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Abstract: Fast evaluation of oscillatory integrals is an issue attracts much attention in many fields. In this paper, we are interested in the
calculation of canonical oscillatory integrals, and the irregular oscillatory integrals are transformed into canonical ones with respect to
the presences of stationary phase points or not. An improved-Levin method is proposed to calculated the canonical oscillatory integral,
where the eigen-decomposition is employed to solve the target system of linear equation, and a much higher efficiency is yielded in
comparison with the direct solution methods such as the Gaussian elimination.
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1. Introduction

How to calculate the oscillatory integrals like

I[f ] =
∫ b

a

f(x)eiωg(x)dx, ω À 1, (1)

is a key issue arising in many fields[1]. In this kind of in-
tegral,f(x) andg(x) are both smooth and non-oscillatory,
and they are called the amplitude function and the phase
function, respectively. During the past decades, some spe-
cial quadrature methods for oscillatory integrals have been
developed, and the representative ones include the asymp-
totic expansion method[2,3], the Filon(-type) method[4,
5], the Levin(-type) method[6,7], the (numerical-)steepest
descent method[8], the stationary phase point method[9],
and others. Among them the Filon method and the Levin
method have attracted much attention. The Filon(-type)
method has a relatively long history but it is generally
only applicable for oscillatory integrals whose moments∫

φk(x)eiωg(x)dx are explicitly known (φk are the basis
functions), so its generality is limited. The Levin method
has better applicability for oscillatory integrals with com-
plicated phase functions, but the system of linear equations
involved tends to be ill-conditioned and the integral result
is susceptible to the ill-conditioning. J. Li and etc. have
put forward an improved-Levin method to remove the im-
pact of the ill-conditioning in [10–12], where the well-
conditioned system of linear equations is solved by the

Gaussian elimination method, and the ill-conditioned one
is solved by the TSVD (truncated singular value decompo-
sition) method. During the processing, the computational
complexity of Gaussian elimination method isO((N +
1)3) (N + 1 is the number of nodes used in the calcu-
lation), and the TSVD method requires even more oper-
ations. Although the iterative method can cut down the
computational complexity toO((N + 1)2) in each iter-
ation step, the total computational complexity differs for
different oscillatory integrals due to the different conver-
gence rate of them. Later, Olver introduced a GMRES-
Levin method to calculate the oscillatory integrals in [13],
where the differentiations involved are calculated via FFT
and the total operations are believed to be on the level of
O((N + 1) log(N + 1)). However, as stated in [14], the
FFT has a lot of nested operations which create overhead
that is not apparent in the count of multiplications and ad-
ditions. In fact, the FFT is generally competitive only for
very largeN . For moderateN , the direct matrix multi-
plication is actually even more efficient. In the filed of fast
computation of oscillatory integrals, the main idea is to ob-
tain the integral result using small or moderate number of
nodes, rather than very large number of nodes, so it is use-
ful to find other approaches to proceed the computations
via matrix multiplications.

In this paper, we transform the irregular oscillatory in-
tegrals into canonical ones, and then propose an improved-
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Levin method to compute the transformed integrals. Dur-
ing the process of the improved-Levin method, the eigen-
decomposition is employed to solve the target system of
linear equations, which is finally boiled down to two matrix-
multiplication process and the operation counts can be re-
duced fromO((N + 1)3) (for traditional methods such as
the Gaussian elimination) toO(2(N + 1)2).

2. Transformation of an oscillatory integral
from irregular form to canonical form

In this paper, we are interested in the numerical evaluation
of canonical highly oscillatory integrals of the form

I[f ] =
∫ 1

−1

f(x)eiωxdx. (2)

As will be shown in the next section, oscillatory integrals
of this canonical type can be efficiently calculated. But for
an irregular oscillatory integral with complex phase func-
tion, the situation is a little complicated. This section will
show that it can also be transformed into a canonical form.
The derivations are proceed in two cases: those free of sta-
tionary phase points and those with.

2.1. The case free of stationary phase points

In this case, we assume that the oscillatory integral is in the
form of (1) and the phase functiong(x) is free of stationary
phase point in the interval[a, b] (i.e.,∀x ∈ [a, b], g′(x) 6=
0). Let y = g(x), then the oscillator in (1) can be trans-
formed into a canonical one[15]:

I[f ] =
∫ g(b)

g(a)

f(g−1(y))
g′(g−1(y))

eiωydy. (3)

Moreover, introducing the coordinate transformy = v(x) =
g(b)−g(a)

2 x + g(b)+g(a)
2 to (3) yields an oscillatory over a

normalized interval:

I[f ] =
∫ 1

−1

F (x)eiξxdx, (4)

whereF (x) = g(b)−g(a)
2 eiω g(a)+g(b)

2
f(g−1(v(x)))
g′(g−1(v(x))) is non-

singular, andξ = g(b)−g(a)
2 ω. In this transformation, one

requires for knowing the inverse ofg(x). The inverse can
generally be easily worked out using Newton’s method[15],
but in many practical applications, it even can be analyti-
cally obtained.

2.2. The case with stationary phase points

The stationary phase point of an oscillatory integral is a
point where the first derivative of the phase function van-
ishes (i.e.,∃x ∈ [a, b], g′(x) = 0). It is known that a sta-
tionary phase point plays a very important roll in deter-
mining the integral result[16], so the integrand around it

should be carefully handled. In this paper we assume that
the stationary phase points are located at the endpoints.
This assumption is justified since an oscillatory integral
with stationary phase points inside the interval can be sub-
divided into several sub-integrals according to the posi-
tions of the stationary phase points:

I[f ] =

(∫ c1

a

+
∫ c2

c1

+ · · ·+
∫ b

cm

)
f(x)eiωg(x)dx

,
m∑

n=0

In[f ],

(5)

wherec1 < c2 < · · · < cm arem stationary phase points.
Consider one of the integrals on the right hand side of

(5). For convenience the lower and upper limits of the inte-
gral are denoted byc andd, respectively. As shown in (5),
the stationary phase points of this integral are located at
the endpoints, sog′(x) 6= 0 holds forx ∈ (c, d). However,
while transforming this integral to (3) to obtain a canon-
ical form, the presence of stationary phase points will in-

troduce singularity to the amplitude functionf(g−1(y))
g′(g−1(y)) be-

causeg′(x) vanishes at the endpoints. In order to avoid this
difficult, special transformation should be considered.

Let h(x) =
∫ x

c
f(t)dt, then the concerned sub-integral

is transformed as

In[f ] = h(x)eiωg(x)
∣∣∣
d

c
− iω

∫ d

c

h(x)eiωg(x)dg(x). (6)

In the open interval(c, d) the phase functiong(x) is mono-
tonic and invertible because the stationary phase points
only exist at the endpoints. In this sense, introducing the
transformationy = g(x) to (6) yields

In[f ] = h(x)eiωg(x)
∣∣∣
d

c
− iω

∫ g(d)

g(c)

h(g−1(y))eiωydy. (7)

In principle, the amplitude functionh(g−1(y)) should be
non-singular because bothf(t) andh(x) =

∫ x

c
f(t)dt are

non-singular. However, this function could be very sharp
due to the presence of stationary phase points at the end-
points, and this will then introduce difficulty to the evalu-

ation of
∫ g(d)

g(c)
h(g−1(y))eiωydy.

Moreover, in order to overcome the problem caused by
the sharps, an additional transformation is proposed. Let
k(y) =

∫ y

g(c)
h(g−1(u))du, then the integral (7) can be

transformed as follows by using the integration by parts:

In[f ] = eiωg(d) [h(d)− iωk(g(d))]−ω2

∫ g(d)

g(c)

k(y)eiωydy,

(8)
where we have consideredh(c) = 0 andk(g(c)) = 0.

According to the definitions ofh(x) andk(y) we have

k(y) =
∫ y

g(c)

(∫ g−1(u)

c

f(t)dt

)
du. (9)
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then substituting the assumptionu = g(s) to (9) gives

k(y) =
∫ g−1(y)

c

∫ s

c

f(t)g′(s)dtds.

This is a 2D non-oscillatory integral becausef(x) and
g(x) are both non-oscillatory, so the functionk(y) can
be easily calculated by the Gauss-type quadrature algo-
rithms[17]. At the same time, the derivative ofk(y) is de-
termined as

k′(y) =
d

∫ y

g(c)
h(g−1(t))dt

dy
= h(g−1(y)),

so the plot ofk(y) should be very smooth since the func-
tion value ofh(x) is limited.

At the same time, the oscillatory integral in (8) can be
transformed into a canonical one if the coordinate transfo-
rationy = g(d)−g(c)

2 t + g(d)+g(c)
2 is applied to it. There-

fore, in the following study, we pay the main attention to
the calculation of canonical oscillatory integrals like (2).

3. Evaluation of canonical oscillatory
integrals

An early attempt on the fast evaluation of canonical os-
cillatory integrals was made by Filon [4] who obtained
the integral result by approximating the amplitude function
with a polynomial and computing the moment

∫
xkeiωxdx

analytically. The work was later improved by Clenshaw-
Curtis[21], Luke[20], Bakhvalov[22], Patterson[23], and
some others[15,18,19]. Among them, the Clenshaw-Curtis
method has attracted much attention for its good stability.
This method works well on the canonical oscillatory inte-
grals. It uses FFT to save the calculation cost of obtain-
ing the coefficientsαN

k [f ], but its profit is greatly dimin-
ished when a moderate or smallN is taken into account.
In the following section, we would like to introduce an al-
ternative evaluation method for canonical oscillatory inte-
grals based on the Levin method. It will be shown that the
method has a comparable accuracy to the Clenshaw-Curtis
method, and it is also with a very high efficiency.

According to Levin’s theory, to solve the integral (2) is
to solve an ordinary differential equation (ODE) without
boundary condition:

p′(x) + iωp(x) = f(x). (10)

If a proper functionp(x) is solved from the ODE, then the
integral result is obtained as

I = p(1)eiω − p(−1)e−iω. (11)

Due to the good stability of Chebyshev expansion, we
use the Chebyshev collocation spectral method to solve
the ordinary differential equation. At the same time, the
Chebyshev-Lobatto nodes cluster around the endpoints, so

it is advisable to use these nodes since the integrand around
the endpoint plays an important role in determining the in-
tegral result.

The differentiation matrix is a powerful tool in the spec-
tral method[24,25,14,26,27]. Applying the differentiation
matrix D to the ODE (10) yields the following system of
linear equations:

(D + iω)p = f , (12)

wherep and f are two numerical vectors corresponding
to the unknown function values and the amplitude func-
tion values, respectively. This system of linear equations
can be solved by traditional methods such as the Gaussian
elmination method and TSVD method[11,10], but the op-
erations required by these routines areO((N + 1)3) or
even more. Here we would like to introduce another solu-
tion scheme for (12), and the count of operations can be
reduced fromO((N + 1)3) toO(2(N + 1)2).

Let the eigen-decomposition of matrixD be

DV = VΛ, (13)

whereV is the matrix whosekth column is the eigenvector
vk of D andΛ is the diagonal matrix whose diagonal el-
ements are the corresponding eigenvalues, i.e.,Λkk = λk.
In this manner, the target system of linear equations (12)
can be re-expressed as

V(Λ + iωE)V−1p = f (14)

with E being an identity matrix. Introducing̃p = V−1p
andf̃ = V−1f to (14) yields

(Λ + iωE)p̃ = f̃ . (15)

Then the solution of (15) can be directly obtained as

p̃k =
f̃k

λk + iω
, (16)

and the solution of (12) is finally obtained asp = Vp̃.
According to the numerical vectorp, the integral result is
yielded as

I[f ] ∼ p(1)eiω − p(N + 1)e−iω. (17)

It is noted that the differentiation matricesD for dif-
ferent N are all known, so the eigen-decompositions of
them (corresponding toV andΛ) can be pre-computed.
In this sense, the operations of the above-mentioned pro-
cesses mainly come from the the following two operations:
f̃ = V−1f andp = Vp̃.

Let the triangle decomposition ofV be

TV = LU, (18)

whereT is a permutation matrix,L is a lower triangle
matrix andU is an upper triangle matrix, then the result
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f̃ = V−1f is determined by solving the following two
systems of linear equations:

LX = Tf , Uf̃ = X, (19)

whereX is a temporary numerical vector. It is known that
L andU are both triangle matrices and can be pre-computed,
so the computational complexity of each equation in (19)
is aboutO((N + 1)2/2), resulting a total computational
complexity ofO((N + 1)2) for f̃ = V−1f . At the same
time, the matrix-multiplicationp = Vp̃ is with a compu-
tational complexity ofO((N + 1)2). In this manner, the
total computational complexity of the present method is
O(2(N + 1)2), which is much smaller thanO((N + 1)3)
for the direct solution methods (such as Gaussian elimina-
tion).

4. Numerical examples

Example 1.Calculate the integral

I =
∫ 1

−1

[sin x + cos(7x)] eiω(x−2)2dx.

For this integral, no stationary phase point is involved,
so it can be directly transformed into the canonical form
of (2). The performances of the proposed methods (the
Clenshaw-Curtis method and the improved-Levin method)
on different number of nodes (N = 2, 4, · · · , 40) are mea-
sured by the relative errorε. If the numerical integral result
is I ′ = <(I ′) + i=(I ′) and the exact integral value isI =
<(I) + i=(I), then the real and imaginary part of the rel-

ative error are defined asεr = <(I′−I)
<(I) andεi = =(I′−I)

=(I) ,
respectively.

Figure 1 presents the relative errors of the the Clenshaw-
Curtis method and the improved-Levin method. Form this
figure it is observed that the two methods have comparable
performances, and the relative error curves descend with
the increase of the number of nodes. These phenomena can
be explained as follows:

1.More nodes can give better interpolation of the am-
plitude function and phase function, so the relative er-
ror curves descend with the increase of the number of
nodes.

2.The amplitude functions in both the two methods are
interpolated by the same nodes (Chebyshev-Lobatto
nodes), and the additional errors, corresponding to com-
puting the momentsIk(Tk, ω) and solving the system
of linear equations (12), are very small, so the accu-
racy of the two methods should be on the same level
for fixed number of nodes.

Example 2.Calculate the integral

I =
∫ 1

−1

(x2 + x)eiω
√

1+(x+1)2dx.
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Figure 1 The relative errors in approximating integral∫ 1

−1
[sin x + cos(7x)] eiω(x−2)2dx by the Clenshaw-Curtis

method (· · · ) and the improved-Levin method (—) for two
choices ofω, including the real part (•) and the imaginary part
(◦).

This kind of oscillator is very common in the field
of electromagnetics. For this integral, a single stationary
phase pointx = −1 is involved, so it should be trans-
formed following the way mentioned in section 2.2. Dur-
ing this comparison, the number of nodesN varies asN =
4, 5, · · · , 40, and the relative errors of the Clenshaw-Curtis
method and the improved-Levin method are presented in
Figure 2. It is also seen that the two methods have compa-
rable accuracy, and more nodes correspond to higher ac-
curacies.

5. Conclusion

This paper provides an approach of transforming an irregu-
lar oscillatory integral into a canonical one, and presents an
improved-Levin quadrature method to calculate the canon-
ical oscillatory integral. In the method, the eigen-decomposition
is adopted to solve the system of linear equations, and
a much higher efficiency is achieved in comparison with
conventional method such as the Gaussian elimination.
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Figure 2 The relative error in approximating integral
∫ 1

−1
(x2 +

x)eiω
√

1+(x+1)2dx by the Clenshaw-Curtis method (· · · ) and the
improved-Levin method (—) for two choices ofω, including the
real part (•) and the imaginary part (◦).
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