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Abstract: Based on the augmented Lagrangian strategy, we propose a projected gradient method for solving the high-order model in
image restoration problems. Based on the Betaz and Moreno (BM) algorithm, the convergence of the proposed method is proved.

We also give the relationship that the semi-implicit gradient descent method can be deduced from the projected gradient method. Some
numerical experiments are arranged to demonstrate the efficiency of the proposed method for restoring the gray-level and color images.
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1. Introduction order PDEs can damp the oscillations much faster and re-
quire much stronger smoothness. One of high-order PDEs

During the past two decades, the restoration of digital im-has been proposed by Lysaker, Lundervold, and Tai [17]

ages based on variational models and optimization techas follows:

niques has been extensively studied in many areas of im- ) )

age processing and computer vision such as image dér}ljng/ (f —u)dz + [u[py2(a), (2)

noising, image deblurring, image zooming and image in- «“

painting, etc. [1,9]. Among these variational models, a fre-where is the regularization parameter aBd 2 ((2) called

guently used model proposed by Rudin, Osher, and Fatenthe second-order bounded variation space is defined by

(ROF) [19] considers to solve the following problem

. o) =sup { [ wdiviedes e C2(2),

win G [ (= wfds + fulpv (o) ) ‘

e €l o) < 1} < oo

where{? C R? with Lipschitz boundaryBV (£2) is the

space of functionals with bounded variation ands the [N fact, whenu € W21(12), we can gefiu|py2(o) =

regularization parameter. Since the ROF model has the abif, |V*u|dz, whereV?u denotes the Hessian of Obvi-

ity to preserve image edges, this model and its variant®usly, we can extend the model (2) to a general high-order

have been widely used in the image restoration problemgnodel as

[1,9,18].

However, in the course of restoring the deterioratedmgn%/ (f = Ku)*dz + |ul pv2(e), (3)

image, the ROF model is well known to make the solu- ND

tion be piecewise constant (called the staircasing effect)where~ is the regularization parameter abdC (2. Itis

To overcome this effect, some high-order PDEs [5, 10,17 pbvious that the model (3) is the deblurring problem when

21,25] have been introduced. Its reason is that the high4# is the convolution operator antl = () [24]. WhenK
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is the identity operator anB # (), this model turns to the  posed algorithms in Section 4, followed by some conclu-
image zooming or inpainting problem [12]. sions in Section 5.

From the numerical point of view, the high-order model
similar to the ROF model is not straightforward to be mini- ]
mized, which is due to the fact that| gy 2 () is not differ- 2. Augmented Lagrangian method
entiable. Thus a regularization approach is devised by em- )

S, B 5 2 2 5 Augmented Lagrangian method has many advantages over
ploying [, [V*ul.dz = \/“M +ugy + Uy +uyy +edr ) agrangian method and the penalty method, which was
for a small positiver to replaceu|gy= (). Following this  recently applied to solve nonsmooth, convex optimization
regularization, an artificial time marching algorithm [17, problems in image processing [14-16,23,24]. However,
26] or a fixed point iteration [22] is used to compute the re- different from its applications in [16,23,24], Ito and Ku-
lated solution. But both of these methods suffer from somenisch [14,15] proposed a Lagrangian smoothing regular-
difficulties such as choosing the suitable paramet€n ization strategy in Hilbert space, which gives us equiva-
the other hand, it is obvious that the solution obtained bylent but regularized strategy. Now, we recall this strategy
these two methods is not the true solution of the high-orderand give some related results.
model (3). Another approaches, which can avoid dealing SetX,Y be Hilbert spaces. Assume that X — R
with the nondifferentiable ternfu|gy-= (), follow from is a continuously differentiable, convex function apd
the motivation of Chambolle’s work [6]. These methods Y — R is a proper, lower semicontinuous, convex func-
use the Legendre-Fenchel transformation to transform théion. Furthermore, we also assume thais nondifferen-
original problem into the related dual problem so that wetiable in origin andX = X *. Let us consider the following
can easily obtain the solution of the original problem [8, optimization problem
21,20]. : . _min g(u) + ¢ (Au), (4)

The augmented Lagrangian strategy, which can effi-ueX

ciently combine the advantages of the Lagrangian methoavhereA : X — Y is a bounded linear operator. Then,
and the penalty method, has been successfully applied tbased on the results [11], the following statement holds.
;h_e image processing problem [1.4_16’23’24]' RecentlyLemma 1.The necessary and sufficient condition fire

ifferent from the methods by solving some subproblemsX to be the minimizer of (4) is given by
to find the saddle point of the Lagrangian functions [16,
23,24], Ito and Kunisch in their papers [14,15] designed [ £* € dp(Au*),
a smﬁ?thing functiollg to approximaat?] the grigine(le rr]]ons— g (u*) + A€ =0,
mooth function in Hilbert space and then obtained the re- . . .
lated solution based on ar? active set method. Motivate here&_gp(x_) den_otes the subdifferentiable at the paint
by the work of Ito and Kunisch [14,15], in this paper, we 111 Wwhichis defined by
propose a projected gradient method as a basic methody(x) = {z* € X : p(y) — ¢(z) > (z*,y — z) Vy € X }.
to solve the high-order model (2). This projected gradient Itis obvious that,* satisfying (5) implies that* is the

method requires a relatively small memory footprint and : . .
is easier to solve the high-order model (2) than the aCtivesolutlon of (4). However, due to the nondifferentiable of

set method used in [14,15]. Thanks to the Bedez and o, itis difficult to find some efficiently numerical methods

; _ to obtain it. To overcome this drawback, a regularization
Moreno(BM) algorithm [3], the convergence of the pro method [14,15] was proposed by designing a smooth ap-

posed algorithms is proved. We also give the relationship roximation based on the auamented Laqranaian strate
that the typical semi-implicit gradient descent algorithm 'FI)'h tis t : lg fl gt]th g bl Ey'
[8] can be naturally deduce from this projected gradient. atis to say, we can equivalently convert the problem (4)

method. Furthermore, different from the augmented La- N0 .the following constrained problem
grangian method used to solve the image deblurring prob-{ min g(u) + ¢(Au — v),

®)

lem [24] and the artificial time marching method to solve | subjecttov = 0in X. ©)
image zooming [14] or the image inpainting problem[12],

X . ) ' The equality constraint = 0 in (6) can be treated b
we also extend to this projected gradient method to eﬁ"the augmeni/ed Lagrangian methéd). By employing the ;/ug-

ciently solve these aforementioned image restoration probz ., . Lagrangian strategy [13], we can transform the

lems. . ) constrained optimization problem (6) into the following
The plan of the paper is as follows. We first recall some ,nconstrained problem

results about the augmented Lagrangian strategy in Sec- c

tion 2. Then we propose a projected gradient method tonin g(u) + ¢(Au —v) + (§,v) + §|v|§(, (7)

solve the high-order model based on the augmented la- h Y ltioli Qi i it

grangian strategy and give the convergence result of thid” eres < IS & multiplier andc IS a positive penaity

method in Section 3. Furthermore, we also refer to the reparameter. Let

lationship between the projected gradient method and thgﬁc(/luvg) — inf {@(Au — )+ (&,v) + E\U|§(}7 (8)

typical semi-implicit gradient descent method in this sec- veX 2

tion. We present experimental results in support of our protheny..(Au, &) is aC* approximation ofp [14,15].
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Definition 1.LetG : X — R U {oc} be a proper, convex
function, then the conjugate function@fis defined by

G*(x™) = sup {(x,x*) - G(x)} forz™ € X.
zeX
Lemma 2.The infimum problem (8) can be rewritten as

{(Auy") =) — 5l — &P Jo)

CA7 =
@e(Au,§) = sup 5

y*eX

Theorem 1The solutionu* of the high-order model (2)

satisfies

whereC* is given by

(10a)
(10b)

ut=f - %div%*,
€ =Pe- (€ + V),

C'={yeX: |yl <lae.inf}.

Furthermore, the supremum of (9) is attained at a unique

point

56(“75) = go’(/lu,{) = HC(AU + 0_15)‘
whereH, = c(I — Jy /).

If set 6o+ (y*) denote the characteristic function of a
closed convex set* C X, i.e.,doc«(y*) = 0if y* € C*,

elsedq- (y*) = oco. Then, for the supremum problem (9),
we have the following assertions [14, 15].

Lemma 3 Assume thatp*(y*) = o= (y*) in the supre-
mum problem (9), we have the following assertions:

(1)The supremum of (9) is attained at a unique point
€e(u, &) = Pe= (€ + cAu),

where’Pq+(u) denotes the projection of € X onto
C*.

2If € € 0p(Au) for £,u € X, theng=Pc- (€ + cAu)
forall ¢ > 0.

3. Projected gradient method

It is not difficult to find that Theorem 3.1 implies the
optimality condition of the high-order model (2). Espe-
cially, Eq. (10a) is based on the fact that the conjugate
function of(Au) is a characteristic function on the closed
and convex sef*. If we define the following Lagrangian
functional
Lwd) =5 [ (F=wldetpTPue). @
where the definition op.(V2u, £) is similar to (8), we can
deduce thatu*, £*) is the saddle point of the Lagrangian
functional (11). To get this optimal poitit.*, £*), we pro-
pose the following iterative method.

eAlgorithm 3.1. Projected Gradient Method.
(Sete® = 0 andc > 0;
(1) Compute(u™, £"+1) by
u = f— %div%",
5n+1 — PC* (fn + Cv2un);
(1) If the stop criterion is not satisfied, set=n + 1
and go to step (I1).

In order to get the convergence result of Algorithm
3.1, we need to recall some results of the Bedez and
Moreno(BM) algorithm [3]. Assume thatf and F are the

To overcome the nonsmoothness of the high-order modetlilbert spacespB : £ — V' is a bounded linear operator
(2), some numerical methods have been proposed in [8and B* is the adjoint operator aB. With choosing an ar-
17,21, 26,22]. In this section, based on the augmented Labitrarily original valuev’, the BM algorithm then employs
grangian strategy, we first propose a projected gradienthe iterative strategy

method to solve the high-order model (2) and give the con-, A-1 n

vergence analysis by using the results of the Betez {Unfl (h _*Eiy ), n

and Moreno(BM) algorithm [3]. Then we arrange some (Y = Hy(B™v™ +1y")
implementation details for the proposed method and alsqq solve the minimization problem
mention that the typical semi-implicit gradient descent al-
gorithm [8] can be deduced from the projected gradiengnin
method. veV

where¢p = 3 o B* andy : £ — R. Bermudez and
Moreno(BM) [2, 3] gave the following convergence result
of the algorithm (12).

(12)

%(A’Uv U) - (hv U) + ¢(U)7 (13)

3.1. Projected gradient method for the

high-order model Theorem 2If the following assumptions hold:

(1)Ais alinear symmetric coercive operatdrv, v)y >
al|v||? and is continuous on the finite dimensional sub-
spaces of/;

(2)There exists, in domg) satisfyingw

+ooif [|v|| = +oc.

Setg(u) = %Hf — u||%2(9), o(Au) = [, |Au|dz and

A = V2. If assume that is in the Hilbert space, then the
high-order model (2) can be rewritten as a special form of
the minimization problem (4). Following from Lemma2.4,
we then have the following result.

—
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(3)The parameter satisfies projection ofx on the closed convex sét.= {y : |y| < 1}
% can be written as
0<n< . T
=N ”B*H2 ’PC(;C):

max{1,|z|}

* 2 *
where|| 3| denotes the.” norm of the operato3™. gy the ahove facts, Theorem 3.1 can be reformulated as

Then the sequende™} generated by (12) satisfielsm " = the discrete form below.

v*, herev™ is the solution of (13). Furthermorg” — v Theorem 3The solutionu* of (14) satisfies the following

in E withy € 0y(B*v). equation

lfsetV = L2(2), E = (L%(2))*, B= V2, A=\l . 1, .
andh = Af, then all of the assumptions in Theorem 3.2 ut = f— (M), (16a)
are satisfied for the high-order model (2). This implies that & + 7(Mu*)
Algorithm 3.1 is a special case of the BM algorithm. So we &= e U (16b)
get the following result based on Theorem 3.1 and 3.2. max(1, & +7(Mur)[)
Corollary 1.1f the parameter: satisfies for eachr > 0.

2\ Then the discretization of Algorithm 3.1 can be rewritten

O<ecx< V2|2’ as the following strategy.

eAlgorithm 3.2. Projected Gradient Method(PGM).
(Sete? = 0 andr > 0;
(Il) Compute(u™, £" 1) by

where||V2|| denotes the.? norm of the Hessian opera-
tor V2. Then the sequende:”} generated by Algorithm
3.1 converges to the unique solutiah of the high-order

model (2). ut = f— 5 (MTEM),
§n+1 _ "+ (Mu™) .
malx(l,.\ﬁnJr.‘r(Mu"')D’. ]
(1) If the stop criterion is not satisfied, set=n + 1
3.2. Projected gradient method and and go to step (I1).
semi-implicit gradient descent method In fact, Algorithm 3.2 is convergent when the param-

eter 7 satisfies some conditions which are based on the
We start by giving a discrete algorithm for solving the spectral radius of\/. For the Kronecker product, we re-
high-order model (2). For convenience, we first considercall some of its basic properties if the related matrices are
the gray-level image. Let alV x N image be denoted by assumed as th& —order real-value square matrices.
u € RN” with the column lexicographical ordering. De- ) )
note the first-order forward difference matrix Bg, then ~ Lemma 4For matricesA, B, C' and D, the following as-
backward difference matrix can be denoted-d3. As-  Sertions hold [27]:
sume that: satisfies the zero Neumann boundary condi- (1)(A® B)(C ® D) = (AC) ® (BD).

tion, then the discretization of (2) can be written as (2)(A® B)T = AT @ BT, hereT denotes the conjugate
LA 9 transpose of the matrix.
min §Hf = ulliz () + [Mule (), (14) (3)A ® B is unitary if A and B are unitary.
(4)Leto; andp;, ¢ = 1,- - -N, are the eigenvalues of
where and B respectively. Then the eigenvaluesio B are
(I®D§)(I®Do) I®T(DOTD0) i, i=1,--N.
p— |UeDDen | _| DfeD, | g
(Do ® (I ® DY) Dy ® D¥ Lemma 5.For the matrixA, there existsV—order unitary
(DI @ I)(Do ® I) (DI Do) ® I matricesU/ and V' such that
and|Mul; is given by A = Udiag(s;)V,
N? wherediag(s;) is a N—order diagonal matrix with(é, ¢)
|Mul|; = Z \/[Mlu]f + [Mau)? + [Msu]? + [Myul?. entries the singular values of.

i=1

WhereM1 =1I® (DgDo), My = Dg ® Do, M3 = Dy ®
D§ andM, = (D§ Do) ® I andI denotes theV—order  ProofSetS = D Dy. By Lemma 3.1, we can deduce that
identity matrix. Here® denotes the Kronecker product. $ has the singular value decompositi®n= Udiag(o?)V,
Based on the fact thativ’u,w)x = (u, V2w)y, itis  heres; is the singular value ab,, U andV are N —order
easy to denote the discrete form of di¥urthermore, the  unitary matrices.

Theorem 4The spectral radius o}/ satisfiesp(M) < 8.

(© 2012 NSP
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We notice thatD, is a sparse matrix with 1 and1
as the only two nonzero elements per row, it is not diffi-
cult to deduce thalt Dy||. = 2. On the other hand, since
the largest eigenvalue af/” M is the¢? norm of M, we
consider the following matrix:
M™M=(I29"TIoS)+ ST (S®I)+ (D]

®Dg)"(D§ ® Do) + (Do ® D )" (Do @ D{)
=1®(STS)+(STS)® I+ (Dy® DJ)(D§ @
Do) + (D§ ® Do)(Do ® D)
=1 STS)+(STS)@l+STeS+Se ST
= (VIV) @ (VTdiag(c!)V) + (VT diag(a})V)
Q(VIV) + (Vldiag(c})UT) ® (Udiag(a?)V)
+(Udiag(o7)V) ® (VT diag(c?)UT)
= (VTV)e (VTdiag(cV) + (VI diag(c})V)
Q(VIV) + (Vldiag(c}))UT) ® (Udiag(a?)V)
+(Udiag(o?)V) ® (VT diag(c?)UT)
= (VoW ®diag(o}) + diag(c}) @ I)(V &
V) + (Vo U) diag(c?) ® diag(c?)|(V @ U)
+(V @ U)[diag(o?) ® diag(o})|(V @ U)™.
It is easy to find that the matrices includedihof the last
equation of /T M are diagonal. Then, with the help of
Lemma 3.1, we can deduce that thevormo,, 4. (M1 M)
of M satisfies
Omazx(MTM) = 20m42diag(o}) + 20 mae (diag(o?)
®diag(a?)) = 4||Do|lz < 4]| Dol|5 = 64.
Therefore, we have(M) < 8.

Theorem 5Setr = . Assume that < 7 < ?%2 then the
sequencdwu”} generated by Algorithm 2 converges to the

solutionu* of (13).

ProofWith the help of)\,,,..(M* M) < 64 and Corollary
3.1, itis easy to deduce the assertion.

Now we consider the relationship between Algorithm

3.2 and semi-implicit gradient descent method [8]. Actu-

ally, Eqg. (16b) can be equivalently viewed as

& (Mu®); = |(Mu”);| and|¢| < 1, forall i a7
and
& *m'”(MU )il # 0. (18)

By the fact thatt} (Mu*); < |&|[(Mu*);| and|&f] < 1,
(17) and (18) can be obviously summarized to

&1 (Mu®)i| = (Mu”);.
Hence, (16) can be written as

{Uf = fi — +(MT¢);,

& (Mur)i| = (Mu*); (19)

fori =1,2,--- N2. We then can get
&) (anrf = aruTen) | = (anef - (um”e)

which can be solved by semi-implicit gradient descent (or
fixed point) method [8] as follows

gt =g+ p((Aag - aMTen) ~
|(Aarr = uarTem) [er).
So we have the following algorithm to solve the problem
2).
eAlgorithm 3.3. Semi-implicit Gradient Descent Method
(SGDM).
(Sete® = 0 andy > 0;
(1) Compute(u™, £"1) by

ut = f =37,
§n+1 _ G HBAMf—(MMTEM))
P IHBIAM f-(MMTE™)), |

(1) If the stop criterion is not satisfied, set=n + 1
and go to step (11).

Theorem 6Assume thab < v < é. Then the sequence
{u™} generated by Algorithm 3.3 converges to the solution
u* of (14).

Remarki-ollowing from the work in [8] and using the fact
thatp(M) < 8, itis easy to deduce that the above assertion
holds. Actually, Algorithm 3.2 can be viewed as a modi-
fied form of Algorithm 3.3 [13,2]. But here we show that
Algorithm 3.3 can be naturally deduced from Algorithm
3.2.

Remarki-or the color image restoration problems, we can
denote that: € R3N’. Then the Hessian matrix can be
written asM = (M,; Mgy; M), hereM; = M given in
(15) forj = r, g, b. In this case, the minimization problem
(14) can be transformed into the following form

min o [f — Ul o) + [Mule(o).

Then we can get the similar results as for the gray-level
image.

4. Numerical Results

In this section, we present some numerical experiments
based on platform by using Windows 7 and Matlab 2009(a)
on a desktop with Intel Core i5 processor at 2.4 GHz and 4
GB memory. For Algorithm 3.2, we choose the time step
7 = 1/32. In order to illustrate the effectiveness of the pro-
posed algorithms, we show the Signal to Noise R&tig R)

of the restored image and thé-horm of the difference
between the restored image and the original image. For a
given true image:, and its noisy observatiofi, the noise

is denoted ag — ug, thenSN R and L2-norm are defined

by

If = FliZ

SNR = 10log ( R
EQ

) and L2-norm = |lu — ug||%.

© 2012 NSP
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Figure 2 The L?-norm curve ands N R curve for Figure 1.

(c)ROF model (d)AIL. 3.3 (e)Al. 3.2

¥

(c1)ROF (d1)AI. 3.3 (e1)Al. 3.2
model(Portion) (Portion) (Portion)

Figure 1 ())SNR = 10.0363; (c) SNR = 15.7436; (d) , . _
SNR = 16.0530; (€) SN R = 16.1383. (c)Al. 3.3 (d) Al 3.2

Figure 3 (a) SNR = 18.4383; (c) SNR = 42.1765; (d)

4.1. Image denoising SNR = 42.6673.

In this subsection, we present some numerical examples to
compare Algorithm(Al.) 3.2 with Algorithm 3.3.

Example 1We first consider the Lena image shown in Fig-
ure 1 which is contaminated by the random noise with the
standard deviation varianee = 60. Before processing,
the noise image haSNR = 10.0363. The algorithms C— L
will be terminated if the conditiofju®*+1 — w*|| /||u*|| <

1.0 x 1072 is met. We compare Algorithm 3.2 with Algo-
rithm 3.3 for recovering the noisy image and 3et 35
for these two algorithms. In order to show the ability for
overcoming the staircasing phenomenon of the the high-

order model, we also employ the semi-implicit gradient ||u**+1 — +*||/||u*|| < 1.0 x 1073, As shown in the grey-
descent method to solve the ROF model (1) where wescale case, Algorithm 3.2 and 3.3 can efficiently recover
seta = 12.5. From Figure 1, it is obvious that the ROF the noisy image and we also get the same conclusions for
model and the high-order model can recover the noisy imthe convergence curves of two algorithms. The relate im-
age efficiently. As we can se&V R from the notes in Fig-  ages are shown in Figure 3 and Figure 4.

ure 1, Algorithm 3.2 has a better restoration than Algo-

rithm 3.3 and the ROF model. Simultaneously, from the

convergence curves of’ktnorm andSNR, we can de-

duce that Algorithm 3.2 has faster convergence than Al-4.2. Other applications

gorithm 3.3. Furthermore, we also notice that the ROF

model almost has the same curve in the first steps as Alln this subsection, we extend Algorithm 3.2 to solve the
gorithm 3.2 and it has even a highef-norm than Algo-  general high-order model (3) including image deblurring,
rithm 3.3 after some more iterations. Now, we also extendmage zooming and image inpainting. In order to use this
the algorithms to recover the degraded color pepper im-algorithm, we have to transform the high-order model (3)
age. The noise is added the Gaussian noise with the stamto the formula of the model (2) by using some numerical
dard variancer = 30. The stop conditions is also chose techniques.

Figure 4 The L?-norm curve ands N R curve for Figure 2.

(© 2012 NSP
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we consider to use the model (3) to solve the image zoom-
ing problem. Given the low resolution imagg of the size

M x N, we want to getazoomed image of sizekx N -k

for a positive integek. Usually, we can use bilinear inter-
polation to extend,, to all the M - k x N - k mesh grid
points, but this method can not get the suitable zooming
image. So we have to employ other methods to improve
the bilinear interpolation imag¢. Here we can us¢ as

the initial inputting image and then use the higher-order
model to update it. That is to say, we can consider the fol-
lowing formulation

i

L
min 5/ (u— f)2dx + |U|BV2(Q). (22)
E U u Q\D
(c) SNR = 24.6696 (d) SNR = 37.3791 Here# satisfies
_ yifue 2\D,
Figure 5 Left: deteriorated image; Right: restored image. T=V0ifue D,

whereD is the zooming domain, which corresponds to the
) set of the interpolation pixel points. If we introduce an aux-
4.2.1. Image deblurring iliary variablez, based on the penalty method [4], then the

) ) ) ) solution of the problem (21) can be approximated by solv-
Inthis subsection, we consider to solve the deblurring probing the following strategy

lem (3) by using the following strategy

vn:un+/_LK*(f_Kun)a un = w,
20 L+9u
u™t! = argmin l/ (u—o")*dz + '“|U|BV"’(Q)E : !
ing | J e . E/ (z —u™)?de + [ul By2(0)-
Z 2

whereK™* is the adjoint of the operatdt’. Based on (20),

thus we can employing Algorithm 3.2 to solve the deblur- xample 3n this example, we use a gray-level synth im-
ring problem (3). age and the color strawberries as the test images for the

Remarki-or the above strategy, Aujol [2] proposed to solve image zooming problem. For the gray-level image, Figure
the image debelurring problem based on the ROFmodel6 shows the zoomed images obtained by the bilinear inter-
He also gave the result that that the Seque{ufe} con- pOlatlon, the ROF model and the hlgh-Order model. We use
verges to the solution of the responding problem whemy = 150 andx = 0.02 for the ROF model and = 150

1 < Tty Since the high-order model is similar to the andp = 0.05 for the high-order model. They have the

ROF model, so we can employ this strategy to the image2Me size witH00 x 100. Among these restored images,

deblurring image problem Furthermore, we also get the re/V€ €an see the quality of the high-order model has the

sults that the sequende”} converges to the solution of NIGhestSN R and the most suitable edges. Furthermore,
(3) whenu < 1 in order to show the efficiency of our proposed method for
IK-K]

the color image zooming. The original strawberry has the
Example 2n this example, we use the gray-level and color Size 0f256 x 256. We also use the downsample method to
Lena images as the test images. The related deteriorate@ft the deteriorated image shown in Figure 7 (b) and (d)
images shown in Figure 5 are blurred with a Gaussian kerWith size of128 x 128 and64 x 64. We set the parame-
nel of hsize = 3 and added the Gaussian white noise ter A = 50, u = 0.03 for zooming 2 times and = 50,
with the standard deviatiom = 0.02 for gray image and ¢ = 0.1 for zooming 4 times. From the zoomed images
o = 0.05 for the color image. We choose parameters by a factor of 2 and 4 shown in Figure 7 (c) and (d), we
0.001, u = 0.8 for the gray image angd = 0.008 u = 0.02 also find that the high-order model can efficiently zooms
for the color image. From the restored images in Figure 5jmage.

we can find that the high-order model (3) can efficiently

suppresses the blur and noise.

4.2.3. Image inpainting

4.2.2. Image zooming For the image inpainting problem, we recover degraded or

missing parts denote in the image domain? by using
Image zooming is the problem of increasing the resolutionthe proposed method. Not similar to the image zooming
of a given image to higher resolution. In this subsection,problem, here the inpainting domain is determined by
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(a)OrlglnaI |mage (b)DownsampIe (a)Or|g|naI (b)Mask

slszls Lo® §-8
2L12828 5 ©F

>
(c)ROF model (d)Zooming

N -
Figure 6 (a) 100 x 100; (b)Downsample imagei0 x 50; (c) g) < ‘ 5
SNR = 12.0064; (d) SNR = 12.5176 (e) SNR = 12.5294.

-t |

|

(c)Blllnear (d)ROF modeI (e)ModeI (21)

N
(e)High- order model (f)Zoo-ming

Figure 8 (d) The zooming image corresponds to the ROF model;
(HThe zooming image corresponds to the high-order model;

ta)(')rig’inalw

()Downsample (dwansampIé

(C)SNR = 32.1682 (e)SNR = 17.4996

(a)Deterioratedr (b)High-order model

Figure 7 (a) 256 x 256; (b)Downsample image:28 x 128; (c)
s56 x 256; (d)Downsample imageid x 64; (e) 256 x 256; the Figure 9 The related images in example 4.4.
images (c) and (e) restored by the high-order model (21).

usey = 150, p = 0.005 for the gray tested image and
the mask image. Based on the model (3), the image inthe color tested image. The algorithm will be stopped until

painting model can be written as the iteration attains 2000 times. It is obvious to see from
5 ) Figure 8 and 9 that the high-order model can efficiently
min */ (u— f)*dz + |u[pyv2(0), (23)  restore the deteriorated image. Furthermore, for compar-
“ D ison, we also show the restored gray image by the ROF

whereD is the inpainting domain and satisfies model. It is not difficult to find that the restored image by
) the high-order model looks more natural than that restored

5= {7 ifuec 2\ D, by the ROF model. In fact, this is because high-order lin-
OifueD. ear or nonlinear diffusion damps oscillations much faster

By using the penalty method [4] again, the solution of the than the second order diffusion.
problem (23) can be approximated by solving the follow-

ing problem
un e 2t 5. Conclusion
T+
1 i i -
S i — (2 — u™)2de + 2 Bvae) Bas_ed on the augmented_ Lag_rang|an strategy and by intro
= 2u Jovp ducing a smooth approximation function, we proposed a

projected gradient algorithm to solve the high-order model
Example 4n this example, we also consider the gray-level in image restoration problem. The convergence of the pro-
image and the color image shown in Figure 8 and 9. Weposed algorithm is proved based on the BM algorithm.
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Furthermore, we give the fact that the semi-implicit gradi- [13] R. Glowinski and P. Le Tallec.Augmented Lagrangian and
ent descent algorithm in [8] can be deduced from our pro-  Operator-Splitting Methods in Nonlinear Mechanics. SIAM,

posed algorithm naturally. The numerical experiments in-  1989.

dicate that our proposed algorithm is efficient not only for [14] K. Ito and K. Kunisch.Augmented Lagrangian methods for
the image denoising problem but also for other image pro- nonsmpoth, convex optimization in Hilbert space. Nonlinear
cessing topics such as image deblurring, image zoomin% Analysis, 41(5-6)(2000), 591-616.

and image inpainting. However, as we can see form exam 15] K. Ito and K. Kunlsch.An active §et strat.egy based on .the
ples, the restored images have some edges blurring effect 2ugmented Lagrangian formulation for image restoration.
for the high-order model. So for the future work we mainly ESAIM: Mathematical Modelling and Numerical Analysis,

. . , 33(1)(1999), 1-21.
look for more suitable models to improve this drawback. [16] K. Jonas and J.-B. Sphanie.An augmented Lagrangian

method forT'V, + L*-norm minimization. Journal of Math-
ematical Imaging and Vision, 38(3)(2010), 182-196.
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