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Abstract: Fast evaluation of oscillatory integrals is an issue attracts much attention in many fields. In this paper, we are interested in the
calculation of canonical oscillatory integrals, and the irregular oscillatory integrals are transformed into canonical ones with respect to
the presences of stationary phase points or not. An improved-Levin method is proposed to calculated the canonical oscillatory integral,
where the eigen-decomposition is employed to solve the target system of linear equation, and a much higher efficiency is yielded in
comparison with the direct solution methods such as the Gaussian elimination.
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1. Introduction Gaussian elimination method, and the ill-conditioned one
is solved by the TSVD (truncated singular value decompo-
sition) method. During the processing, the computational
b , complexity of Gaussian elimination method ¥ (N +
I[f] = / f(x)e“I@de,  w>1, (1)  1)%) (V + 1 is the number of nodes used in the calcu-
a lation), and the TSVD method requires even more oper-

is a key issue arising in many fields[1]. In this kind of in- ations. Although the iterative method can cut down the
tegral, f () andg(z) are both smooth and non-oscillatory, computational complexity t@((N + 1)?) in each iter-
and they are called the amplitude function and the phasation step, the total computational complexity differs for
function, respectively. During the past decades, some spadifferent oscillatory integrals due to the different conver-
cial quadrature methods for oscillatory integrals have beergence rate of them. Later, Olver introduced a GMRES-
developed, and the representative ones include the asympevin method to calculate the oscillatory integrals in [13],
totic expansion method[2,3], the Filon(-type) method[4, where the differentiations involved are calculated via FFT
5], the Levin(-type) method[6, 7], the (numerical-)steepestand the total operations are believed to be on the level of
descent method[8], the stationary phase point method[9]O((V + 1) log(N + 1)). However, as stated in [14], the
and others. Among them the Filon method and the LevinFFT has a lot of nested operations which create overhead
method have attracted much attention. The Filon(-type)that is not apparent in the count of multiplications and ad-
method has a relatively long history but it is generally ditions. In fact, the FFT is generally competitive only for
only applicable for oscillatory integrals whose momentsvery large N. For moderateV, the direct matrix multi-
f(bk(x)éwg(w)dx are explicitly known ¢, are the basis plication is actually even more efficient. In the filed of fast
functions), so its generality is limited. The Levin method computation of oscillatory integrals, the main idea is to ob-
has better applicability for oscillatory integrals with com- tain the integral result using small or moderate number of
plicated phase functions, but the system of linear equationsodes, rather than very large number of nodes, so it is use-
involved tends to be ill-conditioned and the integral resultful to find other approaches to proceed the computations
is susceptible to the ill-conditioning. J. Li and etc. have via matrix multiplications.
put forward an improved-Levin method to remove the im-
pact of the ill-conditioning in [10-12], where the well- In this paper, we transform the irregular oscillatory in-
conditioned system of linear equations is solved by thetegrals into canonical ones, and then propose an improved-

How to calculate the oscillatory integrals like
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Levin method to compute the transformed integrals. Dur-should be carefully handled. In this paper we assume that
ing the process of the improved-Levin method, the eigenthe stationary phase points are located at the endpoints.
decomposition is employed to solve the target system ofThis assumption is justified since an oscillatory integral
linear equations, which is finally boiled down to two matrix-with stationary phase points inside the interval can be sub-
multiplication process and the operation counts can be redivided into several sub-integrals according to the posi-
duced fromO((N + 1)3) (for traditional methods such as tions of the stationary phase points:

the Gaussian elimination) 10(2(N + 1)?).

1] = ( AR S o ) ()
2. Transformation of an oscillatory integral (5)
from irregular form to canonical form 2 Z L[f]
In this paper, we are interested in the numerical evaluation n=0
of canonical highly oscillatory integrals of the form wherec; < ¢y < --- < ¢, arem stationary phase points.
1 . Consider one of the integrals on the right hand side of
I[f] :/ f(z)e“*dx. (2) (5). For convenience the lower and upper limits of the inte-

gral are denoted byandd, respectively. As shown in (5),
As will be shown in the next section, oscillatory integrals the stationary phase points of this integral are located at
of this canonical type can be efficiently calculated. But for the endpoints, sg(x) # 0 holds forz € (¢, d). However,
an irregular oscillatory integral with complex phase func- while transforming this integral to (3) to obtain a canon-
tion, the situation is a little complicated. This section will ical form, the presence of stationary phase points will in-
show that it can also be transformed into a canonical form¢roduce singularity to the amplitude funcuw be-

The derivations are proceed in two cases: those free of Stacauseg () vanishes at the endpoints. In order to avoid this
tionary phase points and those with. difficult, spemal transformation should be considered.
Leth(x f f(¢)dt, then the concerned sub-integral

2.1. The case free of stationary phase points ~ "° tranSformed as

. d d .

In this case, we assume that the oscillatory integral isinthe I,,[f] = h(z)é“9®)| — iw/ h(z)e“I @ dg(z). (6)
form of (1) and the phase functigiiz) is free of stationary ¢ c

phase pointin the intervad, b (i.e., vz € [a,b],¢'(x) #  Inthe open intervalc, d) the phase function(z) is mono-

0). Lety = g(=), then the oscillator in (1) can be trans- tonjc and invertible because the stationary phase points

formed into a canonical one[15]: only exist at the endpoints. In this sense, introducing the
1 - /g(b) ') g - transformationy = g(x) to (6) yields
aa) 90971 (W))

(d)
nlf) = Wadro| i [ " i ). (1)
B g9

(e)

In principle, the amplitude functioh(g‘l(y)z should be

. non-singular because boftit) andh(x) = [ f(t)dt are

1[f] = / F(z)éédr (4) non-singular. However, this function could be very sharp
1 ’ due to the presence of stationary phase points at the end-

Moreover, introducing the coordinate transfayre: v(z) =

9(bl—g(a) ;. 4 9(b)F9(e) g (3) yields an oscillatory over a
normalized mterval

D)—g(a) o 1@290) £(g~ (u(a points, and this will then introduce difficulty to the evalu-
where F(z) = Me’ SloWlx) g pon- ation offg( )h 971 (y))e“vdy.

g’ (g7 (v(2)))
singular, and; = Mw. In this transformation, one Moreover in order to overcome the problem caused by
requires for knowing the inverse gfx). The inverse can the sharps an addltlonal transformation is proposed. Let
generally be easily worked out using Newton’s method[15] % (y fy u))du, then the integral (7) can be

but in many practical applications, it even can be analyti- transformed as foIIows by using the integration by parts:
cally obtained.
g(d)

L[] = €9 [h(d) - iwk(g(d))]—w / k(y)e="dy,
2.2. The case with stationary phase points g(c) .

The stationary phase point of an oscillatory integral is awhere we have considerédc) = 0 andk(g(c)) = 0.
point where the first derivative of the phase function van-  According to the definitions of(x) andk(y) we have
ishes (i.e.3z € [a,b],¢'(x) = 0). Itis known that a sta-

tionary phase point plays a very important roll in deter- k(y) = /y /g « F()dt | du. 9)
mining the integral result[16], so the integrand around it 9(c)
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then substituting the assumption= ¢(s) to (9) gives itis advisable to use these nodes since the integrand around
the endpoint plays an important role in determining the in-

97w s ) tegral result.
k(y) = / / f(t)g'(s)dtds. The differentiation matrix is a powerful tool in the spec-
¢ ¢ tral method[24, 25, 14,26, 27]. Applying the differentiation
This is a 2D non-oscillatory integral becaugér) and ~ Mmatrix D to the ODE (10) yields the following system of
g(x) are both non-oscillatory, so the functidrfy) can  linear equations:
be easily calculated by the Gauss-type quadrature algo-

rithms[17]. At the same time, the derivative lofy) is de- (D +iw)p =T, (12)
termined as . .
wherep andf are two numerical vectors corresponding
d/[? hig=(t)dt to the unknown function values and the amplitude func-
K (y) = 9(e) a = hig™(y)), tion values, respectively. This system of linear equations

can be solved by traditional methods such as the Gaussian
so the plot ofi:(y) should be very smooth since the func- €/Mination method and TSVD method|11, 10], but the op-
tion value ofh(z) is limited. erations required by these routines &é(N + 1)3) or

At the same time, the oscillatory integral in (8) can be €Ven more. Here we would like to introduce another solu-

transformed into a canonical one if the coordinate transfoion scheme for (12), a?d the count of gperations can be
rationy = 2490, | g(d);g(c) is applied to it. There- reduced fronO((N + 1)°) to O(2(N + 1)#).

2 . .
fore, in the following study, we pay the main attention to L€t the eigen-decomposition of matix be
the calculation of canonical oscillatory integrals like (2).

DV = VA, (13)
. . . whereV is the matrix whos&™ column is the eigenvector
3. Evaluation of canonical oscillatory v of D andA is the diagonal matrix whose diagonal el-
integrals ements are the corresponding eigenvalues,Ag,,= Ax.

In this manner, the target system of linear equations (12)
An early attempt on the fast evaluation of canonical os-can be re-expressed as
cillatory integrals was made by Filon [4] who obtained
the integral result by approximating the amplitude function V(A +iwE)Vlp=f (14)
with a polynomial and computing the momeht:*€+~*dx _ _ o . .
analytically. The work was later improved by Clenshaw- With E being an identity matrix. Introducing = V~'p
Curtis[21], Luke[20], Bakhvalov[22], Patterson[23], and andf = V~'f to (14) yields
some others[15, 18, 19]. Among them, the Clenshaw-Curtis .
method has attracted much attention for its good stability. (A +iwE)p =f. (15)
This method works well on the canonical oscillatory inte-
grals. It uses FFT to save the calculation cost of obtain-Then the solution of (15) can be directly obtained as
ing the coefficientsyl [f], but its profit is greatly dimin- -
ished when a moderate or small is taken into account. .
In the following section, we would like to introduce an al- P = A +iw’
ternative evaluation method for canonical oscillatory inte- ] o .
grals based on the Levin method. It will be shown that the@nd the solution of (12) is finally obtained as= Vp.
method has a comparable accuracy to the Clenshaw-Curticcording to the numerical vectgy, the integral result is
method, and it is also with a very high efficiency. yielded as

According to Levin’s theory, to solve the integral (2) is i iw

to solve an ordinary differential equation (ODE) without I[f] ~ p(1)e* = p(N + 1)e™™. (17)
boundary condition:

(16)

It is noted that the differentiation matric&3 for dif-
P (2) +iwp(z) = f(2). (10) ferentV are all known, so the eigen-decompositions of
them (corresponding t&% and A) can be pre-computed.
If a proper functiorp(x) is solved from the ODE, then the In this sense, the operations of the above-mentioned pro-

integral result is obtained as cesses mainly come from the the following two operations:
_ _ f=V~-fandp = Vp.
I=p1)eY —p(—1)e'v. (11) Let the triangle decomposition &f be
Due to the good stability of Chebyshev expansion, we TV = LU, (18)

use the Chebyshev collocation spectral method to solve
the ordinary differential equation. At the same time, thewhere T is a permutation matrixLL is a lower triangle
Chebyshev-Lobatto nodes cluster around the endpoints, smatrix andU is an upper triangle matrix, then the result
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f = V~If is determined by solving the following two
systems of linear equations:

LX =Tf, Uf=X, (19)

whereX is a temporary numerical vector. It is known that
L andU are both triangle matrices and can be pre-computed,
so the computational complexity of each equation in (19)
is aboutO((N + 1)2/2), resulting a total computational
complexity of O((N + 1)2) for f = V~'f. At the same
time, the matrix-multiplicatiorp = Vp is with a compu-
tational complexity ofO((N + 1)2). In this manner, the
total computational complexity of the present method is
O(2(N + 1)?), which is much smaller tha@((N + 1)3)

for the direct solution methods (such as Gaussian elimina-
tion).

Relative error (g)

5 10 15 20 25 30 35 40
Number of nodes (N)

(@) w =150

4. Numerical examples

Relative error (g)

Example 1Calculate the integral

1 -15| |

_ 10 : : : : . :
I= [ [sinz+ cos(7z)] &2 dx. 5 10 15 20 25 30 35 40
1 Number of nodes (N)
(b) w = 100

For this integral, no stationary phase point is involved,
so it can be directly transformed into the canonical form
of (2). The performances of the proposed methods (therigure 1 The relative errors in approximating integral
Clenshaw-Curtis method and the improved-Levin method)fi1 [sinz + cos(7z)] g“@=2%gy by the Clenshaw-Curtis
on different number of nodes\( = 2,4, - -- ,40) are mea-  method (--) and the improved-Levin method (—) for two
sured by the relative errer If the numerical integral result  choices ofw, including the real parts) and the imaginary part
is I’ = R(I') +iS(I") and the exact integral valueis= (o).
R(I) +iS(I), then the real and imaginary part of the rel-
ative error are defined as = %g(/;)” ande; = sg(;)l)
respectively. o . ] i i
Figure 1 presents the relative errors of the the Clenshaw- This kind of oscillator is very common in the field
Curtis method and the improved-Levin method. Form thisOf electromagnetics. For this integral, a single stationary
figure it is observed that the two methods have comparabl@hase pointz = —1 is involved, so it should be trans-
performances, and the relative error curves descend witfermed following the way mentioned in section 2.2. Dur-

the increase of the number of nodes. These phenomena céid this comparison, the number of nodés/aries asV =
be explained as follows: 4,5,---,40, and the relative errors of the Clenshaw-Curtis

. . . method and the improved-Levin method are presented in
1More nodes can give better interpolation of the am-riq . re 2 It is also seen that the two methods have compa-

plitude function and phase function, so the relative er- e accuracy, and more nodes correspond to higher ac-
ror curves descend with the increase of the number ot r5cies.

nodes.

2.The amplitude functions in both the two methods are
interpolated by the same nodes (Chebyshev-Lobatto
nodes), and the additional errors, corresponding to co :
puting the moment$;, (T}, w) and solving the system ". Conclusion
of linear equations (12), are very small, so the accu-
racy of the two methods should be on the same leve
for fixed number of nodes.

lThis paper provides an approach of transforming an irregu-
lar oscillatory integral into a canonical one, and presents an
improved-Levin quadrature method to calculate the canon-

Example Zalculate the integral ical oscillatory integral. In the method, the eigen-decompositior
1 is adopted to solve the system of linear equations, and
I = / (332 + x)e‘“\/ L+(z+1)? gy a much higher efficiency is achieved in comparison with
-1 conventional method such as the Gaussian elimination.
(© 2012 NSP
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Figure 2 The relative error in approximating integrﬁljl(a:2 +

z)eV1+ @+ gy by the Clenshaw-Curtis method ¢ ) and the
improved-Levin method (—) for two choices &f including the

real part ¢) and the imaginary parby.
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