [12]. Bahmani
presented an algorithm for finding the dense components
of a graph by using a stream model in which it is assumed
that all vertices in the graph is known and each edge is
checked [3]. In [1], Angel presented an algorithm for
maintaining the dense sub-graphs in which it is assumed
that the graph is complete. Agrawal presented an
algorithm for exploring the dense clusters in very
dynamic graphs, but the clustering issue is different from
finding the dense sub-graphs of a graph [11]. In [2],
Eldawy suggested EIC algorithm for graph data stream
clustering, but the presented algorithm is not sensitive to
the evolution in clustering issue.
Recently some methods have been suggested for graph
clustering that are suitable for static data and cannot be
used for graph data streams. Furthermore, these methods
are not appropriate for huge graphs. On the other hand,

some algorithms have been suggested for clustering the
graphs with uncertainty, however they are not suitable for
clustering the uncertain graph data streams in dynamic
and concept drift environments. Then there is clustering
algorithms only for uncertain graph and also only for
stream graph that means there is no clustering algorithm
for combining stream and uncertain graph. So, there is no
algorithm for clustering uncertain graph data stream. This
paper handles the clustering problem for graph data
stream that is uncertain, too. So In this paper a new
algorithm is presented for this issue.

3 Proposed Method

In this section, we present UGSC algorithm for a
windowed uncertain graph data stream.

3.1 System Architecture

Window Manager (WM) and Graph Manager (GM) are
used in UGSC Algorithm[13]. (Fig.2).

Fig. 2: window manager (WM) and graph manager (GM)
are used in UGSC Algorithm[13].

3.2 Window Manager

For processing the large amount of data, streaming
applications use a sliding or tumbling window. for
example, in ‘count-based tumbling window of one days’
we save all events within the last one day. In this case,
when the window is full, all events are deleted from the
window and a new window starts. In ‘time-based sliding
window of 100k items’ we save all events that number of
items reaches 100k. In this case, when the window is full,
the oldest event must be deleted from the window and
new dynamic data replace it. These windows maintain,
only the most recent updates of a graph, like the graph
consisting of the last 2 million edges. As new updates
continue to stream in, old updates are removed from the
window. [2]. Fig.3 shows an example of a ‘time-based
sliding window of three days’. In UGSC algorithm, we
implemented both sliding window and tumbling window.
Sliding window is used to test system performance under
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edges insertions and deletions because these are
supported by sliding windows. When the window is full
in tumbling window we must delete all the data in it so
when we want to calculate thethroughput by tumbling
window the data are missed. It is problem we must use
Sliding window for throughput. For stableness
experiments, we use a tumbling window. In additions, for
quality experiments we used a tumbling window.

Fig. 3: A sample sliding window of three days[2].

3.3 Graph Manager

Graph Manager is the main data structures for saving
current sampled update and clustering of the graph. Using
the graph manager, we can answer all of queries in
networks. The main query is: Which of the vertices place
in the same cluster?

Table 1 and Table2 show the two important data
structures for graph manager in UGSC algorithm. As
described in [13] the Cluster Table is a hash table for
storing all the edges in a cluster andVertex Table is a hash
table too. This table is for storing vertices for mapping of
a vertex ID to a cluster ID. In every cluster the ID of the
first vertex indicates the cluster ID.Cluster Table is
different from that was used in [13]. The first element in
Cluster Table indicatesCluster ID, the second element is
theCluster Size, which indicates the number of vertices in
the cluster. When the number of vertices in the cluster is
bigger than maximum cluster size then we have constraint
violation, but the third element isAverage Edges, that
shows the average probabilities in every cluster, the fourth
is Expected Density that evaluate the density degree of a
cluster, these two elements are new structures in UGSC
algorithm that were not used in [13], the last element is a
list of edges, saving all the edges in every cluster, This list
consist of four elements: the timestamp of the edge, two
vertices of the edge and probability of this edges. This list
is sorted by the timestamps. In the add operations, an
edge appends to the end of list and an edge remove from
the front of list in delete operation.

Since after the deletion of an edge, we do not know if
the other edges still forms a connected component. While
there is an online method to keep track of connected

Table 1: vertex table sample [13].

VertexID ClusterID
77 12
. .
. .
. .

Table 2: cluster table sample.

Cluster ID Cluster Size Average Edges Expected Density Edges:<time,v1,v2,probability>
11 2 0.45 0.9 <1,11,13,0.4>,<2,11,14,0.5>
. . . . .
. . . . .

components [13], the algorithm is complicated to
implement and expensive to maintain. Instead, we use a
very simple method for edge deletion, as described in [2].
Upon a deletion of an edge from a cluster, we delete the
entire cluster and then reinsert all the edges except for the
deleted one. In this way, the insertion routine
automatically merges connected components.

3.4 The Algorithm

In first step we create uncertain graph data stream, based
on the uncertainty theory.
Definition 1. A uncertain graph data stream is defined as
UGDS= (V, E, P), where P(E=ei)=pi, i=1, 2. . . m, P is a
probability function expressing the intensity or strengthof
relation between two entities and defined as follows [4]:

Pi =
(number o f common neighbors o f the two vertices)

(minimum degree o f the two vertices minus 1)
(1)

Edge Insertion Algorithm is used to insert a new edge
to the graph manager. Edge Deletion Algorithm shows the
deletion algorithm in graph manager. For insertion, we
test the constraint violation for the maximum cluster size,
If the constraint is violated, we remove the oldest edges
and reinsert rest of edges in the corresponding cluster
with Edge Deletion Algorithm. In Edge Insertion
Algorithm the threshold andε are inputs. There are some
kinds of cases in this algorithm:

1.If both vertices of the edge are new, we check if
probability value is bigger thanthreshold then we
create new cluster.

2.If only one vertex of the edge is new, we check if
Expected Density with new edge in cluster is bigger
than Expected Density without this edge in cluster
then we add the vertex in the cluster and updateVertex
Table andCluster Table, but if Expected Density with
new edge in cluster is smaller thanExpected Density
without this edge in cluster then we need to compare
Clustering Similarity inside this cluster andEdge
Similarity with this cluster.
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3.If the two vertices are in the same cluster then we
compare Clustering Similarity inside this cluster
without new edge andEdge Similarity with this
cluster.

4.If the two vertices are in the different clusters then we
compare two situations:

–Clustering Similarity inside first cluster andEdge
Similarity with first cluster

–Clustering Similarity inside second cluster and
Edge Similarity with second cluster

In this algorithm we usesliding window, this means if
window is full we remove the oldest edge of window. In
addition, the threshold andε are user defined. In the
experiments, we set threshold = 0.4 andε = 0.02. In Edge
Deletion algorithm, with removing edges, vertices may
not belong to the same cluster as before and assign to a
new cluster, so after the deletion of edge we reinsert rest
of edges in corresponding cluster. This operation causes
that we capture evolution in this algorithm. In Edge
Deletion algorithm, after delete operation we will not
cause constraint violations because there have not been
constraint violations before the deletion.

3.5 Computing Expected Density, Clustering
Similarity and Edge Similarity

The main innovation of this paper is to provide an
approach for clustering uncertain graph data stream and
we used from combining definitions were expressed in
[4], [6] and introduced a new formula and new algorithm
for UGDS algorithm.

Using a describe in [4] Expected Density of Uncertain
Graph Data Stream (UGDS) in a cluster is defined as
follows:

Definition 2. A uncertain graph data stream is defined
as UGDS= (V, E, P), PG=

{

g1,g2, . . .gn
}

(gi=(V,Ei),
n=2|E|) is set of possible graphs that are instantiations of
UGDS, P(gi) is probability with gi ∈ PG.so Expected
Density of UGDS in a cluster is equal:

Expected Density =
∑m

i=1 P(gi)×2×|Ei|

(|v|× (|v|−1))
(2)

A simple formula to compute theExpected Density of
UGDS in a cluster is :

Expected Density =
∑m

i=1 pi ×2
(|v|× (|v|−1))

(3)

wherepi represents the edge probability in the cluster,
m is number of edges in a cluster and v is number of
vertices in a cluster.

Using a describe in [6], Clustering Similarity inside the
cluster andEdge Similarity with a cluster of UGDS are
defined as follows :

Let C is a given micro cluster that contains
G1,G2. . . Gn. Let H(C)=

{

G1,G2,. . . Gn
}

, n(c)= number

of graphs in the micro cluster C thenH(C) = edge
frequency of H(C) divide n(c).

Let G is incoming graph then distance between the
centroid graphH(C) and graph G is defined as follows:

L2Dist (G,H(C)) =
m

∑
i=1

(F(Xi,Yi,G)−
F(Xi,Yi,H(C))

n(c)
)2

(4)

But the similarity function between the graph G and
H(C) is defined as follows:

Dot (G,H(C)) =
m

∑
i=1

F(Xi,Yi,G)×
F(Xi,Yi,H(C))

n(c)
(5)

Next, we define Clustering Similarity in UGSC
Algorithm with using (4),(5):

Definition 3. A uncertain graph data stream is defined
as UGDS= (V, E, P), where P(E =ei) = pi, i=1, 2. . . m, P
is a probability function expressing the relation between
two entities or the edge probability in the cluster, then
similarity function inside the cluster is defined as follow:

ClusteringSimilarity =
1
m

m

∑
j=1

p j×
p1+ p2+ p3+ · · ·+ pm

m

(6)

Where pi represents the edge probability ith in the
cluster, it also was namedClustering Similarity.

For achieving the similarity function between new
edge and a cluster we use from the average probabilities
in a cluster to defineEdge Similarity in Definition 4.

Definition 4. A uncertain graph data stream is defined
as UGDS= (V, E, P), where P(E =ei) = pi, i=1, 2. . . m, P
is a probability function expressing the relation between
two entities or the edge probability in the cluster, then
similarity function between a cluster and a new edge is
defined as follows:

EdgeSimilarity = p′×
p1+ p2+ p3+ · · ·+ pm

m
(7)

Wherep′ is new edge in a cluster andpi is the edge
probability ith in the cluster. it was namedEdge Similarity.

3.6 Analysis of Running Time Complexity

In this section, we study the time complexity of the
algorithm. In the best case that no violation has happened
for a cluster, each update is from the time order of O(1).
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Algorithm Edge Insertion
Input : threshold, Uncertain Graph Stream UGS= (V, E, P), ε
if both vertices of the edge are newthen

if probability>= thresholdthen
insert them to vertex Table;
insert the edge to cluster Table;
increase the size of the cluster by 2;

end if
else ifonly one vertex of the edge is newthen

if Expected Density with this new edge in cluster> Expected Density without this new edge in
clusterthen

insert the new vertex to vertex Table;
insert the edge to the cluster of the old vertex;
increase the size of the cluster by 1;
if number of vertices in the cluster> maximum cluster sizethen

Edge List Copy = select recently edges of that cluster that max cluster sizereach;
call Deletion of an edge algorithm; (Algorithm Edge Deletion)

end if
else

if (Clustering Similarity inside cluster− Edge Similarity with cluster)< ε then
insert the new vertex to vertex Table;
insert the edge to the cluster of the old vertex;
increase the size of the cluster by 1;
if number of vertices in the cluster> maximum cluster sizethen

Edge List Copy = select recently edges of that cluster that max cluster sizereach;
call Deletion of an edge algorithm; (Algorithm Edge Deletion)

end if
end if

end if
else

if (the two vertices are in the same cluster) and (Clustering Similarity inside cluster without this
edge− Edge Similarity with cluster< ε )
then

insert the edge to that cluster;
else

if (Clustering Similarity inside first cluster− Edge Similarity with first cluster< ε ) and
( Clustering Similarity inside second cluster− Edge Similarity with second cluster< ε ) then

merge the smaller cluster to the bigger one;
if number of vertices in the cluster> maximum cluster sizethen

Edge List Copy = select recently edges of that cluster that max cluster sizereach;
call Deletion of an edge algorithm; (Algorithm Edge Deletion)

end if
end if

end if
end if
if window is full then

Find the oldest edge of cluster from Cluster Table
Edge List Copy = the edge list of that cluster;
delete the first element fromEdge List Copy
call Deletion of an edge algorithm;(Algorithm Edge Deletion )

end if

Fig. 4: Edge Insertion in UGSC Algorithm

Algorithm Edge Deletion
delete the edges in cluster Table;
mark the corresponding vertices in vertex Table with Invalid ID;
for each edge inEdge List Copy do

insert that edge using the insertion algorithm;
end for

Fig. 5: Edge Deletion in UGSC Algorithm
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But for merging two clusters, the order time is O(m1+m2)
in which m1 denotes the number of edges in the first
cluster andm2 denotes this number in the second one. In
the worst case that violation has happened, if an edge is
inserted in the previous cluster, then each update will be
from the time order of O(m2) in which m denotes the
number of edges in the cluster and if two clusters get
merged in this case, the order time will be O((m1+m2)

2).
The required space for this algorithm is equal to the
memory needed for saving the table of vertices and table
of clusters.

4 Experimental Results

We present a set of experiments to assess UGSC
algorithm, including cluster evolution, the weighted cut
size, stream Stableness and its throughput. The execution
for each section was run on a Intel Core i5 and 4GB
physical memory. All the algorithms were implemented
in Matlab.

4.1 Data set

First, we used Real Life Data include Karate Club [17]
and College Football [17] as shown in Fig.6 The karate
dataset contains friendships between 34 members of a
karate club at a US university in the 1970s. There was a
disagreement between the administrator and the instructor
in the club, which resulted in two communities in this
graph. The football dataset records games between
Division IA colleges during regular season Fall 2000.
There were 115 teams in 12 different conferences. UGSC
algorithm detects communities correctly in Karate Club
and College Football. second a real data sets in order to
test UGSC algorithm. We implemented UGSC algorithm
on two real data sets. The data sets are taken from
Stanford University web site[14]. The real data sets used
are DBLP and Youtube.

(a) Football

(a) Karate

Fig. 6: Real life data sets[17].

4.2 Evolution of Clusters

To investigate the clustering evolution, we show three
different snapshot and survey this times. In first snapshot,
Fig.7 shows six clusters that every color represent
different clusters. In this time we observe that the vertex
labeled 13 is in the first cluster. After many updates vertex
labeled 13 place in third cluster. This result shows in
Fig.9.this is because of constraint violation of the first
cluster happened in Fig.9.when the constraint violation
occur the oldest edge and corresponding vertices delete
from the cluster that vertex labeled 13 is one of them.
Then Fig.9 shows vertex labeled 13 place in new cluster
(the third cluster in Fig.9). In addition, we observe that
Fig.8 show merge operation. The first cluster and sixth
cluster in Fig.7 merge and make first cluster in Fig.8.

Fig. 7: Visualization of the Evolution in random graph in
first snapshot.
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Fig. 8: Visualization of the Evolution in random graph in
second snapshot.

Fig. 9: Visualization of the Evolution in random graph in
third snapshot.

4.3 Stream Stableness Experiments

the stableness of the data sets is defined as follows[13]:

unstableness = Ave (
numUnstableEdgesInWindow

windowSize
)

(8)

stableness = −log(unstableness) (9)

Unstableness is a metric based on a tumbling window
because it’s faster and gives the same final state. We could
use a sliding window of the same size (e.g., 1K) which
will give the same results but it will be much slower.
Since for stableness experiments we don’t measure the
performance, we used a tumbling window so that we save
our time while running the experiments to be able to run
more experiments in a short time.Fig.10 shows stableness

results in two data sets. By increasing the window size ,
the number of edges insertion in the clusters increase and
the less changes occur in the number of clusters, so the
graph stream is more stable.Fig.11 shows Youtube is
more stable than the Dblp , because Youtube is dense
graph in this experiments and the less changes occur in
Youtube clusters.

Fig. 10: Stream Stableness in different window size.

Fig. 11:Different stableness in different data sets: Youtube
is more stable than Dblp

4.4 the weighted cut size Experiments

Fig.12 shows Weighted cut size experiments with
different maximum cluster sizes. By increasing the cluster
size, the constraint violation decreases and this low
constraint violation lead to the less edges deletion, so the
weighted cut size in data sets decreases.in the best case
There is enough memory and is not occurred constraint
violation, then we capture the less weighted cut size. this
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weight cut is equal with weight cut in offline
Agglomerative algorithm. offline Agglomerative
algorithm was not designed for stream applications, but
we can use it in a straight forward way. As edges are
inserted or deleted, we keep a list of all edges in the
graph. Whenever a query is issued, we run Agglomerative
over the current set of edges and return the result. This is
considered the implementation for graph clustering over
streams. This result shows in Fig.13.In addition, Fig.13
shows the weighted cut when the threshold Changes.by
decreasing the threshold, the weighted cut size decreases,
so the number of edges in the clusters increase and lead to
less inter-cluster edges.

Fig. 12:Weighted Cut size with different maximum cluster
sizes.

Fig. 13:Compare between Weighted Cut Sizes In Youtube
dataset in different thresholds using Offline Agglomerative
algorithm.

4.5 Performance Experiments

Fig.14 shows the throughput of the algorithm with
different maximal cluster size. The bigger the clusters are,
the lower the throughput is. It is because as the clusters
size get bigger, the number of constraint violation reduces
and when there exists the lower the edge deletion in the
algorithm, the number of edges being deleted or
reinserted decreases , therefore the throughput reduces.
Also when the size of a cluster gets bigger, rate of
throughput reduction becomes slower and this because of
that the constraint violation reduces slowly by the size of
clusters getting bigger and this makes the throughput
more stable. The less dense a graph is, the less constraint
violation it has and if a constraint violation takes place,
the number of edges being deleted reduces so that the
condition of clusters size is satisfied and also since the
time taken for this work reduces, the throughput becomes
higher. In our experiments, the throughput in Dblp is
bigger than Youtube, so youtube is the most dense graph.

The bigger the Stream Stableness are, the lower the
changes in clusters is, the less number of edges reinsert
and the throughput is lower. the throughput in Dblp is
bigger than Youtube, so youtube is more stable than Dblp.
Figure 15 compares the throughput with offline
Agglomerative algorithm. the throughput in UGSC
algorithm is bigger than offline Agglomerative algorithm,
because it is considered that there is the whole graph at
the first and it takes a lot of the time.

4.6 Effect Of Parameter Threshold

Fig.16 shows the effect of sampling threshold on number
of clusters. By increasing the threshold, number of edges
in the clusters and total clusters reduce. Threshold is user
defined in UGSC algorithm.
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Fig. 14: Measurement of Throughput with different
maximum cluster sizes.

4.7 Compare between EAC Algorithm And
UGSC Algorithm In Certain Graph Data Stream

Clustering vertices of a graph based on dynamic changes
in edge connections is a powerful tool to understand
social graphs, e.g., recognizing user communities. In
scenarios where entity relationships change over time, a
graph clustering algorithm must process a stream of
updates. Each update can be the insertion or deletion of
an edge or a vertex in the graph. Clustering of vertices in
streaming graphs can be used to find user communities in
real-time.

As a result, the real-world graphs have grown in size
to millions or even billions of vertices and edges.
Furthermore these graphs may grow or change with time
rapidly. For example, Twitter with 200 million users as of
2011, generates over 200 million tweets and handles over
1.6 billion search queries per day. Here each tweet or
search query can be thought of as an edge or a collection
of edges in an appropriate graph[2]. While offline
algorithms are not designed for stream applications so we
compare UGSC algorithm with another online algorithm
that is called EAC algorithm.

EAC is an evolution-aware clustering algorithm for
processing of streaming certain graphs. [13]. When the
edges of probability is 0 or 1, the graph is called certain.
In this case we compare two algorithms. Fig.17shows the
number of clusters that is found in UGSC and EAC
matches completely in two algorithms.

Fig. 15: Compare between throughput in different
thresholds using offline Agglomerative algorithm.

Fig. 16: These diagrams illustrate the effect of changing
sampling threshold on Number Of Clusters.
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Fig. 17: Compare EAC Algorithm and UGSC Algorithm.

5 Conclusion and Future Works

Nowadays, according to the increasing spread of
information which people deal with, taking advantage of
methods such as data mining to extract hidden knowledge
from data is necessary. Graph mining is a specific kind of
data mining in which databases include data as graph.
Each graph includes specific information of data.
Presenting data as graph is usually used in social
networks, bank transaction, interactions among proteins,
drug discovery, etc. Denoting graphs does not always
include uncertainty, therefore in this case the clustering
algorithm that considers uncertainty is needed in order to
get more reliable results. In the method proposed in this
paper, graph data streams clustering with uncertainty is
discussed. Obtained results are as follow:

–In the proposed method, it is shown that the less
the stability of data stream is, the more the
evolution in clusters happens.

–A new approach for clustering the uncertain graph
data streams with concept drift and dynamics is
presented.

–In the current algorithms presented for clustering
the graph data, uncertainty is not discussed so
much, and specially no such research has been
done on graph data streams. For instance, in
studying bank transactions like money laundering,
the exact amount of exchanges is not mentioned,
while uncertainty is the inseparable issue of graph
data streams. In this research data uncertainty is
modeled in a way that the proposed algorithm has
reached the most reliable clusters with considering
the uncertainty in data streams.

–The proposed algorithm is compared with an
offline algorithm.

–Since an analysis has been done on the main data,
the obtained results are reliable.

Future works are as follow:

–Proposing a method for clustering the distributed
graph data streams with uncertainty. If the graph is
huge such that it cannot be stored on the main
memory, memory will be distributed on different
systems. Since the table of vertices is much
smaller than the table of clusters, so the vertices
table is stored in one system and the clusters table
is distributed among different systems. In this case
the clusters are distributed by Hash Partitioning.

–Examining the proposed method in the case that
uncertainty exists for both the edges and the
vertices.

–Proposing a suitable dynamic method for
extracting the repeating patterns in graph data
streams is increasing such that patterns being
repetitive or not repetitive are diagnosed based on
the length of the pattern.

–Proposing a method for parallel processing in
UGSC algorithm.
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