
Appl. Math. Inf. Sci. 6, No. 3, 697-703 (2012) 697

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2012 NSP
Natural Sciences Publishing Cor.

Generalization of Belief and Plausibility Functions to
Fuzzy Sets
Jianyu Xiao1,2, Minming Tong1, Qi Fan2 and Su Xiao2

1 School of Computer Science and Technology, China University of Mining & Technology, Xuzhou 221116, China
2 School of Computer Science and Technology, Huaibei Normal University, Huaibei 235000, China

Received: May 22, 2011; Revised Oct. 8, 2011; Accepted Oct. 18, 2011
Published online: 1 Sep. 2012

Abstract: In order to process the fuzzy and imprecise information in the evidential reasoning, the scholars have made many attempts
to generalize belief and plausibility functions based on the Dempster-Shafer(D-S) evidence theory to fuzzy sets for many decades. A
new method for defining the fuzzy closeness degree is put forward in this paper. Based on the closeness degree, another generalization
of belief and plausibility functions to fuzzy sets is proposed which discards the max and min operators in foregoing generalizations
according to the measure of fuzzy inclusion. We then make the comparisons of the proposed extension with some methods available.
The results of the numerical experiments show the effectiveness of the proposed generalization, especially for being able to catch more
information about the change of fuzzy focal elements.
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1. Introduction

Uncertainty always exists in nature and real systems. It is
known that probability has been used traditionally in mod-
eling uncertainty. Since a belief function was proposed as
another type of measuring uncertainty, D-S evidence the-
ory [1–3] has been widely studied and applied in diverse
areas [4–7]. Because of the advent of computer technol-
ogy, the representation of human knowledge can be pro-
cessed by a computer in complex systems.

As capably of disposing the uncertainty induced by ig-
norance, D-S evidence theory adopts belief function not
the probability as the measurement, restraining the proba-
bility of some incidents to establish belief function with-
out specifying the probability which in general is hard to
obtain [8]. Since the fuzzy set concept was proposed by
Zadeh [9], the analysis of fuzzy data becomes increas-
ingly important. For decades, many scholars have made
attempts to extend belief function and plausibility function
to fuzzy sets. After Zadeh [10] proposed information gran-
ularity and extended belief function to fuzzy sets, some
scholars [11–14] have made many attempts to extend the
D-S evidence theory to fuzzy sets based on the inclusion
degree of the fuzzy sets. These methods used the max or

min operator to define the measure of fuzzy inclusion, its
inclusion degree is decided by some critical points. Thus
the belief function is not sensitive to the changes in focal
element information. Afterwards, based on fuzzy decom-
position theorem, Yen [15] and Yang et al. [16] proposed
new extensions, which make certain improvements in the
former methods but the problem of being not sensitive to
the focal element. Our idea in this paper is to improve the
efficiency of fuzzy closeness measure between fuzzy sets.
To do this, our aim is further rational to gain value of the
belief and plausibility functions.

Besides this introduction, this paper is organized as
follows: the following section briefly reviews some exist-
ing extensions of belief and plausibility functions to fuzzy
sets. In Section 3, we propose a new calculation method of
fuzzy closeness degree and extend belief and plausibility
functions to fuzzy sets based on fuzzy closeness degree.
In Section 4, we make the comparisons with other existing
extensions. Conclusions are then given in Section 5.

∗ Corresponding author: e-mail: xy xiao@163.com
c⃝ 2012 NSP

Natural Sciences Publishing Cor.



698 Jianyu Xiao et al : Generalization of Belief and Plausibility Functions ...

2. Different generalizations of belief and
plausibility functions

Up to date, several generalizations of belief and plausi-
bility functions to fuzzy sets were proposed according to
differently defined fuzzy inclusion I(Ã⊂̃B̃) with

Bel(B̃) =
∑
Ã

I(Ã⊂̃B̃)m(Ã) (1)

These are Yager [12], Ishizuka et al. [13], Ogawa et al.
[14], Yen [15] and Yang et al. [16] They extended the be-
lief and plausibility functions with their own defined fuzzy
inclusion as follows:

Yager [12]:

I(Ã⊂̃B̃) = min
x

{µÃ(x) ∨ µB̃(x)} (2)

Ishizuka et al. [13]:

I(Ã⊂̃B̃) =
minx{1, 1 + (µB̃(x)− µÃ(x))}

maxx µÃ(x)
(3)

Ogawa et al. [14]:

I(Ã⊂̃B̃) =

∑
x min{µÃ(x), µB̃(x)}∑

x µB̃(x)
(4)

Yen [15] indicated that: Yager, Ishizuka et al. and Ogawa
et al. adopted the max and min operators in the defini-
tion of I(Ã⊂̃B̃). The fuzzy inclusion degree is decided by
some critical points. Thus the belief function is not sen-
sitive to the changes in focal element information. There-
fore, he proposed a generalization with the construction of
linear programming problems and decomposition theorem
[17] for calculating the belief and plausibility functions of
fuzzy sets. He defined the belief and plausibility functions
of a fuzzy set B̃ as follows:

Bel(B̃) =
∑
Ã

m(Ã)
∑
αi

(αi−αi−1)× inf
x∈Aαi

µB̃(x) (5)

Pls(B̃) =
∑
Ã

m(Ã)
∑
αi

(αi−αi−1)× sup
x∈Aαi

µB̃(x) (6)

where αi is a cut set of fuzzy set Ã. Aαi = {x|µÃ(x) ≥
αi}, Ã =

∪
αiAαi , α0 = 0, αn = 1, αi−1 < αi, i =

1, 2, . . . , n. m(Aαi) = (αi − αi−1)×m(Ã).
Yen’s method is similar to those explained previously.

Its fuzzy inclusion degree is equivalent to I(Ã⊂̃B̃) =
∑
αi

(αi−

αi−1)× inf
x∈Aαi

µB̃(x), which makes certain improvements

in the several methods mentioned before.
Yang et al. [16] proposed another extension based on

the Yen’s method:

Bel(B̃) =
∑
Ã

m(Ã)
∑
α

|θα|
|Ã|

× inf
x∈Aα

µB̃(x) (7)

Pls(B̃) =
∑
Ã

m(Ã)
∑
α

|θα|
|Ã|

× sup
x∈Aα

µB̃(x) (8)

where θα = {x|µÃ(x) = α},α ∈ [0, 1], |Ã| =
∑

x µÃ(x),
|θα| =

∑
x∈θα

µÃ(x).
Lin [18] indicated that the methods of Yen and Yang et

al. also have the problem of being not sensitive to the fo-
cal element changes. He, according to the similarity of the
fuzzy sets, proposed the belief and plausibility functions
as follows:

Bel(B̃) =
∑
j

1− 1

|Ã|

|Ã|∑
i

|µB̃(xi)− µÃ(xi)|

m(Ãj)

(9)

Pls(B̃) =
∑
j

1− 1

|Θ|

|Θ|∑
i

|µB̃(xi)− µÃ(xi)|

m(Ãj)

(10)
Hwang et al. [19] proposed the belief and plausibility

functions based on Sugeno integration:

Bel(B̃) =
∑
Ã

m(Ã)
∑

0≤i≤n

Kαi

∫
Aαi

Ãdu∑
0≤i≤n

Kαi

∫
Aαi

Ãdu

× inf
x∈Aαi

µB̃(x) (11)

Pls(B̃) =
∑
Ã

m(Ã)
∑

0≤i≤n

Kαi

∫
Aαi

Ãdu∑
0≤i≤n

Kαi

∫
Aαi

Ãdu

× sup
x∈Aαi

µB̃(x) (12)

Through the research on the fuzzy closeness degree, a
new calculation method of closeness degree of fuzzy sets is
proposed in this paper. Along with the approaches of Yen
and Yang et al., based on improved fuzzy closeness degree,
new belief and plausibility functions are proposed. This
method is more sensitive to the focal element changes, and
it is further rational to gain value of the belief and plausi-
bility functions.

3. A new generalization of belief and
plausibility functions to fuzzy sets

3.1. Fuzzy closeness degree

Definition 1. Let S be a mapping S: ℜ(X) × ℜ(X) →
[0, 1]. If S(Ã, B̃) satisfies the following conditions [20]:

1) 0 ≤ S(Ã, B̃) ≤ 1;
2) S(Ã, Ã) = 1;
3) S(Ã, B̃) = S(B̃, Ã);
4) If Ã⊆̃B̃⊆̃C̃ then S(Ã, C̃) ≤ S(Ã, B̃) ∧ S(B̃, C̃).

Then S(Ã, B̃) is a closeness measure between fuzzy sets
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Ã and B̃. The degree S(Ã, B̃) is used to describe the de-
gree of two fuzzy sets are close to each other. The distance
can be utilized to define the closeness degree.

Definition 2. Let Ã and B̃ be two fuzzy sets in X =
{x1, x2, . . . , xn}. Let Ã = (µÃ(x1)/x1, µÃ(x2)/x2, . . . ,

µÃ(xn)/xn), B̃ = (µB̃(x1)/x1, µB̃(x2)/x2, . . . , µB̃(xn)
/xn). Functions µÃ(x) and µB̃(x) are called the member-
ship functions of the fuzzy sets Ã and B̃ respectively. The
distance general form between the two fuzzy sets can be
defined as:

dp(Ã, B̃) =

[
1

n

n∑
i=1

|µÃ(xi)− µB̃(xi)|p
]1/p

(13)

where p ≥ 1.
Generally, the smaller the distance between the two

fuzzy sets, the closer the two fuzzy sets while the larger
the distance, the smaller the similarity of the two fuzzy
sets. Therefore, the closeness degree Sp(Ã, B̃) can be de-
fined as:

Sp(Ã, B̃) = 1− dp(Ã, B̃) (14)

Provided that p = 1 , the Hamming closeness degree
can be gained:

S1
H(Ã, B̃) = 1− 1

n

n∑
i=1

|µÃ(xi)− µB̃(xi)| (15)

Provided that p = 2 , the Euclidean closeness degree
can be gained:

S2
E(Ã, B̃) = 1−

[
1

n

n∑
i=1

|µÃ(xi)− µB̃(xi)|2
] 1

2

(16)

For µÃ(xi) and µB̃(xi) are the number between 0 and
1 in the D-S evidence theory. Therefore, |µÃ(xi)−µB̃(xi)|
is also the number between 0 and 1. When the denomina-
tor n in Eq. (13) increases by 1, the increment of the nu-

merator
n∑

i=1

|µÃ(xi) − µB̃(xi)|p will be far smaller than

1, which makes distance value become exceptional sensi-
tive to the changes of the denominator in Eq. (13), thus the
closeness degree is also not sensitive to the subtle changes
of the focal elements. More, for the value of |µÃ(xi) −
µB̃(xi)| is small, and after the average value is extracted,
the distance value dp(Ã, B̃) will be smaller. The closeness
value calculated with Eq. (14) is greater, thus the closeness
value is not sensitive to the focal elements of the fuzzy set.
For this, the improved fuzzy closeness degree in this paper
will be defined as:

S
′p(Ã, B̃) =

1− dp(Ã, B̃)

1 + dp(Ã, B̃)
(17)

The improved closeness degree S
′p(Ã, B̃) obviously

satisfies condition 1), 2) and 3) in the definition 1. Now, it
is proved that S

′p(Ã, B̃) also satisfies condition 4).

Figure 1 Comparison of two closeness degrees.

Proof. Since Ã⊆̃B̃⊆̃C̃, we can get µÃ(xi) ≤ µB̃(xi) ≤
µC̃(xi), |µÃ(xi) − µC̃(xi)|p ≥ |µÃ(xi) − µB̃(xi)|p, and
|µÃ(xi)− µC̃(xi)|p ≥ |µB̃(xi)− µC̃(xi)|p.

Thus, dp(Ã, C̃) ≥ dp(Ã, B̃), dp(Ã, C̃) ≥ dp(B̃, C̃).

For f(x) =
1− x

1 + x
is the strictly monotone decreasing

function about x on [0, 1], the improved closeness degree
is the strictly monotone decreasing function about the dis-
tance between fuzzy sets. Therefore, there will be:S

′p(Ã, C̃) ≤
S

′p(Ã, B̃), S
′p(Ã, C̃) ≤ S

′p(B̃, C̃), that is S
′p(Ã, C̃) ≤

S
′p(Ã, B̃) ∧ S

′p(B̃, C̃).

Assuming
n∑

i=1

|µÃ(xi)−µB̃(xi)|p increases in the form

of 0.052, 0.102, 0.152, . . . , 0.952 and the corresponding n
increases by 1, 2, 3,. . . , 19. The original closeness degree
Sp(Ã, B̃) and the improved one S

′p(Ã, B̃) changes ac-

cording to
n∑

i=1

|µÃ(xi) − µB̃(xi)|p and n value change

curve, which is as shown by the Fig. 1. The dotted line in
the Fig. 1 indicates the change curve of the original close-
ness degree while the solid line indicates the change curve
of the improved closeness degree.

According to Fig. 1, the improved fuzzy closeness de-
gree is more sensitive to changes of n and |µÃ(xi)−µB̃(xi)|
than the original closeness degree, more capable of catch-
ing the subtle changes of the focal elements and further
properly describing the degree of the closeness of the two
fuzzy sets.
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3.2. Extension of belief and plausibility
functions to fuzzy sets based on fuzzy closeness
degree

Let Ã and B̃ be two fuzzy sets in Θ = {x1, x2, . . . , xn},
and 2Θ be fuzzy power set of Θ. Let Ã = (µÃ(x1)/x1,

µÃ(x2)/x2, . . . , µÃ(xn)/xn), B̃ = (µB̃(x1)/x1, µB̃(x2)/x2

, . . . , µB̃(xn)/xn), Aα = {x|µÃ(x) ≥ α}, Ã =
∪
αAα,

Kα = {x|µÃ(x) = α},α ∈ [0, 1]. In this paper, the dis-
tance dp(B̃, Aα) and the closeness degree S

′p(B̃, Aα) be-
tween B̃ and Aα are defined as:

dp(B̃, Aα) =

 1

|Kα|

|Kα|∑
i=1

|µB̃(xi)− µÃ(xi)|p
1/p

(18)

S
′p(B̃, Aα) =

1− dp(B̃, Aα)

1 + dp(B̃, Aα)
(19)

where xi ∈ Kα, |Kα| is the number of elements of set
Kα.

Utilizing Eq. (18) and (19) to define the belief function
of a fuzzy set B̃ as:

mp
∗(B̃ : Aα) = m(Ã)×

∑
Kα∑
Ã

× S
′p(B̃, Aα) (20)

Belp(B̃) =
∑
Ã

mp
∗(B̃ : Ã) =

∑
Ã

∑
α

mp
∗(B̃ : Aα)

=
∑
Ã

m(Ã)
∑
α

[∑
Kα∑
Ã

[
1− dp(B̃, Aα)

1 + dp(B̃, Aα)

]]
(21)

where
∑

Kα =
∑

xj∈Kα
µÃ(xj),

∑
Ã =

∑
xj∈Ã µÃ(xj).

The coefficient
∑
α

[∑
Kα∑
Ã

[
1−dp(B̃,Aα)

1+dp(B̃,Aα)

]]
is called the con-

tribution to Bel(B̃) from fuzzy set Ã.
In case of taking p = 1, there will be Eq.(22) in Eq.(21):

Bel1(B̃) =
∑
Ã

m(Ã)

∑
α


∑

Kα∑
Ã


1− 1

|Kα|

|Kα|∑
j=1

|µB̃(xj)− µÃ(xj)|

1 + 1
|Kα|

|Kα|∑
j=1

|µB̃(xj)− µÃ(xj)|


 (22)

Converting the |Kα| in Eq. (18) into |Ã| (|Ã| refers
to the number of elements of fuzzy set Ã), the plausibility

function Pls of a fuzzy set B̃ is obtained:

Plsp(B̃) =
∑
Ã

m(Ã)

∑
α


∑

Kα∑
Ã


1−

[
1
|Ã|

|Kα|∑
j=1

|µB̃(xj)− µÃ(xj)|p
] 1

p

1 +

[
1
|Ã|

|Kα|∑
j=1

|µB̃(xj)− µÃ(xj)|p
] 1

p



(23)

In case of taking p = 1, there will be Eq.(24) in Eq.(23):

Pls1(B̃) =
∑
Ã

m(Ã)

∑
α


∑

Kα∑
Ã


1− 1

|Ã|

|Kα|∑
j=1

|µB̃(xj)− µÃ(xj)|

1 + 1
|Ã|

|Kα|∑
j=1

|µB̃(xj)− µÃ(xj)|


 (24)

4. Numerical examples

We use the following examples to compare the proposed
method with the existing generalizations. Some data sets
are from Yen [15].

Example 1. Let Θ = {1,2,. . . ,10}. Let Ã and C̃ be
fuzzy sets in Θ with

Ã = {0.25/1,0.5/2,0.75/3,1/4,1/5,0.75/6, 0.5/7,0.25/8}
C̃ = {0.5/5, 1/6, 0.8/7, 0.4/8}

where each member of the list is in the form of µÃ(xi)/xi.
Let B̃ be a fuzzy set in 2Θ with

B̃ = {0.5/2, 1/3, 1/4, 1/5, 0.9/6, 0.6/7, 0.3/8}
The decomposition of the fuzzy focal Ã consists of

four nonfuzzy focal elements:
Ã =

∪
αAα=0.25A0.25

∪
0.5A0.5

∪
0.75A0.75

∪
1.0A1.0

where A0.25 = {x1, x2, x3, x4, x5, x6, x7, x8}, A0.5 =
{x2, x3, x4, x5, x6, x7}, A0.75 = {x3, x4, x5, x6}, A1.0 =
{x4, x5}.

By definition Kα = {x|µÃ(x) = α}, we can obtain
K0.25 = {x1, x8}, K0.5 = {x2, x7}, K0.75 = {x3, x6},

K1.0 = {x4, x5}
Then∑

K0.25/
∑

Ã = (0.25+0.25)/(0.25+0.5+0.75+
1 + 1 + 0.75 + 0.5 + 0.25) = 0.1

In case of taking p = 1 , there will be from Eq. (18),
(19) and (20):

d1(B̃, A0.25) =
1

2
× (|0−0.25|+ |0.3−0.25|) = 0.15

m1
∗(B̃ : A0.25) = m(Ã)×0.1×1−0.15

1+0.15 = 0.0739m(Ã)
Similarly,
m1

∗(B̃ : A0.5) = 0.1810m(Ã), m1
∗(B̃ : A0.75) =

0.2m(Ã), m1
∗(B̃ : A1.0) = 0.4m(Ã)

Then
Bel1(B̃ : Ã) = (0.0739+0.1810+0.2+0.4)m(Ã) =

0.8549m(Ã)
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Figure 2 Changes to contribution of Bel caused by the changes
of p values.

Similarly,
Bel1(B̃ : C̃) = 0.6835m(C̃)
Thus, we obtain
Bel1(B̃) = 0.8549m(Ã) + 0.6835m(C̃)
Similarly, we have
Pls1(B̃) = 0.9593m(Ã) + 0.9053m(C̃)
We compare how these results are changed in response

to a change of the membership function of the fuzzy focal
element Ã in three different ways denoted as

Ã
′
={0.166/1,0.5/2,0.833/3,1/4,1/5,0.75/6,0.5/7,0.25/8}

Ã
′′

={0.25/1,0.75/2,1/3,1/4,1/5,0.75/6,0.5/7,0.25/8}
Ã

′′′
={0/1,0.5/2,0.75/3,1/4,1/5,0.75/6,0.5/7,0.25/8}

Different methods adopted to calculate the contribu-
tion to belief function Bel(B̃) from the focal element Ã
and its variations. The results are as shown by Table 1 and
Table 2. In Table 2, U , I and D denote unchanged, in-
creased, and decreased, respectively.

According to the results of Table 2, it can be seen that
in case of changes from Ã to Ã

′
and changes from Ã to

Ã
′′′

, our generalization of the belief measure is identical
to the methods of Yen, Yang et al., Lin and Hwang et al.
In case of changes from Ã to Ã

′′
, for S

′p(B̃, A1.0) keeps
1 and unchanged, but

∑
K1.0/

∑
Ã=0.4 is changed into∑

K1.0/
∑

Ã
′′

=0.5455, increasing too much, the close-
ness degree of B̃ and other Aα is small as the changes in∑

Kα and
∑

Ã. Finally, in case of changes from Ã to Ã
′′

,
Bel(B̃) enlarges (see Table 1).

Fig. 2 refers to the changes to contribution of the focal
element Ã, Ã

′
, Ã

′′
and Ã

′′′
caused by the changes of p

values.
According to Fig. 2, the contribution of the fuzzy fo-

cal element Ã and its three changes to the belief func-
tion Bel(B̃) decreases according to the enlargement of p.
However, this decreasing trend is not obvious. The con-
tribution to the belief function Bel(B̃) basically remain

unchanged when p > 10. The contribution to the belief
function Bel(B̃) is the max when p = 1.

Now, compare how the results from Yen’s [15], Yang’s
[16], Lin’s [18], Hwang’s [19], and our belief functions are
changed in response to a change in a fuzzy focal element.

Example 2. As in Example 1,
B̃ = {0.5/2, 1/3, 1/4, 1/5, 0.9/6, 0.6/7, 0.3/8}
Let D̃ be a fuzzy set in Θ with
D̃ = {0.75/2, 0.9/3, 1/4, 1/5, 0.5/6, 0.25/7, 0.1/8}
Let D̃1 ∼ D̃6 be fuzzy sets constitution six changes in

D̃ with
D̃1 = {1/4, 1/5}
D̃2 = {0.9/3, 1/4, 1/5}
D̃3 = {0.75/2, 0.9/3, 1/4, 1/5}
D̃4 = {0.75/2, 0.9/3, 1/4, 1/5, 0.5/6}
D̃5 = {0.75/2, 0.9/3, 1/4, 1/5, 0.5/6, 0.25/7}
D̃5 = {0.75/2,0.9/3,1/4,1/5,0.5/6,0.25/7,0.1/8} = D̃
Respectively adopting Yen’s, Yang’s, Lin’s, Hwang’s

and our methods to calculate the contribution to belief func-
tion Bel(B̃) from D̃1 ∼ D̃6. The results are as shown by
Table 3.

According to the results of Table 3, it can be seen that
Yen’s belief function could not measure the changes in
fuzzy focal element unless there are changes in the min
value of the membership degree of the fuzzy focal element
on critical point. For instance, as for fuzzy focal elements
D̃3, D̃4 and D̃5, the cut sets D3,0.75, D4,0.5, D4,0.75 and
D5,0.25 have the same critical point with 2 (µB̃(2) = 0.5),
and D3,0.9, D3,1.0 and D4,0.9 have the same critical points
(µB̃(3) = µB̃(4) = µB̃(5) = 1). Therefore, the contribu-
tions to Bel(B̃) from D̃3, D̃4 and D̃5 are 0.625, changing
until the critical point for D6,0.1 changes to 8 (µB̃(8) =

0.3). At this time, the contribution to Bel(B̃) changes to
0.605.

Though Yang’s and Hwang’s methods avoid the prob-
lems brought by the critical point of Yen’s method, when
the membership degree of elements in the fuzzy focal ele-
ment D̃1 and D̃2 is not the same and that of those relative
to the elements in the fuzzy focal element B̃ is equal, the
contribution to Bel(B̃) of their methods is the same. From
the inclusion degree, the degree of B̃ contained in D̃1 is
greater than that contained in D̃2. Therefore, the methods
of Yang and Hwang also could not catch the actual changes
of fuzzy focal elements.

Lin’s method could avoid the problems brought by the
critical point but its result is reliant on the Haiming close-
ness degree. In the event that the membership degree of the
element changes but its Hamming closeness degree does
not change, the contribution gained does not change (such
as the changes from Ã to Ã

′′
in Table 2), which does not

catch the actual change of the focal elements.
The fuzzy degree of the focal elements increases as the

fuzzy focal element changes from D̃1 to D̃6 while the in-
clusion degree of the fuzzy focal element B̃ is more and
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Table 1 Contribution to Bel(B̃) from the focal element Ã and its variations.

Focal
element Yager [12] Ishizuka [13] Ogawa [14] Yen [15] Yang [16] Lin [18] Hwang [19]

Ours
p = 1

Ours
p = 2

Ã 0.5 0.750 0.8962 0.600 0.770 0.900 0.552 0.8549 0.8405
Ã

′
0.5 0.834 0.9119 0.625 0.847 0.921 0.596 0.8799 0.8725

Ã
′′

0.5 0.750 0.9434 0.500 0.727 0.900 0.501 0.8688 0.8625
Ã

′′′
0.5 1 0.8962 0.675 0.826 0.931 0.691 0.8697 0.8592

Table 2 Changes to Bel(B̃) caused by changes in the focal element Ã.

Changes of
focal element

of Ã
Yager [12] Ishizuka [13] Ogawa [14] Yen [15] Yang [16] Lin [18] Hwang [19]

Ours
p = 1

Ours
p = 2

Ã → Ã
′

U I I I I I I I I

Ã → Ã
′′

U U I D D U D I I

Ã → Ã
′′′

U I U I I I I I I

Table 3 Contribution to Bel(B̃) from the focal element and its variations.

Focal element Yen [15] Yang [16] Lin [18] Hwang [19]
Ours
p = 1

D̃1 1 1 1 1 1
D̃2 1 1 0.9667 1 0.9436
D̃3 0.625 0.8973 0.9125 0.852 0.8730
D̃4 0.625 0.8494 0.8500 0.763 0.8194
D̃5 0.625 0.8295 0.8167 0.700 0.8002
D̃6 0.605 0.8178 0.8143 0.635 0.7973

more smaller and the contribution to Bel(B̃) is more and
more smaller. The contribution to Bel(B̃) calculated by
adopting our method decreases gradually. This just catches
this change and is consistent with the actual. It becomes
more sensitive to the focal element, can better gain infor-
mation about changes of the focal element and useful to
evidence combination than the methods of Yang and Lin.

5. Conclusion

According to differently defined fuzzy inclusion, some schol-
ars extended the D-S evidence theory to fuzzy sets. How-
ever, these methods used the max or min operator to define
the measure of fuzzy inclusion, its inclusion degree is de-
cided by some critical points. Thus the belief function is
not sensitive to the changes in focal element information.

In this paper, an improved fuzzy closeness degree cal-
culation method was defined. The improved fuzzy close-
ness degree is more sensitive to the subtle changes of the
focal element than the original closeness degree, more ca-
pable of catching the subtle changes of the focal elements
and further properly describing the degree of the close-
ness of the two fuzzy sets. Based on the improved fuzzy

closeness degree, the fuzzy belief function and plausibil-
ity function were proposed. Those calculation methods do
not influenced by the critical point. The new fuzzy belief
and plausibility functions can catch the actual focal ele-
ment change information effectively and are sensitive to
the subtle changes of the focal element. This is extraordi-
narily significant to expand the application range of evi-
dence theory.
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