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Abstract: Based on the augmented Lagrangian strategy, we propose a projected gradient method for solving the high-order model in
image restoration problems. Based on the Bermùdez and Moreno (BM) algorithm, the convergence of the proposed method is proved.
We also give the relationship that the semi-implicit gradient descent method can be deduced from the projected gradient method. Some
numerical experiments are arranged to demonstrate the efficiency of the proposed method for restoring the gray-level and color images.
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1. Introduction

During the past two decades, the restoration of digital im-
ages based on variational models and optimization tech-
niques has been extensively studied in many areas of im-
age processing and computer vision such as image de-
noising, image deblurring, image zooming and image in-
painting, etc. [1,9]. Among these variational models, a fre-
quently used model proposed by Rudin, Osher, and Fatemi
(ROF) [19] considers to solve the following problem

min
u

α

2

∫

Ω

(f − u)2dx + |u|BV (Ω), (1)

whereΩ ⊂ R2 with Lipschitz boundary,BV (Ω) is the
space of functionals with bounded variation andα is the
regularization parameter. Since the ROF model has the abil-
ity to preserve image edges, this model and its variants
have been widely used in the image restoration problems
[1,9,18].

However, in the course of restoring the deteriorated
image, the ROF model is well known to make the solu-
tion be piecewise constant (called the staircasing effect).
To overcome this effect, some high-order PDEs [5,10,17,
21,25] have been introduced. Its reason is that the high-

order PDEs can damp the oscillations much faster and re-
quire much stronger smoothness. One of high-order PDEs
has been proposed by Lysaker, Lundervold, and Tai [17]
as follows:

min
u

λ

2

∫

Ω

(f − u)2dx + |u|BV 2(Ω), (2)

whereλ is the regularization parameter andBV 2(Ω) called
the second-order bounded variation space is defined by

|u|BV 2(Ω) = sup
{ ∫

Ω

udiv2ξdx|ξ ∈ C2
c (Ω),

‖ξ‖L∞(Ω) ≤ 1
}

< ∞.

In fact, whenu ∈ W 2,1(Ω), we can get|u|BV 2(Ω) =∫
Ω
|∇2u|dx, where∇2u denotes the Hessian ofu. Obvi-

ously, we can extend the model (2) to a general high-order
model as

min
u

γ

2

∫

Ω\D
(f −Ku)2dx + |u|BV 2(Ω), (3)

whereγ is the regularization parameter andD ⊆ Ω. It is
obvious that the model (3) is the deblurring problem when
K is the convolution operator andD = ∅ [24]. WhenK
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is the identity operator andD 6= ∅, this model turns to the
image zooming or inpainting problem [12].

From the numerical point of view, the high-order model
similar to the ROF model is not straightforward to be mini-
mized, which is due to the fact that|u|BV 2(Ω) is not differ-
entiable. Thus a regularization approach is devised by em-

ploying
∫

Ω
|∇2u|εdx =

√
u2

xx + u2
xy + u2

yx + u2
yy + εdx

for a small positiveε to replace|u|BV 2(Ω). Following this
regularization, an artificial time marching algorithm [17,
26] or a fixed point iteration [22] is used to compute the re-
lated solution. But both of these methods suffer from some
difficulties such as choosing the suitable parameterε. On
the other hand, it is obvious that the solution obtained by
these two methods is not the true solution of the high-order
model (3). Another approaches, which can avoid dealing
with the nondifferentiable term|u|BV 2(Ω), follow from
the motivation of Chambolle’s work [6]. These methods
use the Legendre-Fenchel transformation to transform the
original problem into the related dual problem so that we
can easily obtain the solution of the original problem [8,
21,20].

The augmented Lagrangian strategy, which can effi-
ciently combine the advantages of the Lagrangian method
and the penalty method, has been successfully applied to
the image processing problem [14–16,23,24]. Recently,
different from the methods by solving some subproblems
to find the saddle point of the Lagrangian functions [16,
23,24], Ito and Kunisch in their papers [14,15] designed
a smoothing function to approximate the original nons-
mooth function in Hilbert space and then obtained the re-
lated solution based on an active set method. Motivated
by the work of Ito and Kunisch [14,15], in this paper, we
propose a projected gradient method as a basic method
to solve the high-order model (2). This projected gradient
method requires a relatively small memory footprint and
is easier to solve the high-order model (2) than the active
set method used in [14,15]. Thanks to the Bermùdez and
Moreno(BM) algorithm [3], the convergence of the pro-
posed algorithms is proved. We also give the relationship
that the typical semi-implicit gradient descent algorithm
[8] can be naturally deduce from this projected gradient
method. Furthermore, different from the augmented La-
grangian method used to solve the image deblurring prob-
lem [24] and the artificial time marching method to solve
image zooming [14] or the image inpainting problem[12],
we also extend to this projected gradient method to effi-
ciently solve these aforementioned image restoration prob-
lems.

The plan of the paper is as follows. We first recall some
results about the augmented Lagrangian strategy in Sec-
tion 2. Then we propose a projected gradient method to
solve the high-order model based on the augmented la-
grangian strategy and give the convergence result of this
method in Section 3. Furthermore, we also refer to the re-
lationship between the projected gradient method and the
typical semi-implicit gradient descent method in this sec-
tion. We present experimental results in support of our pro-

posed algorithms in Section 4, followed by some conclu-
sions in Section 5.

2. Augmented Lagrangian method

Augmented Lagrangian method has many advantages over
the Lagrangian method and the penalty method, which was
recently applied to solve nonsmooth, convex optimization
problems in image processing [14–16,23,24]. However,
different from its applications in [16,23,24], Ito and Ku-
nisch [14,15] proposed a Lagrangian smoothing regular-
ization strategy in Hilbert space, which gives us equiva-
lent but regularized strategy. Now, we recall this strategy
and give some related results.

SetX,Y be Hilbert spaces. Assume thatg : X → R
is a continuously differentiable, convex function andϕ :
Y → R is a proper, lower semicontinuous, convex func-
tion. Furthermore, we also assume thatϕ is nondifferen-
tiable in origin andX = X∗. Let us consider the following
optimization problem

min
u∈X

g(u) + ϕ(Λu), (4)

whereΛ : X → Y is a bounded linear operator. Then,
based on the results [11], the following statement holds.

Lemma 1.The necessary and sufficient condition foru∗ ∈
X to be the minimizer of (4) is given by
{

ξ∗ ∈ ∂ϕ(Λu∗),
g′(u∗) + Λ∗ξ∗ = 0,

(5)

where∂ϕ(x) denotes the subdifferentiable at the pointx
[11] which is defined by

∂ϕ(x) = {x∗ ∈ X : ϕ(y)− ϕ(x) ≥ (x∗, y − x) ∀y ∈ X}.
It is obvious thatu∗ satisfying (5) implies thatu∗ is the

solution of (4). However, due to the nondifferentiable of
ϕ, it is difficult to find some efficiently numerical methods
to obtain it. To overcome this drawback, a regularization
method [14,15] was proposed by designing a smooth ap-
proximation based on the augmented Lagrangian strategy.
That is to say, we can equivalently convert the problem (4)
into the following constrained problem{

min g(u) + ϕ(Λu− v),
subject tov = 0 in X.

(6)

The equality constraintv = 0 in (6) can be treated by
the augmented Lagrangian method. By employing the aug-
mented Lagrangian strategy [13], we can transform the
constrained optimization problem (6) into the following
unconstrained problem

min g(u) + ϕ(Λu− v) + (ξ, v) +
c

2
|v|2X , (7)

whereξ ∈ X is a multiplier andc is a positive penalty
parameter. Let

ϕc(Λu, ξ) = inf
v∈X

{
ϕ(Λu− v) + (ξ, v) +

c

2
|v|2X

}
, (8)

thenϕc(Λu, ξ) is aC1 approximation ofϕ [14,15].
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Definition 1.Let G : X → R ∪ {∞} be a proper, convex
function, then the conjugate function ofG is defined by

G∗(x∗) = sup
x∈X

{
(x, x∗)−G(x)

}
for x∗ ∈ X.

Lemma 2.The infimum problem (8) can be rewritten as

ϕc(Λu, ξ) = sup
y∗∈X

{
(Λu, y∗)− ϕ∗(y∗)− 1

2c
|y∗ − ξ|2

}
.(9)

Furthermore, the supremum of (9) is attained at a unique
point

ξc(u, ξ) = ϕ′(Λu, ξ) = Hc(Λu + c−1ξ).

whereHc = c(I − J1/c).

If set δC∗(y∗) denote the characteristic function of a
closed convex setC∗ ⊂ X, i.e.,δC∗(y∗) = 0 if y∗ ∈ C∗,
elseδC∗(y∗) = ∞. Then, for the supremum problem (9),
we have the following assertions [14,15].

Lemma 3.Assume thatϕ∗(y∗) = δC∗(y∗) in the supre-
mum problem (9), we have the following assertions:

(1)The supremum of (9) is attained at a unique point

ξc(u, ξ) = PC∗(ξ + cΛu),

wherePC∗(u) denotes the projection ofu ∈ X onto
C∗.

(2)If ξ ∈ ∂ϕ(Λu) for ξ, u ∈ X, thenξ=PC∗(ξ + cΛu)
for all c > 0.

3. Projected gradient method

To overcome the nonsmoothness of the high-order model
(2), some numerical methods have been proposed in [8,
17,21,26,22]. In this section, based on the augmented La-
grangian strategy, we first propose a projected gradient
method to solve the high-order model (2) and give the con-
vergence analysis by using the results of the Bermùdez
and Moreno(BM) algorithm [3]. Then we arrange some
implementation details for the proposed method and also
mention that the typical semi-implicit gradient descent al-
gorithm [8] can be deduced from the projected gradient
method.

3.1. Projected gradient method for the
high-order model

Setg(u) = λ
2 ‖f − u‖2L2(Ω), ϕ(Λu) =

∫
Ω
|Λu|dx and

Λ = ∇2. If assume thatu is in the Hilbert space, then the
high-order model (2) can be rewritten as a special form of
the minimization problem (4). Following from Lemma2.4,
we then have the following result.

Theorem 1.The solutionu∗ of the high-order model (2)
satisfies





u∗ = f − 1
λ

div2ξ∗, (10a)

ξ∗ = PC∗(ξ∗ + c∇2u∗), (10b)

whereC∗ is given by

C∗ = {y ∈ X : |y| ≤ 1 a.e. inΩ}.
It is not difficult to find that Theorem 3.1 implies the

optimality condition of the high-order model (2). Espe-
cially, Eq. (10a) is based on the fact that the conjugate
function ofϕ(Λu) is a characteristic function on the closed
and convex setC∗. If we define the following Lagrangian
functional

Lc(u, ξ) =
λ

2

∫

Ω

(f − u)2dx + ϕc(∇2u, ξ), (11)

where the definition ofϕc(∇2u, ξ) is similar to (8), we can
deduce that(u∗, ξ∗) is the saddle point of the Lagrangian
functional (11). To get this optimal point(u∗, ξ∗), we pro-
pose the following iterative method.

•Algorithm 3.1. Projected Gradient Method.
(I)Setξ0 = 0 andc > 0;

(II)Compute(un, ξn+1) by{
un = f − 1

λdiv2ξn,
ξn+1 = PC∗(ξn + c∇2un);

(III) If the stop criterion is not satisfied, setn := n + 1
and go to step (II).

In order to get the convergence result of Algorithm
3.1, we need to recall some results of the Bermùdez and
Moreno(BM) algorithm [3]. Assume thatV andE are the
Hilbert spaces,B : E → V is a bounded linear operator
andB∗ is the adjoint operator ofB. With choosing an ar-
bitrarily original valuev0, the BM algorithm then employs
the iterative strategy
{

vn = A−1(h−Byn),
yn+1 = Hη(B∗vn + ηyn) (12)

to solve the minimization problem

min
v∈V

1
2
(Av, v)− (h, v) + φ(v), (13)

whereφ = ψ ◦ B∗ and ψ : E → R. Bermùdez and
Moreno(BM) [2,3] gave the following convergence result
of the algorithm (12).

Theorem 2.If the following assumptions hold:

(1)A is a linear symmetric coercive operator:(Av, v)V ≥
α‖v‖2V and is continuous on the finite dimensional sub-
spaces ofV ;

(2)There existsv0 in dom(φ) satisfying(Av,v−v0)+φ(v)
‖v‖ →

+∞ if ‖v‖ → +∞.
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(3)The parameterη satisfies

0 ≤ η ≤ 2α

‖B∗‖2 .

where‖B∗‖ denotes theL2 norm of the operatorB∗.

Then the sequence{vn} generated by (12) satisfieslim
n→∞

vn =

v∗, herev∗ is the solution of (13). Furthermore,yn ⇀ y
in E with y ∈ ∂ψ(B∗v).

If set V = L2(Ω), E = (L2(Ω))4, B = ∇2, A = λI
andh = λf , then all of the assumptions in Theorem 3.2
are satisfied for the high-order model (2). This implies that
Algorithm 3.1 is a special case of the BM algorithm. So we
get the following result based on Theorem 3.1 and 3.2.

Corollary 1.If the parameterc satisfies

0 ≤ c ≤ 2λ

‖∇2‖2 ,

where‖∇2‖ denotes theL2 norm of the Hessian opera-
tor ∇2. Then the sequence{un} generated by Algorithm
3.1 converges to the unique solutionu∗ of the high-order
model (2).

3.2. Projected gradient method and
semi-implicit gradient descent method

We start by giving a discrete algorithm for solving the
high-order model (2). For convenience, we first consider
the gray-level image. Let anN ×N image be denoted by
u ∈ RN2

with the column lexicographical ordering. De-
note the first-order forward difference matrix asD0, then
backward difference matrix can be denoted as−DT

0 . As-
sume thatu satisfies the zero Neumann boundary condi-
tion, then the discretization of (2) can be written as

min
u

λ

2
‖f − u‖2`2(Ω) + |Mu|`1(Ω), (14)

where

M =




(I ⊗DT
0 )(I ⊗D0)

(I ⊗DT
0 )(D0 ⊗ I)

(D0 ⊗ I)(I ⊗DT
0 )

(DT
0 ⊗ I)(D0 ⊗ I)


 =




I ⊗ (DT
0 D0)

DT
0 ⊗D0

D0 ⊗DT
0

(DT
0 D0)⊗ I0


 (15)

and|Mu|1 is given by

|Mu|1 =
N2∑

i=1

√
[M1u]2i + [M2u]2i + [M3u]2i + [M4u]2i .

whereM1 = I ⊗ (DT
0 D0), M2 = DT

0 ⊗D0, M3 = D0⊗
DT

0 andM4 = (DT
0 D0) ⊗ I andI denotes theN−order

identity matrix. Here⊗ denotes the Kronecker product.
Based on the fact that(div2u,w)X = (u,∇2w)Y , it is
easy to denote the discrete form of div2. Furthermore, the

projection ofx on the closed convex setC := {y : |y| ≤ 1}
can be written as

PC(x) =
x

max{1, |x|} .

By the above facts, Theorem 3.1 can be reformulated as
the discrete form below.

Theorem 3.The solutionu∗ of (14) satisfies the following
equation





u∗ = f − 1
λ

(MT ξ∗), (16a)

ξ∗ =
ξ∗ + τ(Mu∗)

max(1, |ξ∗ + τ(Mu∗)|) . (16b)

for eachτ > 0.

Then the discretization of Algorithm 3.1 can be rewritten
as the following strategy.

•Algorithm 3.2. Projected Gradient Method(PGM).
(I)Setξ0 = 0 andτ > 0;

(II)Compute(un, ξn+1) by{
un = f − 1

λ (MT ξn),
ξn+1 = ξn+τ(Mun)

max(1,|ξn+τ(Mun)|) ;
(III) If the stop criterion is not satisfied, setn := n + 1

and go to step (II).

In fact, Algorithm 3.2 is convergent when the param-
eter τ satisfies some conditions which are based on the
spectral radius ofM . For the Kronecker product, we re-
call some of its basic properties if the related matrices are
assumed as theN−order real-value square matrices.

Lemma 4.For matricesA,B, C andD, the following as-
sertions hold [27]:

(1)(A⊗B)(C ⊗D) = (AC)⊗ (BD).
(2)(A⊗B)T = AT ⊗BT , hereT denotes the conjugate

transpose of the matrix.
(3)A⊗B is unitary ifA andB are unitary.
(4)Let σi andµi, i = 1, · · ·N , are the eigenvalues ofA

andB respectively. Then the eigenvalues ofA⊗B are

σiµi, i = 1, · · ·N.

Lemma 5.For the matrixA, there existsN−order unitary
matricesU andV such that

A = Udiag(si)V,

wherediag(si) is a N−order diagonal matrix with(i, i)
entries the singular values ofA.

Theorem 4.The spectral radius ofM satisfiesρ(M) ≤ 8.

Proof.SetS = DT
0 D0. By Lemma 3.1, we can deduce that

S has the singular value decompositionS = Udiag(σ2
i )V ,

hereσi is the singular value ofD0, U andV areN−order
unitary matrices.
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We notice thatD0 is a sparse matrix with 1 and−1
as the only two nonzero elements per row, it is not diffi-
cult to deduce that‖D0‖∞ = 2. On the other hand, since
the largest eigenvalue ofMT M is the`2 norm ofM , we
consider the following matrix:

MT M = (I ⊗ S)T (I ⊗ S) + (S ⊗ I)T (S ⊗ I) + (DT
0

⊗D0)T (DT
0 ⊗D0) + (D0 ⊗DT

0 )T (D0 ⊗DT
0 )

= I ⊗ (ST S) + (ST S)⊗ I + (D0 ⊗DT
0 )(DT

0 ⊗
D0) + (DT

0 ⊗D0)(D0 ⊗DT
0 )

= I ⊗ (ST S) + (ST S)⊗ I + ST ⊗ S + S ⊗ ST

= (V T V )⊗ (V T diag(σ4
i )V ) + (V T diag(σ4

i )V )

⊗(V T V ) + (V T diag(σ2
i )UT )⊗ (Udiag(σ2

i )V )

+(Udiag(σ2
i )V )⊗ (V T diag(σ2

i )UT )

= (V T V )⊗ (V T diag(σ4
i )V ) + (V T diag(σ4

i )V )

⊗(V T V ) + (V T diag(σ2
i )UT )⊗ (Udiag(σ2

i )V )

+(Udiag(σ2
i )V )⊗ (V T diag(σ2

i )UT )

= (V ⊗ V )T [I ⊗ diag(σ4
i ) + diag(σ4

i )⊗ I](V ⊗
V ) + (V ⊗ U)T [diag(σ2

i )⊗ diag(σ2
i )](V ⊗ U)

+(V ⊗ U)[diag(σ2
i )⊗ diag(σ2

i )](V ⊗ U)T .

It is easy to find that the matrices included in[·] of the last
equation ofMT M are diagonal. Then, with the help of
Lemma 3.1, we can deduce that the`2 normσmax(MT M)
of M satisfies

σmax(MT M) = 2σmaxdiag(σ4
i ) + 2σmax(diag(σ2

i )
⊗diag(σ2

i )) = 4||D0||42 ≤ 4‖D0‖4∞ = 64.

Therefore, we haveρ(M) ≤ 8.

Theorem 5.Setτ = c
λ . Assume that0 ≤ τ ≤ 1

32 , then the
sequence{un} generated by Algorithm 2 converges to the
solutionu∗ of (13).

Proof.With the help ofλmax(MT M) < 64 and Corollary
3.1, it is easy to deduce the assertion.

Now we consider the relationship between Algorithm
3.2 and semi-implicit gradient descent method [8]. Actu-
ally, Eq. (16b) can be equivalently viewed as

ξ∗i (Mu∗)i = |(Mu∗)i| and|ξ∗i | ≤ 1, for all i (17)

and

ξ∗i =
(Mu∗)i

|(Mu∗)i| if |(Mu∗)i| 6= 0. (18)

By the fact thatξ∗i (Mu∗)i ≤ |ξi||(Mu∗)i| and|ξ∗i | ≤ 1,
(17) and (18) can be obviously summarized to

ξ∗i |(Mu∗)i| = (Mu∗)i.

Hence, (16) can be written as
{

u∗i = fi − 1
λ (MT ξ∗)i,

ξ∗i |(Mu∗)i| = (Mu∗)i
(19)

for i = 1, 2, · · ·N2. We then can get

ξ∗i
∣∣∣
(
λMf − (MMT ξ∗)

)
i

∣∣∣ =
(
λMf − (MMT ξ∗)

)
i
,

which can be solved by semi-implicit gradient descent (or
fixed point) method [8] as follows

ξn+1
i = ξn

i + β
((

λMf − (MMT ξn)
)

i
−

∣∣∣
(
λMf − (MMT ξn)

)
i

∣∣∣ξn+1
i

)
.

So we have the following algorithm to solve the problem
(2).

•Algorithm 3.3. Semi-implicit Gradient Descent Method
(SGDM).
(I)Setξ0 = 0 andγ > 0;

(II)Compute(un, ξn+1) by{
un = f − 1

λ (MT ξn),
ξn+1
i = ξn

i +β(λMf−(MMT ξn))i

1+β|(λMf−(MMT ξn))i| ;
(III) If the stop criterion is not satisfied, setn := n + 1

and go to step (II).

Theorem 6.Assume that0 ≤ γ ≤ 1
64 . Then the sequence

{un} generated by Algorithm 3.3 converges to the solution
u∗ of (14).

Remark.Following from the work in [8] and using the fact
thatρ(M) ≤ 8, it is easy to deduce that the above assertion
holds. Actually, Algorithm 3.2 can be viewed as a modi-
fied form of Algorithm 3.3 [13,2]. But here we show that
Algorithm 3.3 can be naturally deduced from Algorithm
3.2.

Remark.For the color image restoration problems, we can
denote thatu ∈ R3N2

. Then the Hessian matrix can be
written asM = (Mr;Mg; Mb), hereMj = M given in
(15) for j = r, g, b. In this case, the minimization problem
(14) can be transformed into the following form

min
u

λ

2
‖f − u‖2`2(Ω) + |Mu |`1(Ω).

Then we can get the similar results as for the gray-level
image.

4. Numerical Results

In this section, we present some numerical experiments
based on platform by using Windows 7 and Matlab 2009(a)
on a desktop with Intel Core i5 processor at 2.4 GHz and 4
GB memory. For Algorithm 3.2, we choose the time step
τ = 1/32. In order to illustrate the effectiveness of the pro-
posed algorithms, we show the Signal to Noise Ratio(SNR)
of the restored image and the L2-norm of the difference
between the restored image and the original image. For a
given true imageu0 and its noisy observationf , the noise
is denoted asf − u0, thenSNR and L2-norm are defined
by

SNR = 10 log
(‖f − f̄‖2`2
‖η − η̄‖2`2

)
and L2-norm= ‖u− u0‖2`2 .
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(a)Original image (b)Noise image

(c)ROF model (d)Al. 3.3 (e)Al. 3.2

(c1)ROF
model(Portion)

(d1)Al. 3.3
(Portion)

(e1)Al. 3.2
(Portion)

Figure 1 (b)SNR = 10.0363; (c) SNR = 15.7436; (d)
SNR = 16.0530; (e)SNR = 16.1383.

4.1. Image denoising

In this subsection, we present some numerical examples to
compare Algorithm(Al.) 3.2 with Algorithm 3.3.

Example 1.We first consider the Lena image shown in Fig-
ure 1 which is contaminated by the random noise with the
standard deviation varianceσ = 60. Before processing,
the noise image hasSNR = 10.0363. The algorithms
will be terminated if the condition‖uk+1 − uk‖/‖uk‖ ≤
1.0× 10−3 is met. We compare Algorithm 3.2 with Algo-
rithm 3.3 for recovering the noisy image and setλ = 35
for these two algorithms. In order to show the ability for
overcoming the staircasing phenomenon of the the high-
order model, we also employ the semi-implicit gradient
descent method to solve the ROF model (1) where we
setα = 12.5. From Figure 1, it is obvious that the ROF
model and the high-order model can recover the noisy im-
age efficiently. As we can seeSNR from the notes in Fig-
ure 1, Algorithm 3.2 has a better restoration than Algo-
rithm 3.3 and the ROF model. Simultaneously, from the
convergence curves of L2-norm andSNR, we can de-
duce that Algorithm 3.2 has faster convergence than Al-
gorithm 3.3. Furthermore, we also notice that the ROF
model almost has the same curve in the first steps as Al-
gorithm 3.2 and it has even a higherL2-norm than Algo-
rithm 3.3 after some more iterations. Now, we also extend
the algorithms to recover the degraded color pepper im-
age. The noise is added the Gaussian noise with the stan-
dard varianceσ = 30. The stop conditions is also chose
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Figure 2 TheL2-norm curve andSNR curve for Figure 1.

(a) Original image (b) Noisy image

(c) Al. 3.3 (d) Al. 3.2

Figure 3 (a) SNR = 18.4383; (c) SNR = 42.1765; (d)
SNR = 42.6673.
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Figure 4 TheL2-norm curve andSNR curve for Figure 2.

||uk+1 − uk||/||uk|| ≤ 1.0× 10−3. As shown in the grey-
scale case, Algorithm 3.2 and 3.3 can efficiently recover
the noisy image and we also get the same conclusions for
the convergence curves of two algorithms. The relate im-
ages are shown in Figure 3 and Figure 4.

4.2. Other applications

In this subsection, we extend Algorithm 3.2 to solve the
general high-order model (3) including image deblurring,
image zooming and image inpainting. In order to use this
algorithm, we have to transform the high-order model (3)
into the formula of the model (2) by using some numerical
techniques.
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(a)SNR = 11.2132 (b) SNR = 14.6785

(c) SNR = 24.6696 (d) SNR = 37.3791

Figure 5 Left: deteriorated image; Right: restored image.

4.2.1. Image deblurring

In this subsection, we consider to solve the deblurring prob-
lem (3) by using the following strategy



vn = un + µK∗(f −Kun),

un+1 := arg min
u

γ

2

∫

Ω

(u− vn)2dx + µ|u|BV 2(Ω),
(20)

whereK∗ is the adjoint of the operatorK. Based on (20),
thus we can employing Algorithm 3.2 to solve the deblur-
ring problem (3).

Remark.For the above strategy, Aujol [2] proposed to solve
the image debelurring problem based on the ROFmodel.
He also gave the result that that the sequence{un} con-
verges to the solution of the responding problem when
µ < 1

‖K∗K‖ . Since the high-order model is similar to the
ROF model, so we can employ this strategy to the image
deblurring image problem Furthermore, we also get the re-
sults that the sequence{un} converges to the solution of
(3) whenµ < 1

‖K∗K‖ .

Example 2.In this example, we use the gray-level and color
Lena images as the test images. The related deteriorated
images shown in Figure 5 are blurred with a Gaussian ker-
nel of hsize = 3 and added the Gaussian white noise
with the standard deviationσ = 0.02 for gray image and
σ = 0.05 for the color image. We choose parametersγ =
0.001, µ = 0.8 for the gray image andγ = 0.008 µ = 0.02
for the color image. From the restored images in Figure 5,
we can find that the high-order model (3) can efficiently
suppresses the blur and noise.

4.2.2. Image zooming

Image zooming is the problem of increasing the resolution
of a given image to higher resolution. In this subsection,

we consider to use the model (3) to solve the image zoom-
ing problem. Given the low resolution imageu0 of the size
M×N , we want to get a zoomed image of sizeM ·k×N ·k
for a positive integerk. Usually, we can use bilinear inter-
polation to extendu0 to all theM · k × N · k mesh grid
points, but this method can not get the suitable zooming
image. So we have to employ other methods to improve
the bilinear interpolation imagef . Here we can usef as
the initial inputting image and then use the higher-order
model to update it. That is to say, we can consider the fol-
lowing formulation

min
u

γ̄

2

∫

Ω\D
(u− f)2dx + |u|BV 2(Ω). (21)

Hereγ̄ satisfies

γ̄ =
{

γ if u ∈ Ω \D,
0 if u ∈ D,

whereD is the zooming domain, which corresponds to the
set of the interpolation pixel points. If we introduce an aux-
iliary variablez, based on the penalty method [4], then the
solution of the problem (21) can be approximated by solv-
ing the following strategy





un :=
zn + γ̄µf

1 + γ̄µ
,

zn+1 := min
z

1
2µ

∫

Ω

(z − un)2dx + |u|BV 2(Ω).

Example 3.In this example, we use a gray-level synth im-
age and the color strawberries as the test images for the
image zooming problem. For the gray-level image, Figure
6 shows the zoomed images obtained by the bilinear inter-
polation, the ROF model and the high-order model. We use
γ = 150 andµ = 0.02 for the ROF model andγ = 150
and µ = 0.05 for the high-order model. They have the
same size with100 × 100. Among these restored images,
we can see the quality of the high-order model has the
highestSNR and the most suitable edges. Furthermore,
in order to show the efficiency of our proposed method for
the color image zooming. The original strawberry has the
size of256× 256. We also use the downsample method to
get the deteriorated image shown in Figure 7 (b) and (d)
with size of128 × 128 and64 × 64. We set the parame-
ter λ = 50, µ = 0.03 for zooming 2 times andλ = 50,
µ = 0.1 for zooming 4 times. From the zoomed images
by a factor of 2 and 4 shown in Figure 7 (c) and (d), we
also find that the high-order model can efficiently zooms
image.

4.2.3. Image inpainting

For the image inpainting problem, we recover degraded or
missing parts denotedD in the image domainΩ by using
the proposed method. Not similar to the image zooming
problem, here the inpainting domainD is determined by
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Figure 6 (a) 100 × 100; (b)Downsample image:50 × 50; (c)
SNR = 12.0064; (d) SNR = 12.5176 (e)SNR = 12.5294.
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Figure 7 (a)256× 256; (b)Downsample image:128× 128; (c)
s56× 256; (d)Downsample image:64× 64; (e)256× 256; the
images (c) and (e) restored by the high-order model (21).

the mask image. Based on the model (3), the image in-
painting model can be written as

min
u

γ̄

2

∫

Ω\D
(u− f)2dx + |u|BV 2(Ω), (23)

whereD is the inpainting domain and̄γ satisfies

γ̄ =
{

γ if u ∈ Ω \D,
0 if u ∈ D.

By using the penalty method [4] again, the solution of the
problem (23) can be approximated by solving the follow-
ing problem





un :=
zn + γ̄µf

1 + γ̄µ

zn+1 := min
z

1
2µ

∫

Ω\D
(z − un)2dx + |z|BV 2(Ω).

Example 4.In this example, we also consider the gray-level
image and the color image shown in Figure 8 and 9. We

(a)Original (b)Mask

(c)ROF model (d)Zooming

(e)High-order model (f)Zooming

Figure 8 (d) The zooming image corresponds to the ROF model;
(f)The zooming image corresponds to the high-order model;

(a)Deteriorated (b)High-order model

Figure 9 The related images in example 4.4.

useγ = 150, µ = 0.005 for the gray tested image and
the color tested image. The algorithm will be stopped until
the iteration attains 2000 times. It is obvious to see from
Figure 8 and 9 that the high-order model can efficiently
restore the deteriorated image. Furthermore, for compar-
ison, we also show the restored gray image by the ROF
model. It is not difficult to find that the restored image by
the high-order model looks more natural than that restored
by the ROF model. In fact, this is because high-order lin-
ear or nonlinear diffusion damps oscillations much faster
than the second order diffusion.

5. Conclusion

Based on the augmented Lagrangian strategy and by intro-
ducing a smooth approximation function, we proposed a
projected gradient algorithm to solve the high-order model
in image restoration problem. The convergence of the pro-
posed algorithm is proved based on the BM algorithm.
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Furthermore, we give the fact that the semi-implicit gradi-
ent descent algorithm in [8] can be deduced from our pro-
posed algorithm naturally. The numerical experiments in-
dicate that our proposed algorithm is efficient not only for
the image denoising problem but also for other image pro-
cessing topics such as image deblurring, image zooming
and image inpainting. However, as we can see form exam-
ples, the restored images have some edges blurring effect
for the high-order model. So for the future work we mainly
look for more suitable models to improve this drawback.
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