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Abstract: This paper is concerned with robust stability and stabilization of nonlinear uncertain stochastic switched discrete time-delay
systems. The system to be considered is subject to interval time-varying delays, which allows the delay to be a fast time-varying function
and the lower bound is not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust stability and
stabilization for the nonlinear uncertain stochastic discrete time-delay system is designed via linear matrix inequalities. Numerical
examples are included to illustrate the effectiveness of the results.
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1. Introduction

As an important class of hybrid systems, switched systems
arise in many practical processes that cannot be described
by exclusively continuous or exclusively discrete models,
such as manufacturing, communication networks, automo-
tive engineering control and chemical processes (see, e.g.,
[1–7] and the references therein). On the other hand, time-
delay phenomena are very common in practical systems.
A switched system with time-delay individual subsystems
is called a switched time-delay system; in particular, when
the subsystems are linear, it is then called a switched time-
delay linear system.

During the last decades, the stability analysis of switched
linear continuous/discrete time-delay systems has attracted
a lot of attention [8–11]. The main approach for stability
analysis relies on the use of Lyapunov-Krasovskii func-
tionals and linear matrix inequlity (LMI) approach for con-
structing a common Lyapunov function [12–14]. Although
many important results have been obtained for switched
linear continuous-time systems, there are few results con-
cerning the stability of switched linear discrete systems
with time-varying delays. It was shown in [9, 11, 15, 17–
25] that when all subsystems are asymptotically stable, the

switching system is asymptotically stable under an arbi-
trary switching rule. The asymptotic stability for switch-
ing linear discrete time-delay systems has been studied in
[14], but the result was limited to constant delays. In [15],
a class of switching signals has been identified for the con-
sidered switched discrete-time delay systems to be stable
under the average dwell time scheme.

This paper studies mean square robust stability and sta-
bilization problem for nonlinear uncertain stochastic switched
linear discrete-time delay with interval time-varying de-
lays. Specifically, our goal is to develop a constructive way
to design switching rule to mean square robustly stable and
stabilize the nonlinear uncertain stochastic discrete-time
delay systems. By using improved Lyapunov-Krasovskii
functionals combined with LMIs technique, we propose
new criteria for the mean square robust stability and stabi-
lization of the nonlinear uncertain stochastic discrete-time
delay system. Compared to the existing results, our result
has its own advantages. First, the time delay is assumed to
be a time-varying function belonging to a given interval,
which means that the lower and upper bounds for the time-
varying delay are available, the delay function is bounded
but not restricted to zero. Second, the approach allows us
to design the switching rule for mean square robust stabil-
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ity and stabilization in terms of LMIs, which can be solv-
able by utilizing Matlab’s LMI Control Toolbox available
in the literature to date.

The paper is organized as follows: Section 2 presents
definitions and some well-known technical propositions
needed for the proof of the main results. Switching rule
for the mean square robust stability and stabilization is pre-
sented in Section 3. Numerical examples of the result are
given in Section 4.

2. Preliminaries

The following notations will be used throughout this paper.
R+ denotes the set of all real non-negative numbers;Rn

denotes then-dimensional space with the scalar product
of two vectors〈x, y〉 or xT y; Rn×r denotes the space of
all matrices of(n× r)− dimension.N+ denotes the set of
all non-negative integers;AT denotes the transpose ofA;
a matrixA is symmetric ifA = AT .
Matrix A is semi-positive definite (A ≥ 0) if 〈Ax, x〉 ≥ 0,
for all x ∈ Rn;A is positive definite (A > 0) if 〈Ax, x〉 >
0 for all x 6= 0; A ≥ B meansA − B ≥ 0. λ(A) denotes
the set of all eigenvalues ofA; λmin(A) = min{Reλ :
λ ∈ λ(A)}.

Consider a nonlinear uncertain stochastic discrete sys-
tems with interval time-varying delay of the form

x(k + 1) = (Aγ + ∆Aγ(k))x(k)
+ (Bγ + ∆Bγ(k))x(k − d(k))
+ fγ(k, x(k − d(k)))
+ σγ(x(k), x(k − d(k)), k)ω(k),

k ∈ N+, x(k) = vk,

k = −d2,−d2 + 1, ..., 0,

(2.1)

wherex(k) ∈ Rn is the state,γ(.) : Rn → N :=
{1, 2, . . . , N} is the switching rule, which is a function
depending on the state at each time and will be designed. A
switching function is a rule which determines a switching
sequence for a given switching system. Moreover,γ(x(k))
= i implies that the system realization is chosen as theith

system,i = 1, 2, ..., N. It is seen that the system (2.1) can
be viewed as an autonomous switched system in which
the effective subsystem changes when the statex(k) hits
predefined boundaries.Ai, Bi, i = 1, 2, ..., N are given
constant matrices.

The nonlinear perturbationsfi(k, x(k − d(k))), i =
1, 2, ..., N satisfies the following condition

fT
i (k, x(k − d(k)))fi(k, x(k − d(k)))

≤ β2
i xT (k − d(k))x(k − d(k)), i = 1, 2, ..., N,

whereβi, i = 1, 2, ..., N is positive constants. For simplic-
ity, we denotefi(k, x(k − d(k)) by fi, respectively.

The time-varying uncertain matrices∆Ai(k) and
∆Bi(k) are defined by:

∆Ai(k) = EiaFia(k)Hia, ∆Bi(k) = EibFib(k)Hib,
(2.2)

whereEia, Eib,Hia,Hib are known constant real matrices
with appropriate dimensions.
Fia(k), Fib(k) are unknown uncertain matrices satisfying

FT
ia(k)Fia(k) ≤ I, FT

ib (k)Fib(k) ≤ I, k = 0, 1, 2, ...,
(2.3)

whereI is the identity matrix of appropriate dimention,
ω(k) is a scalar Wiener process (Brownian Motion) on
(Ω,F ,P) with

E[ω(k)] = 0, E[ω2(k)] = 1, E[ω(i)ω(j)] = 0(i 6= j),
(2.4)

andσi: Rn×Rn×R → Rn, i = 1, 2, ..., N is the contin-
uous function, and is assumed to satisfy that

σT
i (x(k), x(k − d(k)), k)σi(x(k), x(k − d(k)), k)

≤ ρi1x
T (k)x(k) + ρi2x

T (k − d(k))x(k − d(k),
x(k), x(k − d(k) ∈ Rn,

(2.5)

whereρi1 > 0 andρi2 > 0, i = 1, 2, ..., N are khown
constant scalars. The time-varying functiond(k) : N+ →
N+ satisfies the following condition:

0 < d1 ≤ d(k) ≤ d2, ∀k ∈ N+

Remark 2.1. It is worth noting that the time delay is a
time-varying function belonging to a given interval, in which
the lower bound of delay is not restricted to zero.

Definition 2.1. The uncertain stochastic switched system
(2.1) is robustly stable if there exists a switching function
γ(.) such that the zero solution of the uncertain stochastic
switched system is robustly stable.

Definition 2.2. The discrete-time system(2.1) is robustly
stable in the mean square if there exists a positive definite
scalar functionV (k, x(k) : Rn ×Rn → R such that
E[∆V (k, x(k))]
= E[V (k + 1, x(k + 1))− V (k, x(k))] < 0,
along any trajectory of solution of the system for all un-
certainties which satisfy (2.1), (2.2) and (2.3).

Proposition 2.1. (Cauchy inequality)For any symmetric
positive definite marixN ∈ Mn×n and a, b ∈ Rn we
have

+aT b ≤ aT Na + bT N−1b.

Proposition 2.2.[16] LetE,H andF be any constant ma-
trices of appropriate dimensions andFT F ≤ I. For any
ε > 0, we have

EFH + HT FT ET ≤ εEET + ε−1HT H.

3. Main results

A. Stability.
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Let us set

Wi(S1, S2, P,Q) =




Wi11 Wi12 Wi13 Wi14

∗ Wi22 Wi23 Wi24

∗ ∗ Wi33 Wi34

∗ ∗ ∗ Wi44


 ,

Wi11 = (d2 − d1 + 1)Q− P − S1Ai −AT
i ST

1

+ 2S1EiaET
iaST

1 + S1EibE
T
ibS

T
1 + S2EiaET

iaST
2

+ HT
iaHia + 2ρi1I,

Wi12 = S1 − S1Ai,

Wi13 = −S1Bi,

Wi14 = −S1 − S2Ai,

Wi22 = P + S1 + ST
1 + S1EibE

T
ibS

T
1 + HT

iaHia,

Wi23 = −S1Bi,

Wi24 = S2 − S1,

Wi33 = −Q + S2EibE
T
ibS

T
2 + 2HT

ibHib + 2ρi2I,

Wi34 = −S2Bi,

Wi44 = −S2 − ST
2 + HT

iaHia + HT
ibHib.

The main result of this paper is summarized in the follow-
ing theorem.

Theorem 3.1.The uncertain stochastic switched system
(2.1) is robustly stable in the mean square if there exist
symmetric positive definite matricesP > 0, Q > 0 and
matricesS1, S2 satisfying the following conditions

Wi(S1, S2, P,Q) < 0, i = 1, 2, ..., N. (3.1)

The switching rule is chosen asγ(x(k)) = i.

Proof.Consider the following Lyapunov-Krasovskii func-
tional for anyith system (2.1)

V (k) = V1(k) + V2(k) + V3(k),

where

V1(k) = xT (k)Px(k), V2(k) =
k−1∑

i=k−d(k)

xT (i)Qx(i),

V3(k) =
−d1+1∑

j=−d2+2

k−1∑

l=k+j+1

xT (l)Qx(l),

We can verify that

λ1‖x(k)‖2 ≤ V (k). (3.2)

Let us setξ(k) = [x(k)x(k + 1) x(k − d(k)) fi(k, x(k −
d(k))) ω(k)]T and

H =




0 0 0 0 0
0 P 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 , G =




P 0 0 0 0
I I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I


 .

Then, the difference ofV1(k) along the solution of the sys-
tem (2.1) and taking the mathematical expectation, we ob-
tained

E[∆V1(k)] = E[xT (k + 1)Px(k + 1)− xT (k)Px(k)]

= E[ξT (k)Hξ(k)− 2ξT (k)GT




0.5x(k)
0
0
0
0


].

(3.3)

because of

ξT (k)Hξ(k) = x(k + 1)Px(k + 1),

2ξT (k)GT




0.5x(k)
0
0
0
0


 = xT (k)Px(k).

Using the expression of system (2.1)

0 = −S1x(k + 1) + S1(Ai + EiaFia(k)Hia)x(k)
+ S1(Bi + EibFib(k)Hib)x(k − d(k)) + S1fi + S1σiω(k),

0 = −S2x(k + 1) + S2(Ai + EiaFia(k)Hia)x(k)
+ S2(Bi + EibFib(k)Hib)x(k − d(k)) + S2fi + S2σiω(k),

0 = −σT
i x(k + 1) + σT

i (Ai + EiaFia(k)Hia)x(k)

+ σT
i (Bi + EibFib(k)Hib)x(k − d(k)) + σT

i fi + σT
i σiω(k),

we have
E[−2ξT (k)GT




0.5x(k)
[−S1x(k + 1) + S1(Ai + EiaFia(k)Hia)x(k)
+S1(Bi + EibFib(k)Hib)x(k − d(k)) + S1fi

+S1σiω(k)]

0

[−S2x(k + 1) + S2(Ai + EiaFia(k)Hia)x(k)
+S2(Bi + EibFib(k)Hib)x(k − d(k)) + S2fi

+S2σiω(k)]

[−σT
i x(k + 1) + σT

i (Ai + EiaFia(k)Hia)x(k)
+σT

i (Bi + EibFib(k)Hib)x(k − d(k)) + σT
i fi

+σT
i σiω(k)]




]
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Therefore, from (3.3) it follows that

E[∆V1(k)]

= E[xT (k)[−P − S1Ai − S1EiaFia(k)Hia

−AT
i ST

1 −HT
iaFT

ia(k)EiaST
1 ]x(k)

+ 2xT (k)[S1 − S1Ai − S1EiaFia(k)Hia]
x(k + 1)

+ 2xT (k)[−S1Bi − S1EibFib(k)Hib]x(k − d(k))

+ 2xT (k)[−S1 − S2Ai − S2EiaFia(k)Hia]
fi(k, x(k − d(k)))

+ 2xT (k)[−S1σi − σT
i Ai − σT

i EiaFia(k)Hia]ω(k)

+ x(k + 1)[P + S1 + ST
1 ]x(k + 1)

+ 2x(k + 1)[−S1Bi − S1EibFib(k)Hib]x(k − d(k))
+ 2x(k + 1)[S2 − S1]fi(k, x(k − d(k)))

+ 2x(k + 1)[σT
i − S1σi]ω(k)

+ 2xT (k − d(k))[−S2Bi − S2EibFib(k)Hib]
fi(k, x(k − d(k)))

+ 2xT (k − d(k))[−σT
i Bi − σT

i EibFib(k)Hib]ω(k)

+ fi(k, x(k − d(k)))T [−S2 − ST
2 ]fi(k, x(k − d(k)))

+ 2fi(k, x(k − d(k)))T (k)[−S2σi − σT
i ]ω(k)

+ ωT (k)[−2σT
i σi]ω(k)].

By asumption(2.4), we have

E[∆V1(k)]

= E[xT (k)[−P − S1Ai − S1EiaFia(k)Hia

−AT
i ST

1 −HT
iaFT

ia(k)EiaST
1 ]x(k)

+ 2xT (k)[S1 − S1Ai − S1EiaFia(k)Hia]x(k + 1)

+ 2xT (k)[−S1Bi − S1EibFib(k)Hib]x(k − d(k))

+ 2xT (k)[−S1 − S2Ai − S3EiaFia(k)Hia]
fi(k, x(k − d(k)))

+ x(k + 1)[P + S1 + ST
1 ]x(k + 1)

+ 2x(k + 1)[−S1Bi − S1EibFib(k)Hib]x(k − d(k))
+ 2x(k + 1)[S2 − S1]fi(k, x(k − d(k)))

+ 2xT (k − d(k))[−S2Bi − S2EibFib(k)Hib]
fi(k, x(k − d(k)))

+ fi(k, x(k − d(k)))T [−S2 − ST
2 ]fi(k, x(k − d(k)))

+ ωT (k)[−2σT
i σi]ω(k)].

Applying Propositon2.2, Propositon2.3, condition(2.3)
and asumption(2.5), the following estimations hold

−S1EiaFia(k)Hia −HT
iaFT

ia(k)ET
iaST

1

≤ S1EiaET
iaST

1 + HT
iaHia,

−2xT (k)S1EiaFia(k)Hiax(k + 1)
≤ xT (k)S1EiaET

iaST
1 x(k) + x(k + 1)T HT

iaHiax(k + 1),

−2xT (k)S1EibFib(k)Hibx(k − d(k))
≤ xT (k)S1EibE

T
ibS

T
1 x(k) + x(k − d(k))T HT

ibHib

x(k − d(k)),

−2xT (k)S2EiaFia(k)Hiafi

≤ xT (k)S2EiaET
iaST

2 x(k) + fT
i HT

iaHiafi,

−2x(k − d(k))T (k)S2EibFib(k)Hibfi

≤ x(k−d(k))T (k)S2EibE
T
ibS

T
2 x(k−d(k))+fT

i HT
ibHibfi,

−2xT (k + 1)S1EibFib(k)Hibx(k − d(k))
≤ xT (k+1)S1EibE

T
ibS

T
1 x(k+1)+x(k−d(k))T HT

ibHib

x(k − d(k)),

−σT
i (x(k), x(k − d(k)), k)σi(x(k), x(k − d(k)), k)

≤ ρi1x
T (k)x(k) + ρi2x

T (k − d(k))x(k − d(k).

Therefore, we have

E[∆V1(k)]

≤ E[xT (k)[−P − S1Ai −AT
i ST

1 + 2S1EiaET
iaST

1

+ S1EibE
T
ibS

T
1 + S2EiaET

iaST
2 + HT

iaHia + 2ρi1I]x(k)

+ 2xT (k)[S1 − S1Ai]x(k + 1)

+ 2xT (k)[−S1Bi]x(k − d(k))

+ 2xT (k)[−S1 − S2Ai]fi(k, x(k − d(k)))

+ x(k + 1)[P + S1 + ST
1 + S1EibE

T
ibS

T
1

+ HT
iaHia]x(k + 1) + 2x(k + 1)[−S1Bi]x(k − d(k))

+ 2x(k + 1)[S2 − S1]fi(k, x(k − d(k)))

+ xT (k − d(k))[S2EibE
T
ibS

T
2 + 2HT

ibHib

+ 2ρi2I]x(k − d(k))

+ 2xT (k − d(k))[−S2Bi]fi(k, x(k − d(k)))

+ fi(k, x(k − d(k)))T [−S2 − ST
2 + HT

iaHia

+ HT
ibHib]fi(k, x(k − d(k)))].

(3.4)
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The difference ofV2(k) is given by

E[∆V2(k)]

= E[
k∑

i=k+1−d(k+1)

xT (i)Qx(i)−
k−1∑

i=k−d(k)

xT (i)Qx(i)]

= E[
k−d1∑

i=k+1−d(k+1)

xT (i)Qx(i) + xT (k)Qx(k)

− xT (k − d(k))Qx(k − d(k)) +
k−1∑

i=k+1−d1

xT (i)Qx(i)

−
k−1∑

i=k+1−d(k)

xT (i)Qx(i)].

(3.5)

Sinced(k) ≥ d1 we have

k−1∑

i=k+1−d1

xT (i)Qx(i)−
k−1∑

i=k+1−d(k)

xT (i)Qx(i) ≤ 0,

and hence from (3.5) we have

E[∆V2(k)] ≤ E[
k−d1∑

i=k+1−d(k+1)

xT (i)Qx(i)

+ xT (k)Qx(k)

− xT (k − d(k))Qx(k − d(k))].

(3.6)

The difference ofV3(k) is given by

E[∆V3(k)] = E[
−d1+1∑

j=−d2+2

k∑

l=k+j

xT (l)Qx(l)

−
−d1+1∑

j=−d2+2

k−1∑

l=k+j+1

xT (l)Qx(l)]

= E[
−d1+1∑

j=−d2+2

[
k−1∑

l=k+j

xT (l)Qx(l)

+ xT (k)Q(ξ)x(k)−
k−1∑

l=k+j

xT (l)Qx(l)

− xT (k + j − 1)Qx(k + j − 1)]]

= E[
−d1+1∑

j=−d2+2

[xT (k)Qx(k)

− xT (k + j − 1)Qx(k + j − 1)]]

= E[(d2 − d1)xT (k)Qx(k)

−
k−d1∑

j=k+1−d2

xT (j)Qx(j)].
(3.7)

Sinced(k) ≤ d2, and

k−d1∑

i=k=1−d(k+1)

xT (i)Qx(i)−
k−d1∑

i=k+1−d2

xT (i)Qx(i) ≤ 0,

we obtain from (3.6) and (3.7) that

E[∆V2(k) + ∆V3(k)]

≤ E[(d2 − d1 + 1)xT (k)Qx(k)

− xT (k − d(k))Qx(k − d(k))].

(3.8)

Therefore, combining the inequalities (3.4), (3.8) gives

E[∆V (k)]

≤ ψT (k)Wi(S1, S2, P, Q)ψ(k)],
∀i = 1, 2, ...., N, k = 0, 1, 2, ...,

(3.9)

where

ψ(k) = [x(k)x(k + 1)x(k− d(k)) fi(k, x(k− d(k)))]T ,

Wi(S1, S2, P,Q) =




Wi11 Wi12 Wi13 Wi14

∗ Wi22 Wi23 Wi24

∗ ∗ Wi33 Wi34

∗ ∗ ∗ Wi44


 ,

Wi11 = (d2 − d1 + 1)Q− P − S1Ai −AT
i ST

1

+ 2S1EiaET
iaST

1 + S1EibE
T
ibS

T
1

+ S3EiaET
iaST

3 + HT
iaHia + 2ρi1I,

Wi12 = S1 − S1Ai,

Wi13 = −S1Bi − S2Ai,

Wi14 = −S1 − S3Ai,

Wi14 = −S1 − S3Ai,

Wi22 = P + S1 + ST
1 + S1EibE

T
ibS

T
1 + HT

iaHia,

Wi23 = −S1Bi,

Wi24 = S3 − S1,

Wi33 = −Q + S3EibE
T
ibS

T
3 + 2HT

ibHib + 2ρi2I,

Wi34 = −S3Bi,

Wi44 = −S3 − ST
3 + HT

iaHia + HT
ibHib.

Therefore, we finally obtain from (3.9) and the condition
(3.1) that

E[∆V (k)] < 0,

by choosing switching rule asγ(x(k)) = i, which, com-
bining the condition (3.2), and Definition 2.2., concludes
the proof of the theorem in the mean square.

Remark 3.1. Note that theresult sproposed in [8–10] for
switching systems to be asymptotically stable under an ar-
bitrary switching rule. The asymptotic stability for switch-
ing linear discrete time-delay systems studied in [13] was
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limited to constant delays. In [14], a class of switching sig-
nals has been identified for the considered switched discrete-
time delay systems to be stable under the averaged well
time scheme.

B. Stabilization.

Consider a nonlinear uncertain stochastic switched control
discrete-time systems with interval time-varying delay of
the form

x(k + 1) = (Aγ + ∆Aγ(k))x(k) + (Bγ + ∆Bγ(k))u(k)
+ fγ(k, x(k − d(k)))

+ σγ(x(k), x(k − d(k)), k)ω(k), k ∈ N+,

x(k) = vk, k = −d2,−d2 + 1, ..., 0,
(3.10)

wherex(k) ∈ Rn is the state,u(k) ∈ Rm,m ≤ n, is
the control input,γ(.) : Rn → N := {1, 2, . . . , N} is
the switching rule, which is a function depending on the
state at each time and will be designed. A switching func-
tion is a rule which determines a switching sequence for
a given switching system. Moreover,γ(x(k)) = i im-
plies that the system realization is chosen as theith sys-
tem,i = 1, 2, ..., N. It is seen that the system (2.1) can be
viewed as an autonomous switched system in which the ef-
fective subsystem changes when the statex(k) hits prede-
fined boundaries.Ai, Bi, i = 1, 2, ..., N are given constant
matrices.

The nonlinear perturbationsfi(k, x(k − d(k))), i =
1, 2, ..., N satisfies the following condition

fT
i (k, x(k − d(k)))fi(k, x(k − d(k)))

≤ β2
i xT (k − d(k))x(k − d(k)), i = 1, 2, ..., N,

(3.11)

whereβi, i = 1, 2, ..., N is positive constants. For simplic-
ity, we denotefi(k, x(k − d(k)) by fi, respectively.

We consider a delayed feedback control law

u(k) = (Ci + ∆Ci(k))x(k − d(k)), k = −h2, ..., 0,
(3.12)

andCi + ∆Ci(k), i = 1, 2, ..., N is the controller gain to
be determined.

The time-varying uncertain matrices∆Ai(k), ∆Bi(k),
and∆Ci(k) are defined by:

∆Ai(k) = EiaFia(k)Hia,∆Bi(k) = EibFib(k)Hib,

∆Ci(k) = EicFic(k)Hic,

whereEia, Eib, Eic, Hia,Hib,Hic are known constant real
matrices with appropriate dimensions.Fia(k), Fib(k), Fic(k)
are unknown uncertain matrices satisfying

FT
ia(k)Fia(k) ≤ I, FT

ib (k)Fib(k) ≤ I,

FT
ic (k)Fic(k) ≤ I, k = 0, 1, 2, ....

whereI is the identity matrix of appropriate dimention,
ω(k) is a scalar Wiener process (Brownian Motion) on
(Ω,F ,P) with

E[ω(k)] = 0, E[ω2(k)] = 1, E[ω(i)ω(j)] = 0(i 6= j),
(3.13)

andσi: Rn×Rn×R → Rn, i = 1, 2, ..., N is the contin-
uous function, and is assumed to satisfy that

σT
i (x(k), x(k − d(k)), k)σi(x(k), x(k − d(k)), k)

≤ ρi1x
T (k)x(k) + ρi2x

T (k − d(k))x(k − d(k),
x(k), x(k − d(k) ∈ Rn,

(3.14)

whereρi1 > 0 andρi2 > 0, i = 1, 2, ..., N are khown
constant scalars. The time-varying functiond(k) : N+ →
N+ satisfies the following condition:

0 < d1 ≤ d(k) ≤ d2, ∀k = 0, 1, 2, ....

Remark 3.2. It is worth noting that the time delay is a
time-varying function belonging to a given interval, in which
the lower bound of delay is not restricted to zero.

Applying the feedback controller (3.11) to the system (3.10),
the closed-loop discrete time-delay system is

x(k + 1) = (Ai + ∆Ai(k))x(k)
+ (Bi + ∆Bi(k))(Ci + ∆Ci(k))x(k − d(k))
+ fi(k, x(k − d(k)))
+ σi(x(k), x(k − d(k)), k)ω(k),
k = 0, 1, 2, ...

(3.15)

Definition 3.1.The nonlinear uncertain stochastic switched
control system (3.10) is stablilizable if there is a delayed
feedback control (3.12) such that the nonlinear uncertain
stochastic switched system (3.14) is robustly stable.
Let us set

Wi(S1, S2, P, Q) =




Wi11 Wi12 Wi13 Wi14

∗ Wi22 Wi23 Wi24

∗ ∗ Wi33 Wi34

∗ ∗ ∗ Wi44


 ,

Wi11 = (d2 − d1 + 1)Q− P − S1Ai −AT
i ST

1

+ 2S1EiaET
iaST

1 + S2EiaET
iaST

2 + HT
iaHia + 2ρi1I, ,

Wi12 = S1 − S1Ai,

Wi13 = −S1,

Wi14 = −S1 − S2Ai,

Wi22 = P + S1 + ST
1 + HT

iaHia,

Wi23 = −S1,

Wi24 = S2 − S1,

Wi33 = −Q + HT
iaHia + 2ρi2I,

Wi34 = −S2,

Wi44 = −S2 − ST
2 + HT

iaHia.
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Theorem 3.2.The nonlinear uncertain stochastic switched
control system (3.10) is stabilizable in the mean square by
the delayed feedback control (3.12), where
(Ci + ∆Ci(k))
= (Bi + ∆Bi(k))T [(Bi + ∆Bi(k))(Bi + ∆Bi(k))T ]−1,
i = 1, 2, ..., N,
if there exist symmetric matricesP > 0, Q > 0 and matri-
cesS1, S2 satisfying the following conditions

Wi(S1, S2, P,Q) < 0, i = 1, 2, ..., N. (3.16)

The switching rule is chosen asγ(x(k)) = i.

Proof.Consider the following Lyapunov-Krasovskii func-
tional for anyith system (3.10)

V (k) = V1(k) + V2(k) + V3(k),

where

V1(k) = xT (k)Px(k), V2(k) =
k−1∑

i=k−d(k)

xT (i)Qx(i),

V3(k) =
−d1+1∑

j=−d2+2

k−1∑

l=k+j+1

xT (l)Qx(l),

We can verify that

λ1‖x(k)‖2 ≤ V (k). (3.17)

Let us setξ(k) = [x(k)x(k + 1) x(k − d(k)) fi(k, x(k −
d(k))) ω(k)]T and

H =




0 0 0 0 0
0 P 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 , G =




P 0 0 0 0
I I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I


 .

Then, the difference ofV1(k) along the solution of the sys-
tem (3.10) and taking the mathematical expectation, we
obtained

E[∆V1(k)] = E[xT (k + 1)Px(k + 1)− xT (k)Px(k)]

= E[ξT (k)Hξ(k)− 2ξT (k)GT




0.5x(k)
0
0
0
0


].

(3.18)

because of

ξT (k)Hξ(k) = x(k + 1)Px(k + 1),

2ξT (k)GT




0.5x(k)
0
0
0
0


 = xT (k)Px(k).

Using the expression of system (3.10)

0 = −S1x(k + 1) + S1(Ai + EiaFia(k)Hia)x(k)
+ S1x(k − d(k)) + S1fi + S1σiω(k),

0 = −S2x(k + 1) + S2(Ai + EiaFia(k)Hia)x(k)
+ S2x(k − d(k)) + S2fi + S2σiω(k),

0 = −σT
i x(k + 1) + σT

i (Ai + EiaFia(k)Hia)x(k)

+ σT
i x(k − d(k)) + σT

i fi + σT
i σiω(k),

we have
E[−2ξT (k)GT




0.5x(k)
[−S1x(k + 1) + S1(Ai + EiaFia(k)Hia)x(k)

+S1x(k − d(k)) + S1fi + S1σiω(k)]
0

[−S2x(k + 1) + S2(Ai + EiaFia(k)Hia)x(k)
+S2x(k − d(k)) + S3fi + S2σiω(k)]

[−σT
i x(k + 1) + σT

i (Ai + EiaFia(k)Hia)x(k)
+σT

i x(k − d(k)) + σT
i fi + σT

i σiω(k)]




]

Therefore, from (3.19) it follows that

E[∆V1(k)]

= E[xT (k)[−P − S1Ai − S1EiaFia(k)Hia

−AT
i ST

1 −HT
iaFT

ia(k)EiaST
1 ]x(k)

+ 2xT (k)[S1 − S1Ai − S1EiaFia(k)Hia]x(k + 1)

+ 2xT (k)[−S1]x(k − d(k))

+ 2xT (k)[−S1 − S2Ai − S2EiaFia(k)Hia]
fi(k, x(k − d(k)))

+ 2xT (k)[−S1σi − σT
i Ai − σT

i EiaFia(k)Hia]ω(k)

+ x(k + 1)[P + S1 + ST
1 ]x(k + 1)

+ 2x(k + 1)[S2 − S1]x(k − d(k))
+ 2x(k + 1)[S2 − S1]fi(k, x(k − d(k)))

+ 2x(k + 1)[σT
i − S1σi]ω(k)

+ 2xT (k − d(k))[−S2]fi(k, x(k − d(k)))

+ 2xT (k − d(k))[−σT
i ]ω(k)

+ fi(k, x(k − d(k)))T [−S2 − ST
2 ]fi(k, x(k − d(k)))

+ 2fi(k, x(k − d(k)))T (k)[−S2σi − σT
i ]ω(k)

+ ωT (k)[−2σT
i σi]ω(k)].

By asumption(3.14), we have

E[∆V1(k)]

= E[xT (k)[−P − S1Ai − S1EiaFia(k)Hia

−AT
i ST

1 −HT
iaFT

ia(k)EiaST
1 ]x(k)
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+ 2xT (k)[S1 − S1Ai − S1EiaFia(k)Hia]x(k + 1)

+ 2xT (k)[−S1]x(k − d(k))

+ 2xT (k)[−S1 − S2Ai − S2EiaFia(k)Hia]
fi(k, x(k − d(k)))

+ x(k + 1)[P + S1 + ST
1 ]x(k + 1)

+ 2x(k + 1)[−S1]x(k − d(k))
+ 2x(k + 1)[S2 − S1]fi(k, x(k − d(k)))

+ 2xT (k − d(k))[−S2]fi(k, x(k − d(k)))

+ fi(k, x(k − d(k)))T [−S2 − ST
2 ]fi(k, x(k − d(k)))

+ ωT (k)[−2σT
i σi]ω(k)].

Applying Propositon2.2, Propositon2.3, condition(3.13)
and asumption(3.15), the following estimations hold

−S1EiaFia(k)Hia −HT
iaFT

ia(k)ET
iaST

1

≤ S1EiaET
iaST

1 + HT
iaHia,

−2xT (k)S1EiaFia(k)Hiax(k + 1)
$leq xT (k)S1EiaET

iaST
1 x(k)+x(k+1)T HT

iaHiax(k+1),

−2xT (k)S2EiaFia(k)Hiafi

≤ xT (k)S2EiaET
iaST

2 x(k) + fT
i HT

iaHiafi,

−σT
i (x(k), x(k − d(k)), k)σi(x(k), x(k − d(k)), k)

≤ ρi1x
T (k)x(k) + ρi2x

T (k − d(k))x(k − d(k).

Therefore, we have

E[∆V1(k)]

≤ E[xT (k)[−P − S1Ai −AT
i ST

1

+ 2S1EiaET
iaST

1 + S2EiaET
iaST

2

+ HT
iaHia + 2ρi1I]x(k)

+ 2xT (k)[S1 − S1Ai]x(k + 1)

+ 2xT (k)[−S1]x(k − d(k))

+ 2xT (k)[−S1 − S2Ai]fi(k, x(k − d(k)))

+ x(k + 1)[P + S1 + ST
1 + HT

iaHia]x(k + 1)
+ 2x(k + 1)[−S1]x(k − d(k))
+ 2x(k + 1)[S2 − S1]fi(k, x(k − d(k)))

+ xT (k − d(k))[2ρi2I]x(k − d(k))

+ 2xT (k − d(k))[−S2]fi(k, x(k − d(k)))

+ fi(k, x(k − d(k)))T [−S2 − ST
2 + HT

iaHia]
fi(k, x(k − d(k)))].

(3.19)

The difference ofV2(k) is given by

E[∆V2(k)] = E[
k∑

i=k+1−d(k+1)

xT (i)Qx(i)

−
k−1∑

i=k−d(k)

xT (i)Qx(i)]

= E[
k−d1∑

i=k+1−d(k+1)

xT (i)Qx(i) + xT (k)Qx(k)

− xT (k − d(k))Qx(k − d(k)) +
k−1∑

i=k+1−d1

xT (i)Qx(i)

−
k−1∑

i=k+1−d(k)

xT (i)Qx(i)].

(3.20)

Sinced(k) ≥ d1 we have

k−1∑

i=k+1−d1

xT (i)Qx(i)−
k−1∑

i=k+1−d(k)

xT (i)Qx(i) ≤ 0,

and hence from (3.21) we have

E[∆V2(k)] ≤ E[
k−d1∑

i=k+1−d(k+1)

xT (i)Qx(i)

+ xT (k)Qx(k)

− xT (k − d(k))Qx(k − d(k))].

(3.21)

The difference ofV3(k) is given by

E[∆V3(k)] = E[
−d1+1∑

j=−d2+2

k∑

l=k+j

xT (l)Qx(l)

−
−d1+1∑

j=−d2+2

k−1∑

l=k+j+1

xT (l)Qx(l)]

= E[
−d1+1∑

j=−d2+2

[
k−1∑

l=k+j

xT (l)Qx(l)

+ xT (k)Q(ξ)x(k)

−
k−1∑

l=k+j

xT (l)Qx(l)

− xT (k + j − 1)Qx(k + j − 1)]]

= E[
−d1+1∑

j=−d2+2

[xT (k)Qx(k)

− xT (k + j − 1)Qx(k + j − 1)]]

= E[(d2 − d1)xT (k)Qx(k)

−
k−d1∑

j=k+1−d2

xT (j)Qx(j)].

(3.22)

Sinced(k) ≤ d2, and

k−d1∑

i=k=1−d(k+1)

xT (i)Qx(i)−
k−d1∑

i=k+1−d2

xT (i)Qx(i)

≤ 0,
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we obtain from (3.22) and (3.23) that

E[∆V2(k) + ∆V3(k)]

≤ E[(d2 − d1 + 1)xT (k)Qx(k)

− xT (k − d(k))Qx(k − d(k))].

(3.23)

Therefore, combining the inequalities (3.20), (3.24) gives

E[∆V (k)] ≤ E[ψT (k)Wi(S1, S2, P,Q)ψ(k)],
∀i = 1, 2, ...., N, k = 0, 1, 2, ...,

(3.24)

where

ψ(k) = [x(k)x(k + 1)x(k− d(k)) fi(k, x(k− d(k)))]T ,

Wi(S1, S2, P,Q) =




Wi11 Wi12 Wi13 Wi14

∗ Wi22 Wi23 Wi24

∗ ∗ Wi33 Wi34

∗ ∗ ∗ Wi44


 ,

Wi11 = (d2 − d1 + 1)Q− P − S1Ai −AT
i ST

1

+ 2S1EiaET
iaST

1 + S2EiaET
iaST

2 + HT
iaHia + 2ρi1I,

Wi12 = S1 − S1Ai,

Wi13 = −S1,

Wi14 = −S1 − S2Ai,

Wi22 = P + S1 + ST
1 + HT

iaHia,

Wi23 = −S1,

Wi24 = S2 − S1,

Wi33 = −Q + HT
iaHia + 2ρi2I,

Wi34 = −S2,

Wi44 = −S2 − ST
2 + HT

iaHia.

Therefore, we finally obtain from (3.25) and the condition
(3.17) that

E[∆V (k)] < 0,

by choosing switching rule asγ(x(k)) = i, which, com-
bining the condition (3.18), and Definition 2.2 and 3.1.,
concludes the proof of the theorem in the mean square.

Remark 3.3. Note that theresult sproposed in [8–10] for
switching systems to be asymptotically stable under an ar-
bitrary switching rule. The asymptotic stability for switch-
ing linear discrete time-delay systems studied in [13] was
limited to constant delays. In [14], a class of switching sig-
nals has been identified for the considered switched discrete-
time delay systems to be stable under the averaged well
time scheme.

4. Numerical examples

Example 4.1.(Stability) Consider the nonlinear uncertain
stochastic switched discrete time-delay system (2.1), where
the delay functiond(k) is given by

d(k) = 1 + 6sin2 kπ

2
, k = 0, 1, 2, . . . .

and

(A1, B1) =
([−1 0.1

0.2 −0.2

]
,

[
0.1 0.2
0.1 0.3

])
,

(A2, B2) =
([−2 0.3

0.5 −0.3

]
,

[
0.3 0.1
0.24 0.18

])
,

(H1a,H1b) =
([

0.1 0
0 0.2

]
,

[
0.2 0
0 0.3

])
,

(H2a,H2b) =
([

0.4 0
0 0.5

]
,

[
0.1 0
0 0.2

])
,

(E1a, E1b) =
([

0.3 0
0 0.4

]
,

[
0.2 0
0 0.5

])
,

(E2a, E2b) =
([

0.5 0
0 0.3

]
,

[
0.2 0
0 0.3

])
,

(F1a, F1b) =
([

0.1 0
0 0.2

]
,

[
0.2 0
0 0.3

])
,

(F2a, F2b) =
([

0.2 0
0 0.5

]
,

[
0.1 0
0 0.2

])
,

f1(k, x(k − d(k)) =
[
0.1699cos(k)x1(k − d(k))
0.1699sin(k)x2(k − d(k))

]
,

f2(k, x(k − d(k)) =
[
0.2699sin(k)x1(k − d(k))
0.2699cos(k)x2(k − d(k))

]
.

By LMI toolbox of Matlab, we find that the conditions
(3.1) of Theorem 3.1 are satisfied withβ1 = 0.1699, β2 =
0.2699, d1 = 1, d2 = 7, ρ11 = 0.5, ρ12 = 0.2, ρ21 =
0.3, ρ22 = 0.2, and

P =
[
114.4629 4.5328
4.5328 132.1362

]
, Q =

[
16.4921 0.3656
0.3656 18.5234

]
,

S1 =
[−1.5293 1.6966

0.7474 2.1570

]
, S2 =

[
6.8785 1.1641
0.4721 8.4612

]
.

By Theorem 3.1 the nonlinear uncertain stochastic switched
discrete time-delay system is robustly stable and the switch-
ing rule is chosen asγ(x(k)) = i.

Example 4.2.(Stabilization) Consider the nonlinear un-
certain stochastic switched discrete time-delay control sys-
tem (3.10), where the delay functiond(k) is given by

d(k) = 1 + 8sin2 kπ

2
, k = 0, 1, 2, . . . .

c© 2012 NSP
Natural Sciences Publishing Cor.



564 G. Rajchakit: Robust stability and stabilization

and

(A1, B1) =
([−1 0.1

0.2 −0.2

]
,

[
0.1 0.2
0.1 0.3

])
,

(A2, B2) =
([−2 0.3

0.5 −0.3

]
,

[
0.3 0.1
0.24 0.18

])
,

(H1a,H1b) =
([

0.1 0
0 0.2

]
,

[
0.2 0
0 0.3

])
,

(H2a,H2b) =
([

0.4 0
0 0.5

]
,

[
0.1 0
0 0.2

])
,

(E1a, E1b) =
([

0.3 0
0 0.4

]
,

[
0.2 0
0 0.5

])
,

(E2a, E2b) =
([

0.5 0
0 0.3

]
,

[
0.2 0
0 0.3

])
,

(F1a, F1b) =
([

0.1 0
0 0.2

]
,

[
0.2 0
0 0.3

])
,

(F2a, F2b) =
([

0.2 0
0 0.5

]
,

[
0.1 0
0 0.2

])
,

f1(k, x(k − d(k)) =
[
0.8931cos(k)x1(k − d(k))
0.8931sin(k)x2(k − d(k))

]
,

f2(k, x(k − d(k)) =
[
0.7314sin(k)x1(k − d(k))
0.7314cos(k)x2(k − d(k))

]
.

By LMI toolbox of Matlab, we find that the conditions
(3.17) of Theorem 3.2 are satisfied withβ1 = 0.8931, β2 =
0.7314, d1 = 1, d2 = 9, ρ11 = 0.5, ρ12 = 0.2, ρ21 =
0.3, ρ22 = 0.4, and

P =
[
141.2605 2.0171
2.0171 147.8758

]
, Q =

[
14.3329 0.0839
0.0839 14.1303

]
,

S1 =
[−1.9723 0.9741

0.5738 1.9825

]
, S2 =

[
6.2643 0.9507
0.9380 9.6081

]
.

By Theorem 3.2, the nonlinear uncertain stochastic switched
discrete time-delay control system is stabilizable and the
switching rule isγ(x(k)) = i, the delayed feedback con-
trol is:

u1(k) =
[
19.9884x1

1(k − d(k))− 11.5875x2
1(k − d(k))

−5.7937x1
1(k − d(k)) + 6.2572x2

1(k − d(k))

]
,

u2(k) =
[

5.6497x1
2(k − d(k))− 2.9426x2

2(k − d(k))
−7.0621x1

2(k − d(k)) + 8.8865x2
2(k − d(k))

]
.

5. Conclusion

This paper has proposed a switching design for the robust
stability and stabilization of nonlinear uncertain stochastic
switched discrete time-delay systems with interval time-
varying delays. Based on the discrete Lyapunov functional,
a switching rule for the robust stability and stabilization for
the nonlinear uncertain stochastic switched discrete time-
delay system is designed via linear matrix inequalities.
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