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Abstract: This paper deals with the controllability of mild solution for a class of Sobolev type nonlinear nonlocal fractional order
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investigate the null controllability. An application is given to illustrate the abstract results.
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1 Introduction

Let (X,‖.‖) and(Y,‖.‖Y) be the general Banach spaces. Fort ≥ 0, (Ct ,‖.‖t) is a Banach space of all continuous functions
from [−τ, t] into X, where‖.‖t is defined by

‖ψ‖t := sup
−τ≤η≤t

‖ψ(η)‖ , for ψ ∈Ct .

Our main objective in this paper is to establish sufficient conditions for the controllability of the following Sobolev type
nonlinear nonlocal fractional order functional integro-differential equation.





C
0Dα

t [Ex(t)]+A(t)x(t) = f (t,x(t),xt )+

∫ t

0
g(t,s,x(s),xs)ds+Bu(t), t ∈ J = [0,b],

h(x[−τ,0]) = φ ,
(1.1)

whereτ > 0 and 0< α < 1. The fractional derivativeC0Dα
t is understood in Caputo’s sense. For anyt ∈ J, xt denotes

the element inC0 defined byxt(θ ) = x(t + θ ) for θ ∈ [−τ,0]. h : C0 → C0, f : J×X×C0 → Y, andg : ∆ ×X×C0 →
Y (∆ = {(t,s) ∈ J× J : t ≥ s}) are nonlinear maps. The control functionu(.) is given inL2[J,Z] with Z as a Banach space
andB∈ BL(Z,Y). −A(t) : D(A(t))⊂ X →Y andE : D(E)⊂ X →Y are closed linear operators such that

(I) For eacht ≥ 0, the domainD(A(t))(= D(A)) is independent oft.
(II) D(E)⊂ D(A) andE is bijective.

(III) E−1 : Y → D(E) is continuous.

The assumptions (II), (III) and Closed - Graph theorem implythe boundedness of linear operator−A(t)E−1 : Y →Y. We
denote the operator−A(t)E−1 by−Q(t).

Over the past years, the theory of fractional differential equations attracts many researchers due to their applications
in various fields of engineering, physics and economics (seethe monographs of Podlubny [1] and Tarasov [2]). In fact,
many physical phenomena such as behaviors of viscoelastic materials, electrochemical processes, dielectric polarization,
colored noise, chaos and many more, can be modeled more accurately by fractional derivatives or fractional integrals
rather than the classical integer order derivatives or integrals, for example, see [3,4,5] and the references therein.
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Equations of the form (1.1) serve as an abstract formulation of partial differential equations which appear in many
physical phenomena such as in the flow of fluid through fissuredrocks [6], thermodynamics and shear in second order
fluids [7], the propagation of long waves of small amplitudes [8], and so on. Moreover, the researchers have found that the
introduction of nonlocal condition into the system can essentially improve its qualitative and quantitative characteristics. In
fact, in many situations, nonlocal conditions arise more precisely for physical measurements than the classical conditions
and therefore the problems with nonlocal conditions look more realistic than the problems with classical conditions in
the treatment of physical problems. These facts attract many authors to analyze various types of evolution equations with
nonlocal conditions [9,10,11].

Furthermore, there has been a significant development in thestudy of controllability to Sobolev type nonlinear
integrodifferential equations of integer order in Banach spaces, for example, see [12,13], and the references listed
therein. The controllability of integer order functional evolution systems of Sobolev type is studied by Balachandranand
Dauer [14] by using Schauder fixed point theorem and classical semigroup theory. While in [15], Balachandran and
Sakthivel established sufficient conditions for the controllability of Sobolev type semilinear integrodifferentialequations
in Banach spaces. However, there are only few papers dealingwith the controllability of Sobolev type integrodifferential
equations of fractional order. The problem of controllability for Sobolev type fractional functional evolution system is
studied by Michal et al. [16] via the techniques of fixed point theorem and semigroup theory. Mahmudov [17]
investigated sufficient conditions for the approximate controllability of Sobolev type fractional stochastic evolution
systems by using the Schauder fixed point theorem. Recently,a class of Sobolev-type semilinear fractional evolution
systems in a separable Banach space is studied by Wang et al. [18], where they establish the controllability result by
applying techniques of fixed point theorem to an appropriatecondensing mapping as well as the theory of propagation
families and measure of noncompactness.

Different from these works, we analyze the fractional evolution equations of Sobolev type (1.1) with nonlocal
condition and establish sufficient conditions for the complete controllability of considered equation (1.1) without
assuming the compactness condition on semigroup or on bounded linear operatorsB andE−1. We also observe that if the
associated semigroup or linear operatorB or E−1 is compact, then the considered evolution equation is completely
controllable only in the translation of finite dimensional subspace ofX. Moreover, the sufficient conditions for the exact
null controllability to (1.1) are obtained.

The paper is organized as follows. In Section2, we shall set forth some preliminary facts about the fractional
differential equations and introduce the concept of mild solutions to (1.1). Main results concerning the sufficient
conditions of controllability of (1.1) are proved in Section3. Finally, an application is given in which a nonlocal
fractional partial differential equation of Sobolev type is discussed to illustrate the abstract results.

2 Preliminaries

For an abstract continuous functionf on the interval[a,b], the Caputo derivative of order 0< α < 1 is defined as follows.
[19]

C
0Dα

t f (t) =
1

Γ (1−α)

∫ t

0
(t − s)−α f ′(s)ds.

Here and hereafter, we assume that the operator−Q(t) satisfies the following assumptions.

(B1) For eacht ∈ [0,T], the operator[λ I +Q(t)]−1 exists for allλ with ℜ(λ )≥ 0 and

∥∥∥[λ I +Q(t)]−1
∥∥∥≤ C

| λ |+1
, (ℜ(λ )≥ 0).

(B2) For anyt, s, ζ ∈ [0,T], we have

∥∥[Q(t)−Q(ζ )]Q−1(s)
∥∥≤C| t − ζ |γ , 0< γ < 1,

where the constantsC, γ are independent oft, s, ζ .
Then, for eachσ ∈ [0,T],−Q(σ) generates an analytic semigroup{Tσ (t) = e−tQ(σ)}. Moreover, there exists a positive

constantC independent of botht andssuch that

‖Qn(s)exp(−tQ(s))‖ ≤
C
tn ,

wheren= 0,1, t > 0, s∈ [0,T]. For more details we refer to [20,21].

c© 2015 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl.1, No. 4, 281-293 (2015) /www.naturalspublishing.com/Journals.asp 283

Following Borai [22], we define operatorsψ ,ϕ andU as follows.

ψ(t,s) = α
∫ ∞

0
θ tα−1ξα(θ )exp(−tαθQ(s))dθ ,

whereξα is a probability function defined on[0,∞) whose Laplace transform is given by [22]

∫ ∞

0
e−θxξα(θ )dθ =

j=∞

∑
j=0

(−x) j

Γ (1+α j)
, α ∈ (0,1], x> 0.

ϕ(t,η) =
j=∞

∑
j=1

ϕ j(t,η),

with 



ϕ1(t,η) = [Q(t)−Q(η)]ψ(t−η ,η),

ϕ j+1(t,η) =
∫ t

η
ϕ j(t,s)ϕ1(s,η)ds, for j = 1,2, ...

and

U(t) =−Q(t)Q−1(0)−
∫ t

0
ϕ(t,s)Q(s)Q−1(0)ds.

Let χ ∈C0 such thath(χ) = φ . For eachu∈ L2[J,Z], a mild solution of the equation (1.1) (see [22,23]) is a function
x∈Cb such thatx(t) = χ(t) for t ∈ [−τ,0] and fort ∈ J

x(t) = χ(0)+
∫ t

0
E−1ψ(t −η ,η)U(η)Q(0)Eχ(0)dη +

∫ t

0
E−1ψ(t −η ,η)(H(η)+Bu(η))dη

+
∫ t

0

∫ η

0
E−1ψ(t −η ,η)ϕ(η ,s)(H(s)+Bu(s))dsdη ,

whereH(t) = f (t,x(t),xt )+

∫ t

0
g(t,s,x(s),xs)ds.

Lemma 1.(Bochner’s Theorem) A measurable function S: J → X is Bochner integrable if| S| is Lebesgue integrable.

Lemma 2.(see [24]) For m ∈ L1[0,b], we have
∫ t

0

∫ η

0
(t −η)α−1(η − s)α−1m(s)dsdη = B(α,γ)

∫ t

0
(t − s)α+γ−1m(s)ds,

whereB(α,γ) is a Beta function.

Theorem 1(Krasnoselskii’s Fixed Point Theorem).Let X be a Banach space. Let N be a bounded, closed and convex
subset of X and letℑ1, ℑ2 be maps of N into X such thatℑ1x+ℑ2y∈ N for every pair x,y∈ N. If ℑ1 is a contraction and
ℑ2 is completely continuous, then the equationℑ1x+ℑ2x= x has a solution on N.

3 Main Result

This section comprises the main results concerning the controllability of mild solution for the equation (1.1). We consider
the following hypotheses.

(H1) h : C0 →C0 and there exists Lipschitz continuous functionχ ∈C0 such thath(χ) = φ with χ(0) ∈ D(E).

(H2) f (t,x,y) and
∫ t

0
g(t,s,x,y)ds are continuous with respect to first variable. Moreover, there exist constantsq1,q2 ∈

(0,α)∩ (0,γ) and functionsL f (.) ∈ L
1

q1 [J,R+] andL∗
g : ∆ → [0,∞) with

∫ t

0
L∗

g(t,s)ds= Lg(t) ∈ L
1

q2 [J,R+] such that

‖ f (t,u,v)− f (t,w, p)‖Y ≤ L f (t)[‖u−w‖+ ‖v− p‖0],

‖g(t,s,u,v)−g(t,s,w, p)‖Y ≤ L∗
g(t,s)[‖u−w‖+ ‖v− p‖0],

for all t,s∈ J; u,w∈ X andv, p∈C0.
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(H3) The linear operatorB : L2[J,Z]→ L1[J,Y] is bounded.W : L2[J,Z]→ X defined by

Wu=
∫ b

0
E−1ψ(b−η ,η)Bu(η)dη +

∫ b

0

∫ η

0
E−1ψ(b−η ,η)ϕ(η ,s)Bu(s)dsdη ,

induces an invertible operator̃W : L2[J,Z]/KerW → X and there exist two positive constantsM2, M3 > 0 such that

‖B‖
BL[Z,Y] ≤ M2 and

∥∥∥W̃−1
∥∥∥
BL[X,L2[J,Z]/KerW]

≤ M3.

(H4) For all bounded subsetsD, the set

Λε,ζ (t) :=

{∫ t−ε

0

∫ ∞

ζ
PE(θ , t,η)H(η)dθdη +

∫ t−ε

0

∫ η

0

∫ ∞

ζ
PE(θ , t,η)ϕ(η ,s)H(s)dθdsdη , x∈ D

}

is relatively compact in X for arbitrary ε ∈ (0, t) and constant ζ > 0. Here,
PE(θ , t,η) = αθ (t −η)α−1ξα(θ )E−1exp(−(t −η)αθQ(η)).

For brevity, letÊ =
∥∥E−1

∥∥
BL[Y,D(E)], whereBL[Y,D(E)] is the class of all bounded linear operators fromY into D(E).

The following lemma plays an important role in our analysis.

Lemma 3.The following results hold.

(i) The operator-valued functionsψ(t −η ,η) and A(t)ψ(t −η ,η) are continuous in the uniform operator topology in
the variables t, η , where0≤ η ≤ t − ε, 0≤ t ≤ b, for anyε > 0. Moreover,

∥∥E−1ψ(t −η ,η)
∥∥≤CÊ(t −η)α−1.

(ii) The functionϕ(t,η) is uniformly continuous in the uniform operator topology int,η provided0≤η ≤ t−ε, ε ≤ t ≤ b
for anyε > 0. Moreover,

‖ϕ(t,η)‖ ≤C(t −η)γ−1.

(iii) For t ∈ J,
∫ t

0
ψ(t −η ,η)U(η)dη is uniformly continuous in the norm ofB(X) and

‖U(η)‖ ≤C(1+ηγ).

(iv) For 0< η < t1 ≤ t2 andα ∈ (0,1], there existsµ ∈ (0,1] such that

∥∥E−1[ψ(t1−η ,η)−ψ(t2−η ,η)]
∥∥≤CÊ

[
(t1−η)α−1{1+(t2− t1)

µ}− (t2−η)α−1] .

Proof. (i), (ii) and (iii) can be deduced by following the similar arguments as in [22]. Now, inequality in (iv) can be proved
by using the similar arguments as in (see [25], pp. 437) and the following relation

∥∥∥e−t1Q(s)v−e−t2Q(s)
∥∥∥=

∥∥∥∥
∫ t1

t2

d
dt

(
e−tQ(s)

)
dt

∥∥∥∥≤C| t1− t2 |
µ , whereµ ∈ (0,1].

By using Hölder’s inequality, we have

∫ b

0

[
(b−η)α−1+CB(α,γ)(b−η)α+γ−1](L f (η)+Lg(η))dη

≤ L1

([
bm+1

m+1

]1−q1

+

[
bp+1

p+1

]1−q1
)
+L2



[

bβ+1

β +1

]1−q2

+

[
bn+1

n+1

]1−q2


 := M4,

(3.1)

whereL1 =
∥∥L f
∥∥

L
1

q1 (J,R+)
, L2 =

∥∥Lg
∥∥

L
1

q2 (J,R+)
, β = α−1

1−q2
,m= α−1

1−q1
,n= α+γ−1

1−q2
, p= α+γ−1

1−q1
andβ ,m,n, p∈ (−1,0). For

brevity, letN̂ =CbαÊ
[

1
α + CB(α ,γ)bγ

α+γ

]
.
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3.1 Complete Controllability

Definition 31 (Complete Controllability)The fractional equation(1.1) is said to be controllable on interval J if for every
initial functionχ ∈C0 and x1 ∈X there exists a control u∈ L2[J,Z] such that the mild solution x(t) of the equation satisfies
x(b) = x1.

Theorem 2.Assume that the hypotheses (H1) - (H4) hold and the linear operator W is not compact. Then, the equation

(1.1) is completely controllable on J provided̂C
[
1+ N̂M2M3

]
< 1, whereĈ= 2CM4Ê.

Proof.By (H1), there existsχ ∈C0 such thath(χ) = φ . We define

ν(t) =
{

χ(t), if t ∈ [−τ,0],
χ(0), if t ∈ J.

Then,νt ∈C0 and f (t,ν(0),ν0),

∫ t

0
g(t,s,ν(0),ν0)dsare continuous functions oft onJ. Let

N1 = sup
t∈J

‖ f (t,ν(0),ν0)‖Y and N2 = sup
t∈J

∥∥∥∥
∫ t

0
g(t,s,ν(0),ν0)ds

∥∥∥∥
Y
. (3.2)

For an arbitrary functionx(.) ∈Cb andt ∈ J, we define the controlux(t) as follows.

ux(t) = W̃−1
[
x1− χ(0)−

∫ b

0
E−1ψ(b−η ,η)U(η)Q(0)Eχ(0)dη −

∫ b

0
E−1ψ(b−η ,η)H(η)dη

−

∫ b

0

∫ η

0
E−1ψ(b−η ,η)ϕ(η ,s)H(s)dsdη

]
.

(3.3)

Next, we define the operatorℑ onCb by ℑx= x̃, wherex̃(t) = χ(t) for t ∈ [−τ,0] and fort ∈ J

x̃(t) = χ(0)+
∫ t

0
E−1ψ(t −η ,η)U(η)Q(0)Eχ(0)dη +

∫ t

0
E−1ψ(t −η ,η)(H(η)+Bux(η))dη

+

∫ t

0

∫ η

0
E−1ψ(t −η ,η)ϕ(η ,s)(H(s)+Bux(s))dsdη .

(3.4)

In view of (H2) and equality (3.2), for eachη ∈ J, we have

‖H(η)‖Y =

∥∥∥∥ f (η ,x(η),xη )+

∫ η

0
g(η ,s,x(s),xs)ds

∥∥∥∥
Y

≤
∥∥ f (η ,x(η),xη )− f (η ,ν(0),ν0)

∥∥
Y +N1+

∥∥∥∥
∫ η

0
g(η ,s,x(s),xs)ds−

∫ η

0
g(η ,s,ν(0),ν0)ds

∥∥∥∥
Y
+N2

≤ L f (η)
[
‖x(η)−ν(0)‖+

∥∥xη −ν0
∥∥

0

]
+

∫ η

0
L∗

g(η ,s) [‖x(s)−ν(0)‖+ ‖xs−ν0‖0]ds+N1+N2

≤ 2(L f (η)+Lg(η))[‖x‖b+ ‖χ‖0]+N1+N2.
(3.5)

Now, from (H2), (3.5) and Lemma3, for eacht,η ∈ J, we get

∥∥E−1ψ(t −η ,η)U(η)Q(0)Eχ(0)
∥∥≤C2Ê(t −η)α−1(1+ηγ)‖Q(0)Eχ(0)‖Y ,

∥∥E−1ψ(t −η ,η)H(η)
∥∥≤CÊ

[
2(L f (η)+Lg(η))[‖x‖b+ ‖χ‖0]+N1+N2

]
(t −η)α−1,

∥∥E−1ψ(t −η ,η)ϕ(η ,s)H(s)
∥∥≤C2Ê

[
2(L f (s)+Lg(s))[‖x‖b+ ‖χ‖0]+N1+N2

]
(t −η)α−1(η − s)γ−1.
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Therefore, using above inequalities, (3.1) and Lemma2, we have
∫ t

0

∥∥E−1ψ(t −η ,η)U(η)Q(0)Eχ(0)
∥∥dη ≤

C2

α
Êbα(1+bγ)‖Q(0)Eχ(0)‖Y ,

∫ t

0

∥∥E−1ψ(t −η ,η)H(η)
∥∥

≤CÊ

[
bα(N1+N2)

α
+2(‖x‖b+ ‖χ‖0)

∫ b

0
(b−η)α−1(L f (η)+Lg(η))dη

]

≤CÊ

[
bα(N1+N2)

α
+2(‖x‖b+ ‖χ‖0)

(
L1b(m+1)(1−q1)

(m+1)(1−q1)
+

L2b(β+1)(1−q2)

(β +1)(1−q2)

)]
,

∫ t

0

∫ η

0

∥∥E−1ψ(t −η ,η)ϕ(η ,s)H(s)
∥∥dsdη

≤C2ÊB(α,γ)
[

bα+γ(N1+N2)

α + γ
+2(‖x‖b+ ‖χ‖0)

∫ b

0
(b−η)α+γ−1(L f (η)+Lg(η))dη

]

≤C2ÊB(α,γ)

[
bα+γ(N1+N2)

α + γ
+2(‖x‖b+ ‖χ‖0)

(
L1b(p+1)(1−q1)

(p+1)(1−q1)
+

L2b(n+1)(1−q2)

(n+1)(1−q2)

)]
.

Now, for eacht ∈ J and for anyx∈Cb, we have

‖ux(t)‖ ≤ M3

[
‖x1‖+ ‖χ(0)‖+

C2

α
Êbα(1+bγ)‖Q(0)Eχ(0)‖Y +2CÊ(‖x‖b+ ‖χ‖0)

×
∫ b

0

[
(b−η)α−1+CB(α,γ)(b−η)α+γ−1](L f (η)+Lg(η))dη

+ Cbα Ê

[
1
α
+

CB(α,γ)bγ

α + γ

]
(N1+N2)

]

≤ M3[‖x1‖+a+Ĉ‖x‖b],

wherea= (1+Ĉ)‖χ‖0+
C2

α Êbα(1+bγ)‖Q(0)Eχ(0)‖Y + N̂(N1+N2).
Thus, from above inequality, (H3) and Lemma3, we have

∫ t

0

∥∥E−1ψ(t −η ,η)Bux(η)
∥∥dη ≤

Cbα

α
ÊM2M3

[
‖x1‖+a+Ĉ‖x‖b

]
,

∫ t

0

∫ η

0

∥∥E−1ψ(t −η ,η)ϕ(η ,s)Bux(s)
∥∥dsdη ≤

C2bα+γ

α + γ
ÊM2M3B(α,γ)

[
‖x1‖+a+Ĉ‖x‖b

]
.

Now, it is clear from above inequalities that the integral terms
∥∥E−1ψ(t −η ,η)H(η)

∥∥,
∥∥E−1ψ(t −η ,η)ϕ(η ,s)Bux(s)

∥∥,∥∥E−1ψ(t −η ,η)U(η)Q(0)Eχ(0)
∥∥,

∥∥E−1ψ(t −η ,η)ϕ(η ,s)H(s)
∥∥ and

∥∥E−1ψ(t −η ,η)Bux(η)
∥∥ are Lebesgue

integrable with respect toη , s∈ [0, t] for all t ∈ J. Therefore, from Lemma1, it follows that all integral terms inux(t)
and (3.4) exist in Bochner sense.
Step1:First we claim thatℑ(Cb)⊆Cb. For this, letx∈Cb, then,ℑx(t) = χ(t), for t ∈ [−τ,0] and for 0≤ t1 ≤ t2 ≤ b, we
have

ℑx(t2)−ℑx(t1) =
∫ t1

0
E−1 [ψ(t2−η ,η)−ψ(t1−η ,η)]U(η)Q(0)Eχ(0)dη

+

∫ t2

t1
E−1ψ(t2−η ,η)U(η)Q(0)Eχ(0)dη

+

∫ t1

0
E−1 [ψ(t2−η ,η)−ψ(t1−η ,η)] (H(η)+Bux(η))dη

+

∫ t2

t1
E−1ψ(t2−η ,η)(H(η)+Bux(η))dη

+

∫ t1

0

∫ η

0
E−1 [ψ(t2−η ,η)−ψ(t1−η ,η)]ϕ(η ,s)(H(s)+Bux(s))dsdη

+

∫ t2

t1

∫ η

0
E−1ψ(t2−η ,η)ϕ(η ,s)(H(s)+Bux(s))dsdη .

c© 2015 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl.1, No. 4, 281-293 (2015) /www.naturalspublishing.com/Journals.asp 287

In view of (H1), it is easy to see thatℑx is continuous on[−τ,0]. Also, from hypotheses (H2), (H3), Lemma3 andx∈Cb,
it can be seen that the nonlinear mapH and the operatorsψ ,ϕ ,B are continuous onJ. Therefore,ℑ(Cb) ⊆Cb. Now, for
eacht ∈ J, we have

‖ℑx(t)‖ ≤ ‖χ‖0+
C2

α
Êbα(1+bγ)‖Q(0)Eχ(0)‖Y + N̂(N1+N2)+Ĉ(‖x‖b+ ‖χ‖0)+ N̂M2M3(‖x1‖+a+Ĉ‖x‖b)

= aM6+(M6−1)‖x1‖+ĈM6‖x‖b ,

whereM6 = 1+ N̂M2M3. We chooser ≥ aM6+(M6−1)‖x1‖

1−ĈM6
and defineBr := {x∈Cb : x(0) = χ(0) and‖x‖b ≤ r}. Then, for

eachr ≥ 0,Br is a closed, bounded and convex subset ofCb and from above inequality, it follows thatℑ(Br)⊆ Br .
Forx∈Cb, we define operatorsℑ1 andℑ2 such thatℑ1x(t) = χ(t) andℑ2x(t) = 0 for t ∈ [−τ,0], and fort ∈ J,

(ℑ1x)(t) = χ(0)+
∫ t

0
E−1ψ(t −η ,η)U(η)Q(0)Eχ(0)dη +

∫ t

0
E−1ψ(t −η ,η)Bux(η)dη

+
∫ t

0

∫ η

0
E−1ψ(t −η ,η)ϕ(η ,s)Bux(s)dsdη ,

(3.6)

(ℑ2x)(t) =
∫ t

0
E−1ψ(t −η ,η)H(η)dη +

∫ t

0

∫ η

0
E−1ψ(t −η ,η)ϕ(η ,s)H(s)dsdη . (3.7)

Then,(ℑx)(t) = (ℑ1x)(t)+ (ℑ2x)(t) for t ∈ [−τ,b]. Moreover, forx,y∈ Br andt ∈ J, we have

‖(ℑ1x+ℑ2y)(t)‖ ≤ aM6+(M6−1)‖x1‖+ĈM6r.

Since r ≥ aM6+(M6−1)‖x1‖

1−ĈM6
, therefore, aM6 + (M6 − 1)‖x1‖ ≤ r(1 − ĈM6). Hence, from above inequality and

(ℑ1x+ℑ2y)(0) = χ(0), it is clear thatℑ1x+ℑ2y∈ Br for everyx,y∈ Br .
Step2:Next, we will show thatℑ1 is contraction. For this, letx, y∈ Br and define

H̃(t) := { f (t,x(t),xt )− f (t,y(t),yt)}+

∫ t

0
{g(t,s,x(s),xs)−g(t,s,y(s),ys)}ds.

In view of (H2), Lemmas2 and3, for eacht ∈ J, we have

∥∥ux(t)−uy(t)
∥∥ ≤ M3

[∫ b

0

∥∥∥E−1ψ(b−η ,η)H̃(η)
∥∥∥dη +

∫ b

0

∥∥∥E−1ψ(b−η ,η)ϕ(η ,s)H̃(s)
∥∥∥dsdη

]

≤ 2CM3Ê‖x− y‖b

[∫ b

0

{
(b−η)α−1+CB(α,γ)(b−η)α+γ−1}(L f (η)+Lg(η))dη

]

≤ 2CÊM4M3‖x− y‖b = ĈM3‖x− y‖b .

Therefore, from (3.6), Lemmas2, 3 and above inequality, for eacht ∈ J, we get

‖ℑ1x(t)−ℑ1y(t)‖ ≤CÊ
∫ t

0

[
(t −η)α−1+CB(α,γ)(t −η)α+γ−1]∥∥Bux(η)−Buy(η)

∥∥dη

≤CÊM2M3Ĉbα
(

1
α
+

CB(α,γ)bγ

α + γ

)
‖x− y‖b = N̂M2M3Ĉ‖x− y‖b .

SinceĈ
[
1+ N̂M2M3

]
< 1, therefore,̂NM2M3Ĉ < 1. Also, ‖(ℑ1x)(t)− (ℑ1y)(t)‖ = 0 for t ∈ [−τ,0]. Hence,ℑ1 is a

contraction onBr .
Step3:Next, we will show that the mapℑ2 is completely continuous onBr . For this, first we will prove that the mapℑ2 is
continuous onBr . Then, we show thatℑ2(Br)⊆Cb is equicontinuous andℑ2(Br)(t) is relatively compact for eacht ∈ J
and then the compactness ofℑ2 follows from the Ascoli-Arzela theorem.

Let us consider a sequence {x(n)} ⊆ Br with x(n) → x in Br . We denote

Hn(t) = f (t,x(n)(t),x(n)t )+

∫ t

0
g(t,s,x(n)(s),x(n)s )ds. From (H2) and Lemma3, it is easy to see that

E−1ψ(.− s,s)Hn(s)→ E−1ψ(.− s,s)H(s), a.e.s∈ J,

E−1ψ(.−η ,η)ϕ(η ,s)Hn(s)→ E−1ψ(.−η ,η)ϕ(η ,s)H(s), a.e.s∈ J,
∥∥E−1ψ(.−η ,η)(Hn(η)−H(η))

∥∥≤ 4rCÊ(.−η)α−1(L f (η)+Lg(η)) ∈ L1(J,R+),
∥∥E−1ψ(.−η ,η)ϕ(η ,s)(Hn(s)−H(s))

∥∥≤ 4rC2Ê(L f (η)+Lg(η))(.−η)α−1(η − s)γ−1 ∈ L1(J,R+).
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Then, from the Lebesgue dominated convergence theorem, we have

∫ t

0

∥∥E−1ψ(t −η ,η)(Hn(η)−H(η))
∥∥dη → 0 asn→ ∞,

∫ t

0

∫ η

0

∥∥E−1ψ(t −η ,η)ϕ(η ,s)(Hn(s)−H(s))
∥∥dsdη → 0 asn→ ∞.

Hence, from the above result and hypothesis (H2), we get

∥∥∥ℑ2x(n)−ℑ2x
∥∥∥

b
≤ sup

t∈J

[∫ t

0

∥∥E−1ψ(t −η ,η)(Hn(η)−H(η))
∥∥dη

+
∫ t

0

∫ η

0

∥∥E−1ψ(t −η ,η)ϕ(η ,s)(Hn(s)−H(s))
∥∥dsdη

]
→ 0 asn→ ∞,

which implies thatℑ2 is continuous onBr . Next we claim thatℑ2(Br)⊆Cb is equicontinuous. For this, let 0< t < t+ε ≤ b
andx∈ Br . Then, we have

(ℑ2x)(t + ε)− (ℑ2x)(t) = I1+ I2+ I3+ I4, (3.8)

where

I1 =
∫ t

0
E−1 [ψ(t + ε −η ,η)−ψ(t−η ,η)]H(η)dη ,

I2 =
∫ t

0

∫ η

0
E−1 [ψ(t + ε −η ,η)−ψ(t−η ,η)]ϕ(η ,s)H(s)dsdη ,

I3 =
∫ t+ε

t
E−1ψ(t + ε −η ,η)H(η)dη ,

I4 =
∫ t+ε

t

∫ η

0
E−1ψ(t + ε −η ,η)ϕ(η ,s)H(s)dη .

Now, we claim that‖Ii‖→ 0 asε → 0, for i = 1,2,3,4. From (H2), (3.5) and Lemma3, we have

∥∥E−1 [ψ(t + ε −η ,η)−ψ(t−η ,η)]H(η)
∥∥

≤CÊ
[
(t −η)α−1(1+ εµ)− (t+ ε −η)α−1][2(L f (η)+Lg(η))[r + ‖χ‖0]+N1+N2

]
,

∥∥E−1 [ψ(t + ε −η ,η)−ψ(t−η ,η)]ϕ(η ,s)H(s)
∥∥

≤C2Ê
[
(t −η)α−1(1+ εµ)− (t+ ε −η)α−1](η − s)γ−1[2(L f (s)+Lg(s))[r + ‖χ‖0]+N1+N2

]
,

∥∥E−1ψ(t + ε −η ,η)H(η)
∥∥

≤CÊ(t + ε −η)α−1[2(L f (η)+Lg(η))[r + ‖χ‖0]+N1+N2
]
,

∥∥E−1ψ(t + ε −η ,η)ϕ(η ,s)H(s)
∥∥

≤C2Ê(t + ε −η)α−1(η − s)γ−1[2(L f (s)+Lg(s))[r + ‖χ‖0]+N1+N2
]
.

Also, from (H2) and Hölder’s inequality, for eachη ∈ (0, t) andt ∈ [0,b], we get

∫ η

0
(η − s)γ−1(L f (s)+Lg(s))ds≤

L1b(m1+1)(1−q1)

(m1+1)(1−q1)
+

L2b(m2+1)(1−q2)

(m2+1)(1−q2)
:= M5,
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wherem1 =
γ−1
1−q1

, andm2 =
γ−1
1−q2

∈ (−1,0). Hence, using Lemma3, (H2), and the fact| aσ −bσ |≤ (b−a)σ for σ ∈ (0,1],
0< a≤ b, we have

‖I1‖ ≤ 2CÊ(r + ‖χ‖0)

[
L1{(2ε(m+1))(1−q1)+ εµb(m+1)(1−q1)}

(m+1)(1−q1)

+
L2{(2ε(β+1))(1−q2)+ εµb(β+1)(1−q2)}

(β +1)(1−q2)

]
+

C
α

Ê(N1+N2)[b
α εµ +2εα ],

‖I2‖ ≤C2Ê(2εα +bαεµ)

[
2M5(r + ‖χ‖0)

α
+

bγ(N1+N2)

αγ

]
,

‖I3‖ ≤ 2CÊ(r + ‖χ‖0)

[
L1ε(m+1)(1−q1)

(m+1)(1−q1)
+

L2ε(β+1)(1−q2)

(β +1)(1−q2)

]
+

Cεα

α
Ê(N1+N2),

‖I4‖ ≤
C2Êεα

α

[
2M5(r + ‖χ‖0)+

bγ (N1+N2)

γ

]
.

Now, from above inequalities, it is easy to see that‖Ii‖ → 0 as ε → 0, for i = 1,2,3,4. Hence, from (3.7),
‖(ℑ2x)(t + ε)− (ℑ2x)(t)‖ → 0 asε → 0, which implies the equicontinuity ofℑ2 onBr .

Next we claim that, for eacht ∈ J, the setΠ(t) := {(ℑ2x)(t) : x ∈ Br} is relatively compact inX. Clearly,Π(0) =
{(ℑ2x)(0) : x ∈ Br} = {0} is compact. Hence, it is only necessary to considert > 0. Now, for eachε ∈ (0, t), t ∈ (0,b],
constantζ > 0 andx∈ Br , we defineΠε,ζ (t) =

{
(ℑ2,ε,ζ x)(t) : x∈ Br

}
, where

ℑ2,ε,ζ x(t) =
∫ t−ε

0

∫ ∞

ζ
PE(θ , t,η)H(η)dθdη +

∫ t−ε

0

∫ η

0

∫ ∞

ζ
PE(θ , t,η)ϕ(η ,s)H(s)dθdsdη .

Since,Br is a bounded subset ofCb, therefore, from (H4),(ℑ2,ε,ζ x)(t) is relatively compact for arbitraryε ∈ (0, t) and
ζ > 0. Also, we have

(ℑ2x)(t)− (ℑ2,ε,ζ x)(t) = P1+P2+P3+P4, (3.9)

where

P1 =
∫ t−ε

0

∫ ζ

0
PE(θ , t,η)H(η)dθdη ,

P2 =

∫ t−ε

0

∫ η

0

∫ ζ

0
PE(θ , t,η)ϕ(η ,s)H(s)dθdsdη ,

P3 =

∫ t

t−ε

∫ ∞

0
PE(θ , t,η)H(η)dθdη ,

P4 =
∫ t

t−ε

∫ η

0

∫ ∞

0
PE(θ , t,η)ϕ(η ,s)H(s)dθdsdη .

Now, from Hölder’s inequality and Lemma3, we have

‖P1‖ ≤ αCÊ

(∫ ζ

0
θξα(θ )dθ

)[
2(r + ‖χ‖0)

(
L1b(m+1)(1−q1)

(m+1)(1−q1)
+

L2b(β+1)(1−q2)

(β +1)(1−q2)

)
+

(N1+N2)bα

α

]
,

‖P2‖ ≤ αC2Ê

(∫ ζ

0
θξα(θ )dθ

)[
2bα

α
M5(r + ‖χ‖0)+

(N1+N2)bα+γ

αγ

]
,

‖P3‖ ≤ αCÊ

(∫ ∞

0
θξα(θ )dθ

)[
2(r + ‖χ‖0)

(
L1ε(m+1)(1−q1)

(m+1)(1−q1)
+

L2ε(β+1)(1−q2)

(β +1)(1−q2)

)
+

(N1+N2)εα

α

]
,

‖P4‖ ≤ αC2Ê

(∫ ∞

0
θξα(θ )dθ

)[
2εα

α
M5(r + ‖χ‖0)+

(N1+N2)bγεα

αγ

]
.

Now, from above inequalities,‖Pi‖→ 0 asε,ζ → 0, for eachi = 1,2,3,4. Hence, from (3.9),
∥∥(ℑ2x)(t)− (ℑ2,ε,ζ x)(t)

∥∥→
0 asε,ζ → 0, which implies that the setΠ(t) can be arbitrarily approximated by the relatively compact setsΠε,ζ (t).
Therefore,(ℑ2Br)(t)⊆ X is relatively compact inX. Hence, the continuity ofℑ2 and relatively compactness of{ℑ2x : x∈
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Br} imply thatℑ2 is completely continuous. Hence, using Krasnoselskii’s Fixed Point theoremℑ has a fixed pointx on
Br . It is easy to see thatx is a mild solution of the equation (1.1), satisfyingx(b) = x1. Therefore, the fractional equation
(1.1) is completely controllable onJ.

Theorem 3.Assume that the hypotheses (H1) - (H4) hold and the linear operator W is compact. For x(.) ∈Cb satisfying
(1.1), we define

zx = χ(0)+
∫ b

0
E−1ψ(b−η ,η)U(η)Q(0)Eχ(0)dη +

∫ b

0
E−1ψ(b−η ,η)H(η)dη

+

∫ b

0

∫ η

0
E−1ψ(b−η ,η)ϕ(η ,s)H(s)dsdη .

Then, for all x1 ∈ X andχ ∈C0, the equation(1.1) is controllable on J if and only if x1 ∈ R(W̃)+zx andχ ∈C0 provided

Ĉ
[
1+ N̂M2M3

]
< 1, whereĈ= 2CM4Ê.

Proof.Since, we assume that the linear operatorW is compact and it induces an invertible operatorW̃ with
∥∥∥W̃−1

∥∥∥≤ M3,

therefore,R(W̃)(6= X) is a finite dimensional closed subspace ofX. Also, there exists a closed subspaceZ of X such that
X = R(W̃)

⊕
Z, i.e., for everyx∈ X there exist uniquey∈ R(W̃) andz∈ Z such thatx= y+ z.

Now, if x1 ∈ R(W̃)+ zx, then, by following the similar steps of Theorem2, one can prove that the equation (1.1) is
controllable with controlux = W̃−1 [x1− zx].

Conversely, letx1 ∈ X and the equation (1.1) is controllable inJ. Since,x1 ∈ X, therefore, there exist uniquev∈ R(W̃)

andz∈ Z such thatx1 = v+z. Also, forv∈R(W̃), there exists uniqueu∈D(W̃) such that̃Wu= v. Therefore,x1 =W̃u+z.
Now, the equation (1.1) is controllable iffx1 = x(b) = W̃u+ zx iff W̃u+ z= W̃u+ zx iff zx = z iff x1 ∈ R(W̃)+ zx.

Hence our claim.

3.2 Exact Null Controllability

Definition 32 (Exact Null Controllability) The fractional equation(1.1) is said to be exactly null controllable on interval
J if for every initial functionχ ∈ C0 there exists a control u∈ L2[J,Z] such that the mild solution x(t) of the equation
satisfies x(b) = 0.

Theorem 4.Assume that the hypotheses (H1) - (H4) hold and the linear operator W is not compact. Then, the equation

(1.1) is exactly null controllable on J provided̂C
[
1+ N̂M2M3

]
< 1, whereĈ= 2CM4Ê.

Proof.For proving the exact null controllability of the equation (1.1), we follow the similar proof of Theorem2 after
replacingx1 = 0. Then, the exact null controllability of the equation (1.1) onJ follows with controlux(t), which is defined
by (3.3) with x1 = 0.

Moreover, ifW is a compact linear operator, then Theorem3 implies the null controllability of the equation (1.1) on
intervalJ providedzx ∈ R(W̃).

4 Example

Consider the following nonlocal Sobolev type functional differential equation of fractional order




∂ α
t

(
z(t,ξ )− zξ ξ (t,ξ )

)
−a(t,ξ ) ∂ 2

∂ξ 2 z(t,ξ ) = F (t,z(t,ξ ),zt )+

∫ t

0
a1(t,s)e

−z(s,ξ )ds+wµ(t,ξ ),

z(t,0) = z(t,π) = 0,
h0(z(θ ,ξ )) = φ0(ξ ), θ ∈ [−τ,0], t ∈ [0,1] = J, ξ ∈ [0,π ],

(4.1)

where∂ α
t is Caputo partial derivative of orderα ∈ (0,1), w> 0 is a constant and

(i) a(t,ξ ) is a continuous function anda(t,ξ )≥ δ0 (δ0 > 0), for all ξ ∈ [0,π ].
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(ii) For all t,s∈ J andξ ∈ [0,π ] there exist constantsC> 0 andγ ∈ (0,1) such that| a(t,ξ )−a(s,ξ ) |≤C | t−s|γ , where
C,γ are independent int.

(iii) For eacht ∈ J, a1(t, .) ∈ L1(J) and
∫ t

0
a1(t,s)ds:= ã1(t) ∈ L

1
q2 [J,R+], whereq2 ∈ (0,α)∩ (0,γ).

(iv) µ : J× (0,π)→ (0,π) is continuous int.

LetX =Y=L2([0,π ]) be the space of functions which are square integrable. We define the operatorsA : D(A)⊂X →Y
andE : D(E)⊂ X →Y as follows.

Aw=−w′′ and Ew= w−w′′,

where each domainD(A) andD(E) is given by
{

w∈ X : w,w′ are absolutely continuous,w′′ ∈ X andw(0) = w(π) = 0
}
.

Then,A andE can be written respectively as [26]

Aw=
∞

∑
n=1

n2 < w,wn > wn, w∈ D(A),

Ew=
∞

∑
n=1

(1+n2)< w,wn > wn, w∈ D(E),

wherewn(ξ ) =
( 2

π
)1/2

sin(nξ ), n= 1,2, ......., is the orthogonal set of eigenvectors ofA. Also, forw∈ X [26],

E−1w=
∞

∑
n=1

1
1+n2 < w,wn > wn,

−AE−1w=
∞

∑
n=1

−n2

1+n2 < w,wn > wn,

T(t)w=
∞

∑
n=1

e

(
−n2

1+n2

)
t
< w,wn > wn.

It is easy to see that−AE−1 is a bounded linear operator fromY toY,
∥∥E−1

∥∥≤ 1
4 and‖T(t)‖≤ e−t for all t ≥ 0. Moreover,

by using the fact thatR(λ ,−AE−1)w=
∫ ∞

0
e−λ tT(t)w for w∈Y (see [21]), one can prove that

∥∥R(λ ,−AE−1)
∥∥ ≤ 1

1+λ ,

whereλ = ℜ(λ ) = n2

1+n2 > 0. Hence, the semigroupT(t) generated by linear operator−AE−1 is an analytic semigroup.

Since the eigenvalues ofE−1 areλn =
1

1+n2 ,n= 1,2, ....., and lim
n→∞

λn = 0, therefore, the linear operatorE−1 is compact

[26].
Now, we definex(t)(ξ ) = z(t,ξ ) andxt = zt (θ , .), that is(x(t + θ ))(ξ ) = z(t + θ ,ξ ) for t ∈ J, ξ ∈ [0,π ] andθ ∈

[−τ,0]. Also, we definef : J×X×C0 →Y, g : ∆ ×X×C0 →Y (∆ = {(t,s) ∈ J× J : t ≥ s}), Bu: J→X, A(t) : D(A(t))⊂
X →Y, Q(t) : Y →Y andh̃ : C0 → X by

f (t,x(t),xt )(ξ ) = F (t,z(t,ξ ),zt (θ ,ξ )),

g(t,s,x(s),xs)(ξ ) = a1(t,s)e
−x(s)(ξ ),

(Bu)(t)(ξ ) = wµ(t,ξ ),
A(t)x(ξ ) = a(t,ξ )Ax(ξ ),
−Q(t)x(ξ ) =−A(t)E−1x(ξ ) =−a(t,ξ )AE−1x(ξ ),
h̃(ψ)(ξ ) = h0(ψ(t,ξ )).

for t ∈ J andξ ∈ [0,π ]. Also, hereD(A(t)) = D(A), for t ∈ J.
Now, we can write (4.1) in an abstract form





C
0Dα

t [Ex(t)]+A(t)x(t) = f (t,x(t),xt )+
∫ t

0
g(t,s,x(s),xs)ds+Bu(t), t ∈ J,

h̃(x0) = φ0.
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Note that boundary condition is absorbed into the definitionof domain of operatorA(t) and the requirement thatx(t) ∈
D(A), for all t ∈ J. Moreover, under the points (i) - (ii) and due to the definitions of operators−AE−1,−Q(t) andT(t), it
can be proved that the conditions (B1) - (B2) hold for−Q(t).

Let ‖B‖ ≤ M2 and the linear operatorW defined by

(Wu)(ξ ) = w

[∫ 1

0
E−1ψ(1−η ,η)µ(η ,ξ )dη +

∫ 1

0

∫ η

0
E−1ψ(1−η ,η)ϕ(η ,s)µ(s,ξ )η

]
, for ξ ∈ (0,π),

induces an invertible operator̃W such that
∥∥∥W̃−1

∥∥∥
BL[R(W̃),L2[J,Z]/KerW]

≤ M3.

Next, we considerf (t,x(t),xt ) = x(t) + sin(xt). Then, it is easy to see that the nonlinear mapsf , g are satisfying
hypotheses (H2) along withL f (t) = 1,L∗

g(t,s) = a1(t,s) andLg(t) = ã1(t). Now, it is easy to compute the constantsN̂,M4

andĈ. Let h̃ be defined bỹh(ψ)(x) =
∫ 0

−τ
l(s)ψ(s)(x)ds, l ∈ L1([−τ,0]). Then, we can write (4.1) as a fractional delay

differential equation of the form (1.1), whereh(x0)(θ ) ≡ h̃(x0) for x0 ∈ C0, θ ∈ [−τ,0] andφ(θ ) ≡ φ0 for θ ∈ [−τ,0].

Now we can takeχ(t) = 1
kφ0 on [−τ,0] with k=

∫ 0

−τ
l(s)ds 6= 0. Hence, the hypotheses (H1), (H2) and (H3) hold. Since

E−1 is compact, therefore, the hypothesis (H4) holds and the linear operatorW is compact. Now, if̂C
[
1+ N̂M2M3

]
< 1,

then one can apply the Theorem3 to see the controllability of considered fractional evolution equation of Sobolev type.
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