Appl. Math. Inf. Sci.6, No. 3, 555-565 (2012) NS 555

Applied Mathematics & Information Sciences
An International Journal

@© 2012 NSP
Natural Sciences Publishing Cor.

Robust stability and stabilization of nonlinear uncertain
stochastic switched discrete-time systems with interval
time-varying delays

G. Rajchakit

Major of Mathematics, Faculty of Science, Maejo University, Chiangmai 50290, Thailand

Received: Dec. 12, 2011; Revised Feb. 13, 2012; Accepted March 6, 2012
Published online: 1 Sep. 2012

Abstract: This paper is concerned with robust stability and stabilization of nonlinear uncertain stochastic switched discrete time-delay

systems. The system to be considered is subject to interval time-varying delays, which allows the delay to be a fast time-varying function
and the lower bound is not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust stability and

stabilization for the nonlinear uncertain stochastic discrete time-delay system is designed via linear matrix inequalities. Numerical

examples are included to illustrate the effectiveness of the results.
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1. Introduction switching system is asymptotically stable under an arbi-
trary switching rule. The asymptotic stability for switch-
As an important class of hybrid systems, switched systeméng linear discrete time-delay systems has been studied in
arise in many practical processes that cannot be describdd4], but the result was limited to constant delays. In [15],
by exclusively continuous or exclusively discrete models,a class of switching signals has been identified for the con-
such as manufacturing, communication networks, automosidered switched discrete-time delay systems to be stable
tive engineering control and chemical processes (see, e.ginder the average dwell time scheme.
[1-7] and the references therein). On the other hand, time-  This paper studies mean square robust stability and sta-
delay phenomena are very common in practical systemsbilization problem for nonlinear uncertain stochastic switched
A switched system with time-delay individual subsystemslinear discrete-time delay with interval time-varying de-
is called a switched time-delay system; in particular, whenlays. Specifically, our goal is to develop a constructive way
the subsystems are linear, it is then called a switched timeto design switching rule to mean square robustly stable and
delay linear system. stabilize the nonlinear uncertain stochastic discrete-time
During the last decades, the stability analysis of switcheftlay systems. By using improved Lyapunov-Krasovskii
linear continuous/discrete time-delay systems has attractefiinctionals combined with LMIs technique, we propose
a lot of attention [8—11]. The main approach for stability new criteria for the mean square robust stability and stabi-
analysis relies on the use of Lyapunov-Krasovskii func-lization of the nonlinear uncertain stochastic discrete-time
tionals and linear matrix inequlity (LMI) approach for con- delay system. Compared to the existing results, our result
structing a common Lyapunov function [12—14]. Although has its own advantages. First, the time delay is assumed to
many important results have been obtained for switchede a time-varying function belonging to a given interval,
linear continuous-time systems, there are few results conwhich means that the lower and upper bounds for the time-
cerning the stability of switched linear discrete systemsvarying delay are available, the delay function is bounded
with time-varying delays. It was shown in [9, 11, 15, 17— but not restricted to zero. Second, the approach allows us
25] that when all subsystems are asymptotically stable, théo design the switching rule for mean square robust stabil-
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ity and stabilization in terms of LMIs, which can be solv- whereE;,, E;;,, H;,, H;;, are known constant real matrices
able by utilizing Matlab’s LMI Control Toolbox available with appropriate dimensions.

in the literature to date. F;.(k), F;p(k) are unknown uncertain matrices satisfying

The paper is organized as follows: Section 2 presents_. T

definitions and some well-known technical propositions ia(k)Fia(k) <1, Fy (B)Fi(k) <1, k=0,1,2,..,
needed for the proof of the main results. Switching rule ) _ _ ) ) ) (2-3’_)
for the mean square robust stability and stabilization is pre\Where 1 is the identity matrix of appropriate dimention,
sented in Section 3. Numerical examples of the result ar¢’(k) is a scalar Wiener process (Brownian Motion) on

given in Section 4. (£2,F,P) with
Elw(k)] =0, E*(k)]=1, BElu(iw()] =00 #j),

> preliminari (2.4)

- Freliminaries ando;: R* x R" x R — R"™ i =1,2,..., N is the contin-
The following notations will be used throughout this paper, U0US function, and is assumed to satisfy that
R* denotes thg set Qf all real non-negative NUMbE&Ys; ol (x(k), z(k — d(k)), k)oi (z(k), z(k — d(k)), k)
denotes thex-dimensional space with the scalar product T T
of two vectors(z,y) or zTy; R™*" denotes the space of < paz (k)z(k) + pioa’ (k — d(k))z(k — d(k),
all matrices of(n x r)— dimensionN* denotes the set of x(k),z(k — d(k) € R",
all non-negative integersi” denotes the transpose df (2.5)

a matrix A is symmetric ifA = AT ]

Matrix A is semi-positive definite4 > 0) if (Az,z) >0, Wherépi > Oandpiz > 0,i = 1,2,.., N are ktlown
forall 2 € R™; A is positive definite fi > 0) if (Az,z) > corstar'lt scalars. The time-varying functigf) : N —
Oforallz #0; A > B meansA — B > 0. \(A) denotes NT satisfies the following condition:

t)\he i?fél()); all eigenvalues of; A\pin(A4) = min{Re : 0<dy <d(k)<ds, Vke Nt

6 N . . - .
Consider a nonlinear uncertain stochastic discrete sysRemark 2.1. It is worth noting that the time delay is a

tems with interval time-varying delay of the form time-varying function belonging to a given interval, in which

the lower bound of delay is not restricted to zero.
z(k+1) = (A, + AA,(k))z(k)
+ (B, + AB,(k))z(k — d(k)) Definition 2.1. The uncertain stochastic switched system
+ £k, z(k — d(k))) (2.1) is robustly stable if there exists a switching function
+ o (k) 2k — d(k)), Kw(k) (2.1)  ~(.) such that the zero solution of the uncertain stochastic
Iy \TK), X 2 )W) switched system is robustly stable.
ke NT, x(k) =g,

k=—dy,—ds+1,...,0, Definition 2.2. The discrete-time systeii2.1) is robustly
- " stable in the mean square if there exists a positive definite
wherez (k) € R" is the statey(.) : R" — N := scalar functiorV/ (k, z(k) : R" x R" — R such that

{1,2,..., N} is the switching rule, which is a function gAYy (1, 2(k))]
depending on the state at each time and will be designed. A. gy (; + 1, z(k + 1)) — V(k, z(k))] < 0,
switching function is a rule which determines a switching g1ong any trajectory of solution of the system for all un-
sequence for a given switching system. Moreovyer(k))  certainties which satisfy (2.1), (2.2) and (2.3).
= i implies that the system realization is chosen ag'the
system; =1,2,..., N. Itis seen that the system (2.1) can proposition 2.1. (Cauchy inequalityfFor any symmetric
be viewed as an autonomous switched system in whichysgitive definite marixV € M"*" anda,b € R" we
the effective subsystem changes when the stét¢ hits  pave
predefined boundaries!;, B;,i = 1,2,..., N are given +aTb < a"Na + TN~ 1p.
constant matrices. -
The nonlinear perturbationg; (k, z(k — d(k))),i =

1,2, ..., N satisfies the following condition .
T 9 Proposition 2.2.[16] Let £, H and F' be any constant ma-

fE(k,x(k — d(k))) fi(k, x(k — d(k))) trices of appropriate dimensions arfd’ F' < I. For any
Sﬂ?.’ET(k—d(k))l'(k—d(k)), i:172a“'aNa €>0’ we have
T T T T - T
wheres;,i = 1,2, ..., N is positive constants. For simplic- EFH + H'F'E" < cEE" + ¢ 'H'H.
ity, we denotef;(k, z(k — d(k)) by f;, respectively.
The time-varying uncertain matrice$A;(k) and

AB;(k) are defined by: 3. Main results
AAi(k) = EioFiq(k)H;q, AB;(k) = EgFiy(k)Ha, A. Stability.
(2.2)
@© 2012 NSP
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Let us set Then, the difference df; (k) along the solution of the sys-
tem (2.1) and taking the mathematical expectation, we ob-
Wiir Witz Wiis Wiy tained
*  Wigg Wiaz Wiag

Wi(Sl,SQapaQ) = * ES VV{,33 Wi34 ’

N E[AVi(K)] = E[z" (k + 1) Pa(k + 1) — 27 (k) Pa(k)]
0.5z(k)
Wi = (dy —dy +1)Q — P — S1A; — AT ST 0
+ 251E1aEmS + Sl zbE S + SQEZGE 82 0
+ H} Hio + 2pal, 0
WilQ = Sl - SlA (33)
WilS = 751Bu
Wiia = —51 — S A;, because of
Wig = P+ 81+ ST + S1Ew ELST + H Hia,
W123 - _Sl 2] fT(k)Hg(k) = x(k =+ 1)P$(k‘ + 1)7
Wi24 = SZ - Sl»
Wiss = —Q + So By EL ST + 2HL Hy, + 2pio1
Wiza = —S52B;, 0.5x(k)
Wias = =Sy — ST + HI H;, + HL H, 0
we e b 2%(TK)GT | 0 | = 2T (k) Pa(k).
The main result of this paper is summarized in the follow- 0
ing theorem. 0

Theorem 3.1.The uncertain stochastic switched system
(2.1) is robustly stable in the mean square if there existUsing the expression of system (2.1)
symmetric positive definite matricés > 0,Q > 0 and
matricesSs, S, satisfying the following conditions
OZ—Sll'(k+1)+Sl(Ai+EiaFm k ) ( )

)H;

Wi(Sl,SQ,P,Q) < 07 = 1,2,...,N. (31) +51(Bi +EibFib(k)H' ) ( ( )) +Slf2 +Slaz ( )
)H;
)

A??‘/—\

The switching rule is chosen g$xz(k)) = 1. 0=—Sx(k+1)+ S2(A; + EigFia(k)Hio ) (k)
+ S2(Bi + EpFip(k)Hip)x(k — d(k)) + S2.fi + Sz2oiw(k),
0=—olx(k+1)+0] (A + EiaFyo(k)Ho )2 (k)
+ 0l (B; + EwFyp(k)Hyp)x(k — d(k)) + ol f; + o ow(k),

PT‘

Proof. Consider the following Lyapunov-Krasovskii func-
tional for anyith system (2.1)

V(k) = Vi(k) + Va(k) + Va(k),

where
b1 we havTe .
Vi(k) = 2T (k)Px(k), Va(k) = L0Qu(i), Pl (WG
i=k—d(k)
Rl Syl + 1)+ 514 BroFon) (8
T l l s 1T +1)+ 1 +E1aEa
j%;zl,;j Q=) +81(B; + EFi(k)Hyp)z(k — d(k)) 7 Sy fi
We can verify that +S103w(k)]
Mlz(k)])? < V (k). (3.2 0
Let us Sef(k) = [.lﬁ(lf)x(k—Fl)Jf(k—d(k’))fl(k,x(k— [—S (k+1)+5 (Ai+EiaFia(k)Hia) (]C) ]
d(k))) w(k)|T and 5(Br + Fu (K Hn ) — d(R) S,
00000 P000O +Sa0iw(k)]
0P00O 17000
H=|00000]|, G=]00100]. [Jm%+D+U(A+J%EAME@ﬂM
00000 00070 ol (Bi + EpFy(k)Hp)z(k — d(k)) + o] f;
00000 00001 +ol oiw(k)]
(© 2012 NSP
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—2$T(k’)31EiaFia(ki)Hm$(k + 1)

Therefore, from (3.3) it follows that < 2T (k)S1Eio EL ST (k) + 2(k + 1)THL Hyux(k + 1),
E[AVi (k)] —22"(k)S, szzb(k) Hipx(k — d(k))
= E[z" (k)[-P — S1A; — S1E;aFyo(k)Hiq < 2T (k)S1EpEL ST x(k) + x(k — d(k))THL Hy,
— ATST — HLFL (k) EiST (k) =l — d(k),
+ 2II/'T( )[Sl SIAZ — SlEiaFia(k)Hia] —21’ ( )SQEzana( ) zafz
z(k+1) ol (k)S2Eia By S5 (k) + fi Hig Hia fi,
+ 22" (k) [~ 51 B; — S1Eip Fy (k) Hip )z (k — d(k)) —2x(k — d(k))T (k) Sz By Fi (k) Hip f;
+ 227 (k)[~ Sy — SaA; — Sy Fia Fia(k)Hig) < a(k—d(k))" (k)S2 B E}, S5 w(k—d(k))+ f Hj, Hap f;,
filk, x(k — d(k))) — 227 (k + 1)1 By Fyp (k) Hyp(k — d(k))
+ 2$T(k)[—3101' - O'ZTAZ - J?EiaFia(k)Hia}W(k) S J?T(k'+ 1)S1Ele;1;S,1TJZ‘(]€+ 1) —‘rl‘(k—d(k))TH;z;Hlb
+a(k+ D[P + 8y + S$T)a(k + 1) 2k — d(k)),
+22(k +1)[=S1B; — S1 B Fyp (k) Hiplx(k — d(k)) —ol ((k), 2k — d(k)), K)o(x(k), 2(k — d(k)). k)
+ 2x(k + 1)[S2 — S1]fi(k, x(k — d(k))) < puna™ (R)e(k) + piae™ (k — d(k)a(k — d(k).
+2x(k + 1[0l — Syo]w(k)

Therefore, we have
+2$ ( (k)[ SQB SQElelb(k)H]

)
fi(k, x(k — d(K)))
)

+ 22T (k — d(k))[—ol B; — o By Fy (k) Hip|w (k)

+ fi(k, x(k — d(k))) [ Sz — S5 1 fi(k, x(k — d(k)))

+2fi(k, x(k — d(k)))" (k)[-S20; — o] Jw(k) E[AVy (k)]

+ Wl (k)[-20F 0w (k)]. < E[zT(k)[-P — $1A; — ATST + 28, E;,EL ST

+ S1E4ELST + S4B EL ST + HE H; + 2pi1 Iax(k)
+ 22T (K)[S1 — S1A]x(k +1)

+ 22T (k) [ S1 Bz (k — d(k))

+ 22T (E) [ S — SoAs] fi(k, 2(k — d(k)))

+a(k+ )P+ S + ST + S EyELST

+ Hj Higlz(k + 1) + 2z(k + 1)[=S1 B;]z(k — d(k))

By asumption(2.4), we have

E[AVi (k)]
= E[J?T(k)[ P SlAz — SlEiaFia(k)Hia
— AT ST — Hi Fig (k) Eio S Ja (k)

+ 2l‘ ( )[ SlA - SlEiaFia(k)Hia]x(k + 1)

+ 22T ( )[ S1B; — S1 leib(k)Hib]x(kfd(k)) +2x(k+1)[5’2 —Sl]fi(k,x(k—d(k)))
+ 227 (k)[=S1 — S24; — S3Eia Fiq(k)Hiq) + a7 (k — d(k)[SeEaELST +2HE Hy,
filk,x(k — d(’f))) + 2pio I (k — d(k))
+a(k+ D[P+ S+ ST)a(k+1) + 227 (k — d(k))[—S2 Bi] fi (k, x(k — d(k)))

+ 2x(k + 1)[=S1B; — S1Eijy Fiy (k) Hyp|x(k — d(k))
+ 2x(k + 1)[S2 — S1lfi(k, z(k — d(k)))

+ 22T (k — d(k))[—S2B; — SoEiy Fiyy (k) Hgp)
fi(k,x(k —d(k)))

+ filk, x(k — d(k)))"[=S2 — S5 | fi(k, x(k — d(k)))
+w! (k) [-20] ai]w(k)].

Applying Propositor2.2, Propositor2.3, condition(2.3)
and asumptiori2.5), the following estimations hold

—S1E;aFyo(k)Hio — HLFL (K)EL ST

a” 1a

< $1E;oELST + HT H,,, + filk,a(k — d(k)))"[=S2 — S5 + HyHia

. (3.4)
+ H;,Hip fi(k, z(k — d(k)))].

(© 2012 NSP
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The difference of; (k) is given by

E[AVy (k)]
k k—1
=E[ Y ZT0)Qx() - Y 2"(1)Qu(i)]
i=k+1—d(k+1) i=k—d(k)

k—dy

= E| Z

i=k+1—d(k+1)

2T ())Qu(i) + 2™ (k)Qu(k)

k—1
— a2 (k= d(k)Qu(k —d(k) + Y " ()Qux(i)
i=k+1—d;
k—1
- Y ATH)Qu().
i=k4+1—d(k)
(3.5)
Sinced(k) > d; we have

k—1 k—1

> THee) - Y. #T(0)Qu() <0,
i=k+1—dy i=k+1—d(k)

and hence from (3.5) we have
k—d1

E[AV(R)] < Bl Y 2T(0)Qux(i)

i=k+1—d(k+1) (3.6)
z" (k)Qu(k)
— 2T (k — d(k))Qx(k — d(k))].
The difference ols(k) is given by
7d1+1
E[AVs(R)] = B[ Y E:
j__d2+2l k+]
—di1+1
- EZ
j=—dp+21=k+j+1
—di+1 k-1
=E[ Y [> " 0)Qzx()
j=—do+2 I=k+j
k—1
+aT ()QEz(k) — Y «"(1)Qu())
l=k+j
—2T(k+j—1)Qu(k+j—1)]
—di1+1
=E[ Y ["(k)Qu(k)
j=—d2+2
— 2T (k+j - 1)Qu(k +j — 1)]]
= E[(dz — d1)a" (k)Qu(k)
k—di 3.7
- > 2"(H)He=(). G0

j=k+1—d2>

Sinced(k) < ds, and

k—d; k—d1
> ATt - Y. 2" (D)Qx(i) <0,

i=k=1—d(k+1) i=k+1—d
we obtain from (3.6) and (3.7) that
E[AVy(k) + AVa(k)]
< E[(dy — di + 12" (k)Qu(k)
— 2T (k — d(k)Qx(k — d(k))].
Therefore, combining the inequalities (3.4), (3.8) gives
E[AV (k)]

S 1/JT(/€)W1(S1, S27 Pa Q)w(k)]v
Vi=1,2,...,N,k=0,1,2, ...,

(3.8)

3.9)

(k) = [e(k) o(k +1) 2(k — d(k)) fi(k, z(k - d(k)))]",

Wii1 Wiite Wins Wiia
* Wioa Wiagz Wigs

Wi(S1,52,P,Q) = | * *  Wizz Wisa |,
ES * * Wi44

Wiin=(d2 —dy +1)Q — P — S14;
+ 281 B ELST + S1EEf ST

+ S3Ei Bl S + HiyHia +2pn 1,

Wiia = 51— S14;,

Wiis = =S1B; — S24;,

Wiy = =851 — S34;,

Wi = =51 — S34;,

Wioa = P+ Sy + ST + S1EyELST + HEL H;,,
Wias = =51 B;,

Wigq = S5 — 51,

Wiss = —Q + SsEpE}, S5 + 2H Hiy, + 2pind,

Wizs = —S3B;,

Wigg = =53 — S;jp + HZ-:ZHm + HZTszb

- alst

Therefore, we finally obtain from (3.9) and the condition
(3.1) that
E[AV (k)] < 0,

by choosing switching rule ag(x(k)) = 4, which, com-
bining the condition (3.2), and Definition 2.2., concludes
the proof of the theorem in the mean square.

Remark 3.1. Note that theresult sproposed in [8-10] for
switching systems to be asymptotically stable under an ar-
bitrary switching rule. The asymptotic stability for switch-
ing linear discrete time-delay systems studied in [13] was

© 2012 NSP
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limited to constant delays. In [14], a class of switching sig- where I is the identity matrix of appropriate dimention,
nals has been identified for the considered switched discreig+) is a scalar Wiener process (Brownian Motion) on
time delay systems to be stable under the averaged well2, 7, P) with

time scheme. N L,
Elw(k)] =0, E[*(K)]=1, Ew@w()]=0(# j),

(3.13)
ando;: R* x R" x R — R"™ i =1,2,..., N is the contin-

Consider a nonlinear uncertain stochastic switched contro\Jous function, and is assumed to satisfy that
discrete-time systems with interval time-varying delay of o7 (z(k), z(k — d(k)), k)o;(z(k), z(k — d(k)), k)

3

B. Stabilization.

the form < pia (K)a(k) + piaa™ (k — d(k))o(k — d(k),
w(k+1) = (Ay + AA(0)a(k) + (By + ABy(R)ulk) (k) (k- d(k) € R",
+ £y (k2 (k — d(k))) (3.14)
+ o (x(k), x(k — d(k)), k)w(k), ke NT, wherep;; > 0 andp; > 0,4 = 1,2,..., N are khown
a(k) =vp, k=—do,—ds+1,...,0, constant scalars. The time-varying functiét) : N* —

(3.10) N+ satisfies the following condition:

®) ®) 0<dy <d(k)<dy, Vk=0,1,2,....
wherex(k) € R™ is the stateu(k) € R™,m < n, is . . . .
the control inputy(.) : R — N := {1,2,..., N} is Remark 3.2. It is worth noting that the time delay is a

the switching rule, which is a function depending on thetlme-varymgfunctlon belonging to a given interval, in which

state at each time and will be designed. A switching func-th€ lower bound of delay is not restricted to zero.
tion is a rule which determines a switching sequence for .

a given switching system. Moreovev(x(k)% :qi im- Applymgthefeedpackcontroller(3.11) tothg system (3.10),
plies that the system realization is chosen asithesys- the closed-loop discrete time-delay system is

tem,i = 1,2,..., N. Itis seen that the system (2.1) can be x(k + 1) = (A; + AA4;(k))x(k)

viewed as an autonomous switched system in which the ef- B: + AB:(ENV(C: + AC: (kN a(k — d(k

fective subsystem changes when the stzte hits prede- *( Z]j . l(d);:( i+ AGR)=( )

fined boundaries4;, B;,: = 1,2, ..., N are given constant + filk, 2(k — d(k)))

matrices. + oi(2(k), x(k — d(k)), k)w(k),
The nonlinear perturbationg; (k, z(k — d(k))),i = E=0,1,2,..
1,2, ..., N satisfies the following condition (3.15)
fiT(k, 2k — (k) f;(k, 2(k — d(k))) Definition 3.1. The nonlinear uncertain stochastic switched
o T ) (3.11)  control system (3.10) is stablilizable if there is a delayed
< Biat (k—d(k))x(k —d(k),i=1,2,..., N, feedback control (3.12) such that the nonlinear uncertain
stochastic switched system (3.14) is robustly stable.

whereg;,i = 1,2, ..., N is positive constants. For simplic-

Let us set

ity, we denotef;(k, z(k — d(k)) by f;, respectively.
We consider a delayed feedback control | Win Wiz s s

e consider a delayed feedback control law , . ,

Y W1, 80, P.Q) = | ) M e e
u(k) = (C; + AC;(k)x(k — d(k)), k= —ha,...,0, « % % Wi
(3.12)
andC; + AC;(k),i = 1,2, ..., N is the controller gain to -
be determined. Wit = (d2 —d1 +1)Q — P — S14; — A] 53
The time-varying uncertain matrice®4, (k), AB; (k), + 28, Eio ELST + 8, Fi ELST + HE Hy + 2pi I,

andAC; (k) are defined by: Wiio = St — Si A
112 — D1 — P14,

AA;(k) = BigFiq(k)H;a, AB;(k) = EgFy(k)Hy, Wis = —S1,
ACi(k) = EicFic(k)Hie, Witg = =51 — S A; ]
whereE;,, Eiy, Eic, Hiq, Hy, H;. are known constant real 2 =401+ 51 + i

matrices with appropriate dimensiods,, (k), F,(k), Fi.(k) Wizs = =51,
are unknown uncertain matrices satisfying Wigq = So — 51,
e — — T rr. )
FL(6)Fia(k) < 1, F(R)Fiu(k) < 1, Wiss = ~Q & HiaHlia + 2pi2],
Wizy = —Sa,
in(k)Flc(k) <I, k=0,1,2,.. Wiaa = =S5 —Sg—‘ng;Hm.

(© 2012 NSP
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Using the expression of system (3.10)
Theorem 3.2.The nonlinear uncertain stochastic switched

control system (3.10) is stabilizable in the mean square by 0= —S z(k + 1) + S1(A; + EioFia(k)Hia)z(k)
the delayed feedback control (3.12), where + Siz(k — d(k)) + S1.f; + Si0iw(k)
(Ci + AC;(k)) z A
= (B; + AB; (k)T [(B; + ABi(k))(B; + AB;(k)T] 71, = —Ssa(k +1) + S2(4A; + EiaFia(k)Hia ) (k)
1=1,2,...,N, +52£C(/€ d(k)) + Sa fi + Seoiw(k),
if there exist symmetric matricéd > 0, Q > 0 and matri- _
cesS;, S, satisfying the following conditions 0=—ofa(k+1)+of (4 + Eme(k) a)7()
+olx(k —d(k)) + Usz + ol ow(k),
Wi(S1,52,P,Q) <0, i=1,2,..,N. (3.16)
The switching rule is chosen ag$xz(k)) = i. Vb\é?_h%vTe(k)GT
F_’roof. Consider the following Lyapunov-Krasovskii func- 050 (k)
tional for anyith system (3.10) [ S1w(k + 1) + S(A; + Eua Fio (k) Hia)a (k)
V(k) = Vi(k) + Va(k) + V3(k), +S12(k — d(k)) + S1fi + S1ow(k)]
0
where (=S (k+ 1) + Sa(A; + EiaFia (k) Hia ) (k) |/
k—1 +SQZL'(]€ d( )) + Ssz + Sgaiw(k)]
Vi(k) = 2" (k)Pz(k), Va(k)= > a"(i)Qx(i), (o] x(k + 1)+ 0] (Ai + EioFia(k)Hio)z (k)
i=k—d(k) +ofx(k — d(k)) + of fi + ol oiw (k)]
—di+1
Z Z Therefore, from (3.19) it follows that
j=—da+21=k+j+1
E[AV; (k)]

We can verify that
= Bz (k)[-P — S1A; — S1FE;o Fio(k)Hy,

Mlle®)IF < V (k). G0 yrer HTFT(k)EwST] (k)
2?;)1;? S?E)(]@;éuk) w(k+ 1) z(k —d(k)) fi(k, =(k — + 2T (k)[S) Sy By Fuu(K) Hial (s + 1)
00000 P0000 + 20 (WS ](k d(k))
0P000 11000 + 227 (k)[-S — S2EiFia (k) Hid]
H=|00000]|, G=|00I00]. filk, x(k — d(k)))
RO ooolo + 227 () [=S101 — T Ay — 07 Eiq Fia (k) Hialw (k)
Then, the difference df; (k) along the solution of the sys- Falk £ DIP + 51 + Sy fok +1)
tem ('3.10) and takinglthe mathematical expectation, we + 22k + 1[5 = SiJa(k — d(k))
obtained +2x(k + 1)[S2 — Sl fi(k, z(k — d(k)))
BlAVi(K)] = E[zT (k + 1) Pa(k + 1) — o7 (k) Pz (k)] +22(k+1)[o)" = Si0:]w(k)
0.50(k) + 207 (k — d(R)) [~ 2] fi (k. 2(k — d(k)))
0 + 227 (k — d(k)) [0 |w(k)
T _o¢T T
= FICWHER) =25 0GT 0k (s - )T [-S2 — ST1:(k,alk — d(E)))
0 +2fi(k, 2 (k — d(K)))" (k)[~S20i — o] Jw(k)
BA8) WP -20T aifw(h).
because of
€T (RYHE(R) = 2(k + 1) Pk + 1), By asumption(3.14), we have
0.5z (k) E[AV; (k)]
2T ()G O T Pal) — E[aT (k)[~P — S14; — 51 EiFia(k)Hig

- AIZTST ngFzE(k)Ezan]x(k)

0
0
0
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+ 227 (k)[S — S1BiaFio (k) Higl(k + 1)

+ 227 (k)[-S1]z (k d(k))

+ 227 (k)[~ 51 — S2A; — S2EiaFiq(k)Hial
fi(k,x(k — d( )

+z(k+ D[P+ S +Sl} (k+1)

+ 2z(k + D)[-S1]z(k — d(k))

+ 22 (k + 1)[S2 — S1] fi(k, z(k — d(k)))

+ 22" (k — d(k))[—Sa] fi(k, 2(k — d(k)))

+ filk, x(k — d(k)))"[=S2 — S5 | fi(k, z(k — d(k)))

+ T (k)[-20F o]w(k)].

Applying Propositor2.2, Propositor2.3, condition(3.13)

and asumptiori3.15), the following estimations hold
SlEmFm(k)H — HYFL(k)EL ST

< S1E\ELST + HL H;q,

—2£E (k)SlEiaFia(k)HZ‘alL'(k + 1)
$qu XT(k)SlElaE£S?$(k)+.’L'(k+ 1)TH£HZ‘Q$<I{?+1>,

—2x (k )SgEmFm( ) Hio fi
a” (k)S2 Eiq B, S5 x(k) +

—o?(xj(,kx (k — d(k)), })o
< paat (k)x(k) + pox’ (k —

f?HgHiafiv

i(@(k), 2(k — d(k)), k)
d(k))z(k — d(k).

Therefore, we have

E[AV1(K)]

< ElzT(k)[-P — S, 4; — AT ST
+28,E;oELST + Sy F; EL ST

+ Hj Hia + 2pir I (k)

+ 227 (k)[Sy — S1Ai]x(k + 1)

+ 227 (k)[=S1]z(k — d(k))

+ 227 (k)[=S1 — S2 Al fi(k, x(k — d(k)))

(3.19)
+a(k+1)[P+ Sy + ST + HLHiolx(k + 1)
+ 2z(k + 1)[-S1]z(k — d(k))
+2z(k +1)[Sa — S1]fi(k, x(k — d(k)))
e (k — d(k))[2pia Iz (k — d(k))
+ 227 (k — d(k))[—So] fi(k, 2(k — d(K)))
+ filk,x(k — d(k)))"[~S2 — 83 + HigHid
filk, x(k — d(k)))].
The difference ol (k) is given by
k
Bl =E[ > «"(0)Qu()

i=k+1—d(k+1)
k—1

i=k—d(k)

2" (1)Qu(i)]

k—dq

=E| Z

i=k+1—d(k+1)

2" ())Qx(i) + 27 (k)Qx (k)

k—1
=" (k= d(k)Qu(k —d(k)) + > 2" (1)Qx(i)
i=k+1—dq
k—1
- > Q).
i=k+1—d(k)

(3.20)
Sinced(k) > d; we have

k—1 k—1

Yo dOQa) — Y

i=k-+1—d; i=k+1—d(k)

2" (i)Qx(i) < 0,

and hence from (3.21) we have

k—dq

ElAv,(b)] < B[ Y

i=k+1—d(k+1)
+ 27 (k)Qz (k)
— 2" (k — d(k))Qx(k — d(k))].

The difference oV5(k) is given by

27 (1) Qx(i)
(3.21)

—di+1

ERAEEIS S

J——d2+2l k-‘r]
—di1+1

DS

j=—da+21=k+j+1
—di1+1 k—1

=E| Z [Z z7

j=—do+2 I=k+j
+ a7 (k) Q&) (k)
k—1
— Z T (1
I=k+j
— 2T (k+j - 1)Qu(k +j — 1)]]

—di1+1

=E[ Y [ (k)Qu(k)

Jj=—d2+2
— 2" (k+j—1)Qz(k +j — 1)]]
= E[(ds — d1)a" (k)Qu(k)

k—dy
Jj=k+1—d2

Sinced(k) < dq, and

O)Q=(1)

(3.22)

=7 (7)Qz(j)).

k—dy k—dy

S T - Y

i=k=1—d(k+1) i=k+1—da

a” (1)Qx(i)

<0

b
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we obtain from (3.22) and (3.23) that 4. Numerical examples
E[AV;(k) + AV (k)] Example 4.1.(Stability) Consider the nonlinear uncertain
< E[(dy — dy + Da” (k)Qux(k) (3.23)  stochastic switched discrete time-delay system (2.1), where

— 2T (k — d(k)Qa(k — d(k))] the delay functioni(k) is given by

. ok
Therefore, combining the inequalities (3.20), (3.24) gives d(k) =1+ 63’"27a k=0,1,2,....

E[AV(R)] < BT (R)Wi(S1, 52, QR 5,50 2N
Vi=1,2,....N,k=0,1,2, ..., ' 1 01 0102
(41, B1) = ([0.2 0.2} ’ [0.1 0.3D ’
where 2 0.3 0.3 0.1
- (52 53] [0
(k) = [o(k) ok + 1) @(k = d(k)) fi(k, 2k — (k)" 05 ~0.3] {024 0.18
0.1 0 0.2 0
(Hia, Hip) = ({o 0.2 ’{0 O.3D’
04 0 0.1 0
Wii1 Witz Wirz Wiy (Hza, Hay) = ({ 0 0‘5] 7 [ 0 0'2}) ,
WilS1.52, PQ) = | | T e (B By = (|03 0] [02 0
f e e W ta B16) = {10 0.4|°] 0 05| )"
05 0 0.2 0
(Bza, ) = <[ 0 0.3] ! [ 0 0.3D’
Wi = (dy —dy +1)Q — P — S1A; — AT ST (Fuo. Fuy) = <[0.1 0 ] {0.2 0 ])
laryL'1b) — ) )
+ 251 Ei ELST + S2 B ELST + HL Hiq + 201, 002]7[0 03
Wita = S1 — S1A;, (Fyu. F )_<[0.2 O] [0.1 OD
2ay1'2b) — ’ )
Wi — —S1. 005|002
Was = =51 - Sadd k() = oot~ 4]
Wisa = P+ 51 + S{ + Hl Ha, (R )
o _10.2699sin(k)z1(k — d(k
Wizg = =51, Falk, x(k — d(k)) = {0.2699005(1@)552@ - d(k))}
Wigq = S3 — 51,
Wizs = —Q + Hiq Hia + 2pi21, By LMI toolbox of Matlab, we find that the conditions
Wiza = —Sa, (3.1) of Theorem 3.1 are satisfied with = 0.1699, 5, =
Wisg = —S2 — ST + HL H,,. 0.2699,dy = 1,d2 = 7,p11 = 0.5,p12 = 0.2,p21 =
0.3, pa2 = 0.2, and
Therefore, we finally obtain from (3.25) and the condition 114.4629 4.5328 16.4921 0.3656
(3.17) that = [ 45328 132.1362] Q= {0.3656 18.5234] :

E[AV (k)] < 0,

5, = {—1.5293 1.6966} Sy = {6.8785 1.1641} .

by choosing switching rule ag(x(k)) = ¢, which, com- 0.7474 21570 0.4721 84612

bining the condition (3.18), and Definition 2.2 and 3.1.,
concludes the proof of the theorem in the mean square. gy Theorem 3.1 the nonlinear uncertain stochastic switched

. discrete time-delay system is robustly stable and the switch-
Remark 3.3. Note that theresult sproposed in [8-10] for ing rule is chosen ag(z(k)) = i.

switching systems to be asymptotically stable under an ar-

bitrary switching rule. The asymptotic stability for switch- gyample 4.2. (Stabilization) Consider the nonlinear un-
ing linear discrete time-delay systems studied in [13] Wascertain stochastic switched discrete time-delay control sys-
limited to constant delays. In [14], a class of switching Sig- tem (3.10), where the delay functidifik) is given by

nals has been identified for the considered switched discrete-

time delay systems to be stable under the averaged well -

time scheme. d(k) =1+ 851'”27, k=0,1,2,....
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