
Appl. Math. Inf. Sci. 6, No. 3, 657-663 (2012) 657

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2012 NSP
Natural Sciences Publishing Cor.

A new algorithm for shortest path problem in large-scale
graph

Li Xiao1,2 and Lixue Chen1 and Jingzhong Xiao2

1 School of Computer Science, Southwest Petroleum University, Chengdu 637001, P.R.China
2 School of Computer Science and Technology, Southwest University for Nationalities, Chengdu 610041, P.R.China

Received: Jul. 8, 2011; Revised Oct. 4, 2011; Accepted Oct. 6, 2011
Published online: 1 Sep. 2012

Abstract: The shortest path problem is one of the basic problems in graph theory, which attracted a lot of attention of many scholars.
However, with the continuous development of intelligent transportation, communications systems, many complex network structures
with large-scale nature occurred, which have a larger amount of data and algorithm execution efficiency requirement, compared with
the traditional shortest path problems. It first research and analyze the traditional serial A * algorithm in this article, the defect of the
A * algorithm is proposed to improve. The optimization algorithm opposed in this article is named single-source algorithm. The new
algorithm have lower time-complexity and more efficient processing in large-scale map compared with the A * algorithm, which take
into account a variety of methods, including data preprocessing, improving the search ways, as well as the evaluation function and the
internal data structure. The conclusion of the study is verified by simulation.

Keywords: A* algorithm, the shortest path, single-source algorithm, preprocessing.

1. Introduction

The shortest path problem is one of the basic problems in
graph theory. According to the network features; it can be
divided into two categories: static shortest path problem-
s and dynamic shortest path problem. For single-source
single-intersection of the static network, one of the most
widely used is the Dijkstra algorithm. However, the A * al-
gorithm searches the shortest path by using heuristic search,
which can find the shortest path in a shorter time compared
to the Dijkstra algorithm [1].

With the development of science and technology, the
shortest path problem is applied in many areas frequently,
the complexity of the applications have become more com-
plicated, which demands more sophisticated algorithm for
the shortest path problem.

In intelligent transportation systems, the maps with one
million nodes have been very common. The number of the
node in the map is increasing. Meanwhile, with the in-
crease in the number of intelligent transportation system
users, it demands less time in finding the shortest path. So,
it requires a more efficient shortest path algorithm to solve
all the problems listed above. There are similar problems

in communication systems, the selection of data transmis-
sion path, which also requires that the algorithm can fast
and efficient in large-scale networks. For different applica-
tion environments and scenes, the A* algorithm must also
be a modest change and improvement. The A* algorithm
is analyzed in many aspects, including the complexity of
algorithm theory, the actual operating efficiency, and stor-
age space requirements. This article proposed an improved
algorithm for the bottleneck of the A* algorithm, it named
the single-source algorithm, which can solve the shortest
path problem better in the large-scale map.

2. Algotithm theoretical basis

A * algorithm which is a subset of the heuristic search al-
gorithm is an increase to the general heuristic search in
constraints [2], in order to find the shortest path more effi-
ciently. The data structure of A * algorithm contains an
open table and a close table. The open table is used to
record the candidate vertices in the next step; the close ta-
ble is used to record the vertices that do not need to deal
with, the close table also record the vertices contained in

∗ Corresponding author: e-mail: x267@163.com
c⃝ 2012 NSP

Natural Sciences Publishing Cor.

658 Li Xiao et al : A new algorithm for shortest path problem ...

the shortest paths which have been found. The A * algo-
rithm has the following characteristics Compared to the
Dijkstra [3] algorithm, (assuming that s is the source ver-
tex, t is the intersection vertex):

The first is that the A* algorithm have an evaluation
function: F (x) = G (x) + H (x). Where F (x) is the evaluat-
ed value of the vertex x, G (x) is the actual cost from vertex
s to x, H (x) is an evaluated cost from vertex x to t. G (x) is
always the shortest length from s to x In the general heuris-
tic search, H (x) can take any value. The A * algorithm is
different from the general heuristic search algorithm, as-
sume that H ’(x) is the evaluation function from x to t in
the A * algorithm, dist (x, t) is the length of the shortest
path from x to t, then x, H ’(x) dist (x, t), the closer H’ (x)
to dist (x, t) is, the higher the search efficiency is.

The second is that the A* algorithm have open table
and close table, the two tables are used to select the ver-
tices required in the next step as well as to determine whether
the vertices should be processed.

Detailed analysis of the efficiency of the A * algorithm
will be given in this section.

First of all, it is the analysis of the number of visit n-
odes. Assume that the number of vertices in the network is
fixed at 300, the experimental data obtained by changing
the number of edges in Figure 1.

As shown in Fig 1, that the number of vertices visited
by A* is almost equal to the number of vertices visited by
Dijkstra when the number of edges is 400; the number of
vertices visited by A* is significant less than the number
of vertices visited by Dijkstra when the number of edges
is 600, meanwhile the execute time of the two algorithms
are almost equal.

When the number of edges is increasing, the number of
vertices visited by the A* algorithm began to be less than
the number of vertices visited by the Dijkstra algorithm.

In addition, when the network is relatively dense, the
growth of running time A * is far lower than the growth
rate of the edges. When the number of vertices are contin-
ue to increase, the running time will be proportional to the
number of edges. As shown in Figure 2.

It can be seen from Figure 2, the number of edges are
10 | V|, | V | * sqrt (| V |),and | V | 2/10 respectively, the
rate of increase of the running time is below the rate of the
increase of edges from the vertical. The increase rate of
the number of vertices is proportional to the increase rate
of the running time from the horizontal.

3. Bidirectional st algorithm

Based on the analysis above, A new shortest path algo-
rithm is proposed in this paper, which is Bidirectional ST
algorithm. The ST algorithm can be optimized in four as-
pects against A *:

data preprocessing, improving the way of search,improving
the evaluation function, improving the structure of internal
data.

Figure 1 The comparison of edges and vertices in two algo-
rithms.

Figure 2 The relationship in runtime and vertices and edges in
A* algorithm.

The common method for data preprocessing is pre-
treatment on the network. Figure1 shows that when the
network is relatively sparse, the number of vertices visited
by ST algorithm is similar to that number in the dense net-
work. There is another situation that the network may be
not connected In addition to the different network-intensity.
When the network is not connected, if calculating the short-
est path between two vertices which are in different con-
nected components, which will lead ST algorithm to tra-
verse all the vertices in a connected component, Then the
number of vertices visited by ST algorithm will increase
greatly. According to this case, the networks need to be
preprocessed. This pre-processing needs to use some ad-
ditional storage spaces. In undirected graph, the flooding

c⃝ 2012 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 6, No. 3, 657-663 (2012) / www.naturalspublishing.com/Journals.asp 659

method can be used to mark the diagram. The pseudo code
of this pre-processing is as follow:

Array flag [1 ... n] = -1
cnt: = 0
For all vertices
Do
If flag [u] -1
Processing the next vertex
Else
cnt: = cnt + 1
For each vertex v, perform depth-first search from u
flag [v]: = cnt
Done
In a directed graph, the tarjan algorithm can be used to

calculate the strongly connected components.
It first needs to determine whether flag[u] is equal to

flag[v] during the query of the shortest paths between ver-
tices (u,v) after the pretreatment. If they are not equal, then
there is no path between the two vertices. Otherwise, if
they are equal, it will call A * algorithm. The time com-
plexity of tarjan algorithm and the flooding algorithm is
equal to O (max (| V |*| E |)) [4].

The search ways in ST algorithm can be optimized
properly. In general, the algorithm will start from the ini-
tial vertex to the end vertex during the search process.
Similar to the BFS algorithm, ST algorithm algorithm can
search in bi-direction [5,6]. The main problem of the bi-
directional search is focused in the design of the terminal
condition and in the design of evaluation function. It is the
first that the design of h () function. Considering the bi-
directional search, so it should design two h () functions of
hs () and ht () for the two starting vertices respectively. It
is the second that the design of the terminal condition of
search, A simple way is that does not deal with the vertex u
if u have visited in the reverse search when the search from
the starting point access the vertex u. To calculate the val-
ue of dist (s, u) + dist (u, t), and compare the value with the
length of the shortest path, and then to update the shortest
path. The detailed information is specified in Figure 3 and
Figure 4.

Figure 3 is the initial graph. Figure 4 represent the
vertices visited after one step is performed in both of the
forward and reverse search. In the next step, the forward
search will search from vertex 2 to vertex 4. The vertex
4 will be ignored because it has visited in reverse search.
Instead, the value of dist (1,4) + dist (4,7) will be record-
ed as length of the shortest path. The next vertex should
be visited is vertex 5 in the forward search. The vertex
5 is also facing the same situation as vertex 4 in the re-
verse search. The value of dist (1, 5) + dist (5, 7) will be
compared with the value of dist (1, 4) + dist (4, 7) record-
ed previously, and then, select the optimum value to be
the length of shortest path. Should be noted that, it does
not need to cross-search in bi-direction during the search
process, it needs only to select open table that has less ver-
tices every time. This allows bi-directional search share the
search task. Although the method can apply better evalu-
ation function in bi-directional search, the disadvantages

Figure 3 initial graph.

Figure 4 The example of Bi-directional search.

are obvious. The algorithm can not stop immediately, but
continue to process, when the searches in both directions
meet. This method shares the search task, and reduce by
half the scale of the whole network, so the final theoretical
complexity is O ((|V | + | E |) * log (| V| / 2)). Howev-
er,due to the poor terminal condition, it can not guaran-
tee that the process will stop immediately after finding the
optimal distance. It needs appending some assessments to
select the optimum value in the actual use of the process.

4. Improve the evaluation function

Considering the design of the evaluation function, the clos-
er the value of f () and the actual shortest distance is, the
fewer the points visited by the search process is. There are
three methods to solve this problem: first, a better evalu-
ation function will be designed; second, using the variant
of the evaluation function; third, using multiple valuation
functions.

The first method is too difficult to design. Consider-
ing the second method, assume the evaluation function is

c⃝ 2012 NSP
Natural Sciences Publishing Cor.

660 Li Xiao et al : A new algorithm for shortest path problem ...

F(x)=G(x)+wH(x), where w 1, which function can reduce
the runtime compared with the traditional evaluation func-
tion in A*, but this evaluation function can not guaran-
tee the ultimate solution is the optimum, the only thing It
can guarantee is that the ultimate solution is not more than
w times than the optimal solution. Other functions such
as: f(x)=wg(x) + (1-w)h(x), f(x) = g(x) + wh1(x) + (1-
w)h2(x), can guarantee to find the optimal solution. These
functions play important roles in particular situations. For
example, to find the shortest path of two vertices in the
communication networks, which needs to take many fac-
tors into account such as: the shortest length of the lines,
the signal attenuation during passing each vertex, in addi-
tion, as little as possible of the vertices visited is also one
of the goals.

Consider the third method, set an evaluation function h
= h1, h2, h3, h4, for each vertex x, to calculate the val-
ue of each function in h corresponding to the vertex x, and
then select the largest one among that. Although the over-
head that visits each vertex is increased to some extent, it
can effectively reduce the total number of vertices visited,
and which is not difficult to design, the approach can even-
tually get the shortest path. For example, in the design of h
() previously, which uses only the geometric distance be-
tween two vertices. If it uses the geometry of the triangle
inequality, it will obtain a more accurate value [7]. For any
three vertices u, v, w, which are connected to each other,
there are dist (u, v) - dist (v, w) dist (u, w).Selecting some
reference vertices to construct a reference set v1, v2, v3 ..
vn, then calculating the shortest distance of the vertex to
each reference vertex, as well as the shortest distance from
each reference vertex to the terminal vertex t. In the search
process of A *, select h (u) = max | the dist (u, v1) - dist
(v1, t)|,| dist (u, v2) - dist (v2, t)| ... | the dist (u, vn) - dist
(vn, t) | in the calculation of the value of h (u) correspond-
ing to vertex u, this makes the errors between h () and the
actual shortest distance to be reduced to a certain extent,
thus a more accurate choice of vertex visited next step is
made. Additional storage space required for this method is
associated with the size of the selected reference vertices
set. The additional storage space is O (n * | V |) if n ba-
sis vertices are selected. The time overhead will be divided
into two sections. One is the overhead of the initialization
process, which needs to calculate the distances of all ver-
tices to the reference vertices, the time complexity is O (n
* (| V | + | E|) * log | V |); The other is the calculation of h
() in the search process, , the time complexity in search of
the shortest distance becomes to be (n* (| V | + | E |) * log
| V |). This method is mainly applied to the static network-
s, which needs to improve if applying it to the dynamic
networks.

The heap data structure is used in A* algorithm. Al-
though it is possible to keep the balance of the heap by
inserting new vertices in empty position, which still have
drawbacks. If there are three consecutive delete operations
to the situation shown in Figure 5, the heap will become
the one shown in Figure5:

Figure 5 The examples of a heap.

Therefore, in the processing of the ST algorithm, some
special situations will occur, such as that a heap is out of
balance and degraded, which will decrease the query effi-
ciency of heap greatly. The use of some other data struc-
ture can improve this situation, such as some self-balancing
trees like splay, AVL, which can maintain balance of the
heap after delete operation by the rotation of the entire tree.

The efficiency of Priority queue which is acted by bi-
nomial heap can still be further improved. The main idea
is the introduction of the Fibonacci heap [8]. Fibonacci
heap has excellent efficiency when inserting vertex, it can
be done by only one step, it does not need to update the
entire structure after insertion operation. ST algorithm ad-
justs the priority queue of internal elements, it reduces the
weight of the vertex, the complexity of such operation is O
(log n) operated by Binomial heap or balanced tree. Same
as the insertion operation of vertex, the Fibonacci heap can
do such operation by only one step. However, the Fibonac-
ci heap is mostly discussed at the theoretical level, because
of the huge additional overhead in concrete realization. If
there is no targeted hardware support, the actual operat-
ing efficiency will even be lower than the binomial heap.
According to the high theoretical value, the concrete real-
ization of the Fibonacci heap with complexity closed to the
theoretical value will occur in the near future, so in this pa-
per, Fibonacci heap is described as an implementation of
priority queue of ST algorithm.

Addition to the Fibonacci heap, pairing heap [9] is a
data structure which combined the features of self-adjusting
tree and heap. Pairing heap can complete the insertion of
vertex by only one step. Different from the Fibonacci heap
and Spaly heap, pairing heap is more complicated when
adjusting the internal vertex weights, the complexity of
which is a relatively broad boundary instead of a specif-
ic value. In spite of this, the complexity of Pairing heap is
still far less than the complexity of binomial heap in ad-
justing operation.

The Table 1 lists the theoretical complexity of all types
of data structures mentioned above.

c⃝ 2012 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 6, No. 3, 657-663 (2012) / www.naturalspublishing.com/Journals.asp 661

Table 1 Time complexity of different data structures

Operation Binomial
heap

Splay Fibonacci
heap

Pairing
heap

Insert O(logn) O(logn) O(1) O(1).
Delete
Mini-
mum
vertex

O(logn) O(logn) O(logn) O(logn).

Merge O(nlogn) O(logn) O(1) O(1).
Adjust
vertex

O(logn) O(logn) O(1) (loglogn).

Table.1. Time complexity of different data structures
It can be seen from Table 1, the theoretical complexity

of binomial heaps and Splay is the same, considering the
balance problem of the whole heap in practical application,
the actual performance of Splay will be better than binomi-
al heap. In theory, the Fibonacci heap is most suitable for
the implementation of the priority queue of ST algorithm.
However, its excessive complexity makes the Pairing heap
more dominant in practical applications. Pairing heap is
quite suitable to be used to improve the efficiency of the
implementation of ST algorithm, because of its good theo-
retical complexity and practical performance. After the ap-
plication of these data structures to the ST algorithm algo-
rithm, the ultimate complexity of ST algorithm is changed,
the binomial heaps and Splay makes complexity of ST al-
gorithm becomes O ((| V | + | E |) log | V |), the Fibonacci
heap makes the final complexity of ST algorithm to O (| E
| + | V | log | V |).And the final complexity of ST algorithm
which adopts the Pairing heap is O (| E | + | V | log | V |).

5. Experimental results

All time data in Table 2 are the sum of time to calculate the
shortest path between all pairs of vertices in the network.
The first improvement is about the initialization in ST al-
gorithm, which can avoid the worst case of traversal of all
edges in network when the network is not connected. The
improvement will be more effect in sparse networks.

Table.2. The Efficiency comparison before and after
preprocessing

When the network is sparse, the connectivity of the
network is not very good. The improved performance of
the preprocessing is more obvious. When the network is
dense, almost all vertices are connected. The improved
performance of the preprocessing is not obvious.

Due to the change of the terminal conditions in Bidi-
rectional search algorithm, the efficiency of bidirectional
search is not good as the one-way search when it is run-
ning on a single processor, as shown in table 3. Howev-
er, through the use of two processors, the search of differ-
ent directions are processed parallel, the running time of
which is less than the time of one-way search running on
a single processor. The bi-directional search can search in

Table 2 The Efficiency comparison before and after preprocess-
ing

the number
of edgethe
number of
Vertices

Running
time(no
prepro-
cessed
)

Running
time(pre-
processed
)

The ratio
of per-
formance
improve-
ment

(500,800) 12.175 10.345 17.69
(500,1000) 11.719 11.012 6.42
(500,1500) 10.226 9.878 3.52
(700,1000) 34.682 28.481 21.77
(700,1400) 31.637 28.261 11.94
(700,2100) 31.404 31.119 0.91
(700,21000) 24.832 24.805 1.08

two different spaces at the same time, so the two search
trees can meet faster, a high speedup can be get.

Considering the efficiency of bi-directional search on
a single processor, because the bi-directional search will
obtain the shortest path after several renewal of the value
of current shortest path, Table 4 lists the number of edges
during the traversal and the times of renewal of the shortest
path.

Intensive networks, bi-directional search can get the
value of the shortest path at the moment the two search
trees are meeting. However, the number of edges visited in
the bi-directional search is growing, which mainly because
that the path selected by the heuristic functions of the t-
wo directions are different from the one-way search. The
huge number of edges visited is the main reason for the
slow-speed of bi-directional search on a single processor.
Comparing the number of edges visited and the current
solution and the length of the shortest path, the conclusion
can be seen distinctly from the data listed in Table 4. It can
get the value of the shortest path after 395 edges visited
on average. One-way ST algorithm can obtain the optimal
solution after 298.635 edges visited on average. Fig 6 lists
the number of edges visited in a bidirectional ST algorithm
when it obtains the optimal solution at 1x, 1.025x, 1.05x,
where x is the value of the shortest path.

It can be seen from Figure 6 that the bi-directional ST
algorithm should continue to search for a period of time to
determine the optimal solution after contained the shortest
path. In the process to obtain optimal solution, the num-
ber of edges visited is almost the same in both the bi-
directional ST algorithm and the one-way ST algorithm.
When the higher quality of the solution is not required,
the number of edges in the traversal tends to decrease in
bidirectional ST algorithm, the rate of descent decreases
constantly. The efficiency of bidirectional ST algorithm
is poor than one-way ST algorithm when they obtain the
shortest path. One reason for that is the change of the ter-
minal condition led to the increase in the number of edges
in the traversal. Other reason is the additional overhead led
by the renewal of current solution.

c⃝ 2012 NSP
Natural Sciences Publishing Cor.

662 Li Xiao et al : A new algorithm for shortest path problem ...

Table 3 The experimental results by Dual-core CPU and single-
core cpu

(the
number
of edge
and
Vertices

The
Searching
time of
st using
single-
core
CPU(s)

The Search-
ing time of
Bidirection-
al st using
single-core
CPU(s)

The Search-
ing time of
Bidirection-
al st using
Dual-core
CPU(s)

300,600 2.425 3.186 1.585
300,1000 2.236 2.93 1.593
300,5196 1.906 3.21 1.583
300,30000 1.8408 3.556 1.73
500,5000 8.096 14.145 7.01
500,11180 8.19 11.917 6.291
500,50000 8.16 14.852 7.83

Table 4 Traverse the number of edges of different networks

(the
number
of edge
and
Vertices)

The
Av-
erage
num-
ber of
edges

The
Average
num-
ber of
updates

Proportion
The
number
of edges

visited
by
bidirec-
tional
st

300,600 328.097 11.71279 3.570 314.793
300,1000 339.536 8.7624 2.580 317.515
300,5196 395.588 3.002544 0.759 298.635
300,30000 517.456 1.088622 0.210 298.337

According to the conclusions above, the bi-directional
ST algorithm can be further optimized. The approach of
optimization is to constrain the number of renewals of the
current solution. It can be seen from Table 5, the number
of renewals is not much in general, better constraints can
make the bidirectional ST algorithm to obtain the short-
est path in most cases. For example, the network described
as (300, 30000) in Table 5, assume that the number of re-
newals of the current solution is constrained to be less than
2, which can obtain the shortest path in the vast majority of
query, a small part of the query can get relatively optimal
solution. The performance can also slightly increase. The
performance of improvement is more significant after the
parallelization.

Considering the improvement of the evaluation func-
tion, this article describes how the evaluation function in-
fluences the efficiency of ST algorithm by the analysis of
proximity the level between the evaluation function and
the optimal value.

The variable data of the efficiency of bidirectional ST
algorithm are listed in Table 5, where the value of the e-
valuation function is 0, 0.2, 0.4,0.8,1.0 of the length of the
shortest path respectively .It can be seen from Table 5, the
closer the value of evaluation function to the length of the

Figure 6 The number of edges visited by ST algorithm.

Table 5 The experimental results of the different valuation func-
tions

the num-
ber of
edge and
Vertices

0 0.2 0.4 0.6 0.8 1.0

300,1000 5.384 4.378 0.774 0.373 0.344 0.33
300,5196 12.487 12.148 3.057 0.729 0.701 0.66
300,10000 18.312 17.577 6.603 0.874 0.935 0.926
300,20000 27.218 26.719 11.123 1.25 1.383 1.247
300,30000 34.73 35.516 15.265 1.509 1.649 1.518

shortest path is , the higher the overall efficiency of the
bidirectional ST algorithm is .In some networks, the value
of evaluation function is closer to the length of the shortest
path while the efficiency becomes lower, probably due to
some special vertices in the networks.

6. Conclusion

The A * algorithm for the shortest path problem was an-
alyzed in this article. According to the defects of the A
* algorithm, a new improved algorithm of A* algorith-
m named bi-directional ST algorithm was proposed. The
simulation results show the higher efficiency of bidirec-
tional ST algorithm in large-scale networks. The time com-
plexity of the improved bidirectional ST algorithm is lin-
ear.

Acknowledgement

This work was supported in part by the Fundamental Re-
search Funds for the Central Universities, Southwest Uni-

c⃝ 2012 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 6, No. 3, 657-663 (2012) / www.naturalspublishing.com/Journals.asp 663

versity for Nationalities under Grant Nos. 12NZYTD14,
12NZYQN22,11NPT02 and 11NZYBS09.

References

[1] Hart, P. E. Nilsson, N. J. Raphael, IEEE Transactions on
Systems Science and Cybernetics SSC 100, 4 (1968).

[2] Aho , Hopcroft, Ullman ,The Design and Analysis of Com-
puter Algorithms, 103 , (Pearson Education, India, 1974).

[3] Thomas, H.Cormen,Charles, E.Leiserson,Ronald, L.Rivest,
Clifford, Stein,Introduction to Algorithms,24 (China Ma-
chine Press,Beijing, 2009).

[4] Tarjan, R. E, SIAM Journal on Computing 146, 1 (1972).
[5] Nicholson, T.A.J, the computer journal 275, 9 (1996).
[6] de Champeaux, Journal of the ACM 22, 30 (1983).
[7] Goldberg, A.V. and Harrelson, C, Proc.16th Annual ACM-

SIAM Symposium on Discrete Algorithms, 156 (2005).
[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

and Clifford Stein, Introduction to Algorithms, 476 (MIT
Press & McGraw-Hill, New York, 2001.).

[9] Fredman, Michael L.Sedgewick, Robert; Sleator, Daniel D.;
Tarjan, Robert E, Algorithmica 111, 1 (1986).

First Author received the
BS degree in computer science
from Southwest Petroleum U-
niversity in 2010. She is present-
ly employed as teacher at School
of Computer Science and Tech-
nology, Southwest University
for Nationalities. Her research
interests are in the areas of net-
work architecture,Algorithm De-
sign and Analysis, and infor-

mation systems.She is an active researcher coupled with
the vast (10 years) teaching experience. She has published
more than 30 research articles in reputed international jour-
nals of computer sciences.

c⃝ 2012 NSP
Natural Sciences Publishing Cor.

