Notes on Generalized Fermat Numbers

H. Eleuch
Max Planck Institute for Physics of Complex Systems, 01187 Dresden, Germany

Received: Jan. 13, 2012; Revised April 28, 2012; Accepted 1 March 2012
Published online: 1 Sep. 2012

Keywords: Prime numbers, Fermat numbers

1. Introduction

There are two different definitions of generalized Fermat numbers (GFN), one of which is more general than the other. In [5], Ribenboim defines a generalized Fermat number as a number of the form $F_{a, n}=a^{2^{n}}+1$ with $a>2$, while Riesel ([6]) further generalizes, defining it to be a number of the form $a^{2^{n}}+b^{2^{n}}$. Both definitions generalize the usual Fermat numbers $F_{n}=2^{2^{n}}+1$. The only known Fermat primes are $F_{0}, F_{1}, F_{2}, F_{3}$ and F_{4}. Generalized Fermat numbers $F_{a, n}$ can be prime only for even a. It is generally expected that there are an infinite number of primes of this form for each n. In fact, this is a consequence of the famous "Hypothesis H" in 1958 of Sierpiński and Schinzel. In 1962, Bateman and Horn indicated a quantitative form of "Hypothesis H" which could be used to predict the number of primes for given polynomials [1]. Many of the largest known prime numbers are generalized Fermat numbers. The largest known as of January 2009 is $24518^{2^{18}}+1$ (http://primes.utm.edu/ primes/ page.php?id=84401), which has 1150678 decimal digits. The following table gives the first few generalized Fermat primes for various even bases a :

a	prime $a^{2^{n}}+1$
2	$5,17,257,65537,4294967297, \ldots$
4	$17,257,65537,4294967297,18446744073709551617 \ldots$
6	$37,1297,1679617,2821109907457$,

Note that if $a=\alpha^{\beta}$, then $F_{a, n}=\alpha^{\beta 2^{n}}+1$ and it can be shown that if β takes the form $\beta=(2 \gamma+1) 2^{k}$ for some $k \in N$ and $\gamma \in N \backslash\{0\}$, then

$$
\alpha^{(2 \gamma+1) 2^{k}}+1 \equiv 0\left(\quad \bmod \alpha^{2^{k}}+1\right)
$$

and hence $\alpha^{\beta}+1$ is not prime. Then the primality of $F_{a, n}$ implies that β takes the form $\beta=2^{k}$ and in this case $F_{a, n}=a^{2^{n}}+1=\alpha^{2^{n+k}}+1=F_{\alpha, n+k}$. Then we can consider define GFN $F_{a, n}$ for a particular choice of a, that is a is even and not of the α^{β} where α and β are positive integers with $\alpha, \beta \geq 2$. In this paper we shall focus our study on the properties of GFN of this form.

2. Divisibility and properties of GFN

We begin this section by recalling some results

Lemma 2.1

Let $n, k \in N^{*}$, then the following are equivalent i. $X^{n}+1 \equiv 0\left(\bmod X^{k}+1\right)$
ii. $n \equiv 0 \bmod k$ and $\frac{n}{k}$ is an odd positive integer.

Proof: If we set $n=q k+r$ with $0 \leq r<k$, then the result follows from the following rule:
$X^{n}+1=\left(X^{k}+1\right) \sum_{j=1}^{q}(-1)^{j-1} X^{n-j k}+(-1)^{q} X^{r}+1$.

Corollary 2.2

Let $n, k \in N^{*}$ and assume that
i. $X^{n}+1 \equiv 0\left(\bmod X^{k}+1\right)$ for some integer $1 \leq$ $k<n$ then $n \neq 2^{p}$ for all $p \in N^{*}$
ii. Let $n \in N^{*}$, if for any integer k with $2 \leq k<n$, one has $X^{n}+1 \neq 0\left(\bmod X^{k}+1\right)$, then n is prime or $n=2^{p}$ for some $p \in N^{*}$.

[^0]Proof: i. If $X^{n}+1 \equiv 0\left(\bmod X^{k}+1\right)$, then by the preceding Lemma, we have $n=(2 \alpha+1) k$, now let $k=$ $2^{p_{1}} k_{1}$ with k_{1} is an odd integer. Then if $n=2^{p}$ for some p, we must have $(2 \alpha+1) k_{1}=2^{p-p_{1}}$ and hence $p-p_{1}=$ $\alpha=0$ and $k_{1}=1$, that is $n=k$ which is a contradiction.
ii. Suppose that for any integer k with $k, 2 \leq k<n$, one has $X^{n}+1 \neq 0\left(\bmod X^{k}+1\right)$ and write $n=k q+r$ with $0 \leq r<k$. Again by the previous Lemma we must have $r \neq 0$ and hence n is prime or $r=0$ and for any divisor k of n one has $\frac{n}{k}$ is not an odd integer, that is each divisor of n is even and hence n takes the form $n=2^{p}$ for some $p \in N^{*}$.

Now we give the following

Lemma 2.3

Let $k, n \in N$ with $k \neq n$ and $a \in N$, then

$$
\operatorname{gcd}\left(a^{2^{k}}+1, a^{2^{n}}+1\right)=\left\{\begin{array}{l}
1, \text { if } a \text { is odd } \\
2, \text { if } a \text { is even }
\end{array}\right.
$$

Proof: Let $n, k \in N^{*}$, with $k \leq n$ then we have

$$
a^{2^{n}}+1=\left(a^{2^{k}}+1\right) \sum_{j=1}^{2^{n-k}}(-1)^{j-1} a^{2^{n}-j 2^{k}}+2
$$

Thus, it follows that

$$
\begin{gathered}
\operatorname{gcd}\left(a^{2^{n}}+1, a^{2^{k}}+1\right)=\operatorname{gcd}\left(a^{2^{k}}+1,2\right) \\
=\left\{\begin{array}{l}
1, \text { if } a \text { is even } \\
2, \text { if } a \text { is odd }
\end{array}\right.
\end{gathered}
$$

Consider the set

$$
\begin{gathered}
E=\left\{a \in 2 N, a \geq 2, \text { and } a \neq \alpha^{\beta}\right. \\
\text { where } \alpha, \beta \in N, \alpha \geq 2, \beta \geq 2\} .
\end{gathered}
$$

Then we can show the following

Proposition 2.4

Any odd prime number p can be written in a unique way of the form $p=a^{n}+1$ where $a \in E$ and $n \in N \backslash\{0\}$.

Proof: Set $x=p-1$, and write $x=2^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$ be the decomposition of x into prime factors. Note that $k_{1} \geq 1$, since x is even. Put $d=\operatorname{gcd}\left(k_{1}, \ldots, k_{r}\right)$, then one has the following two cases.

Case 1: $d \geq 2$
Then, we write

$$
x=\left(2^{\frac{k_{1}}{d}} \prod_{i=2}^{r} p_{i}^{\frac{k_{i}}{d}}\right)^{d} .
$$

It is clear that $a=2^{\frac{k_{1}}{d}} \prod_{i=2}^{r} p_{i}^{\frac{k_{i}}{d}} \in E$ and hence $p=$ $a^{n}+1$ where $n=d$.

Case 2: $d=1$
In this case, we have $p=(p-1)^{1}+1$ and $p-1 \in E$.
Now let p be an odd prime number and suppose that we can write $p=a^{n}+1=b^{m}+1$, where $a, b \in E$ and $n, m \in N \backslash\{0\}$. This implies that $a^{n}=b^{m}$ and hence $a=b^{\frac{m}{n}} \in E$ or $b=a^{\frac{n}{m}} \in E$ which show that $n=m$ and $a=b$.

Remark 2.1

Any positive integer $N>2$ can be written in a unique way of the form

$$
N=a^{m}+1,
$$

where m is a natural number and a is not of the form α^{β} with $\alpha, \beta \geq 2$.

Now we see from Proposition 2.4, that if p is an odd prime number then p is of the form $p=a^{m}+1$ where $a \in E$. On the other hand if $m=2^{n}(2 \gamma+1)$ for some positive integer γ then $a^{m}+1 \equiv 0\left(\bmod a^{2^{n}}+1\right)$, and hence $a^{m}+1$ is not prime. Thus if we let $m=2^{n}$, then the family $\left\{a^{2^{n}}+1\right\}_{a \in E, n \in N}$ may contains prime numbers and together with proposition 2.4 we have the following:

Corollary 2.5

If $p>2$ is a prime number then p is a generalized Fermat number $F_{a, n}$ where $a \in E$. From now on we shall focus our study on this family of numbers $\left\{a^{2^{n}}+1\right\}$ with $a \in E$.

Lemma 2.6

If $a^{2^{n}}+1 \equiv 0(\bmod q)$ then for any $k \in N$, one has

$$
a^{2^{n+k}}+1 \equiv 2(\bmod q)
$$

Proof: Let $F_{a, n}=a^{2^{n}}+1$, then one can show that

$$
F_{a, n}-2=(a-1) F_{a, 1} \ldots F_{a, n-1}
$$

Now if $F_{a, n} \equiv 0(\bmod q)$, then for any $k \in N$

$$
F_{a, n+k} \equiv 2(\quad \bmod q)
$$

Lemma 2.7

Let $a \in E$ and assume that for some integer α one has $a^{2^{n}}+1 \equiv 0(\bmod \alpha)$, then for any integer number k one has $(a+2 k \alpha)^{2^{n}}+1 \equiv 0(\bmod \alpha)$.

Proof: For any integer number k, one has $a+2 k \alpha \equiv a($ $\bmod \alpha)$ and hence $(a+2 k \alpha)^{2^{n}}+1 \equiv a^{2^{n}}+1(\bmod \alpha)$, then if $a^{2^{n}}+1 \equiv 0(\bmod \alpha)$ it follows that

$$
(a+2 k \alpha)^{2^{n}}+1 \equiv 0(\quad \bmod \alpha)
$$

For example, since F_{5} has the prime factor 641 , then

$$
2^{32}(1+641 k)^{32}+1 \equiv 0(\bmod 641)
$$

and hence $\left\{F_{2+1282 k, 5}\right\}_{k \in N}$ are not prime numbers. Similarly we can generate a series of non prime numbers arising from the non prime known Fermat numbers F_{6}, F_{7}, \ldots.

Corollary 2.8

Suppose that there exist some even positive integer β, a positive integer s which is not of the form $s=2^{r}(r \neq 0)$ and $k \in N \backslash\{0\}$ such that

$$
\beta^{s} \pm 2 k\left(\beta^{2^{n}}+1\right)=a \in E
$$

then $a^{2^{n}}+1$ is not prime.
Moreover $\beta^{2^{n}}+1$ divides $a^{2^{n}}+1$.
Here we give examples of non prime GFN. For instance if $s=2^{n}+1$ we obtain

$$
\begin{gathered}
\left(\beta^{2^{n}}(\beta-2 k)-2 k\right)^{2^{n}}+1 \equiv 0\left(\bmod \beta^{2^{n}}+1\right), \\
n \in N, k \in Z \backslash\{0\} .
\end{gathered}
$$

For instance, take $\beta=6$ and $k=2$, then $6^{2^{n}}+1 \mid 2^{2^{n}}(2 \times$ $\left.6^{2^{n}}-4\right)^{2^{n}}+1$ forall n. Similarly we can see that

$$
\left(4 \times 10^{2^{n}}-6\right)^{2^{n}}+1 \equiv 0\left(\bmod 10^{2^{n}}+1\right)
$$

and so on...

3. Conclusion

In this paper, we have shown that we can raffine our research for prime numbers within generalized Fermat numbers $F_{a, n}=a^{2^{n}}+1$ for a class of even positive integers a which are not of the form α^{β} where $a, \beta \geq 2$.

Finally our believe that the following conjecture is true

Conjecture

If $F_{a, n}$ is not prime for some n then $F_{a, k}$ is not prime for any k with $k \geq n$.

Acknowledgment

The author is grateful to Dr Béchir Dali for useful discussions.

References

[1] D. Broadhurst, "GFN Conjecture." Post to primeform user forum. Apr. 1, 2006.
[2] P. T. Bateman and R. A. Horn, A Heuristic Asymptotic Formula Concerning the Distribution of Prime Numbers, Math. Comp. 16 (1962), pp. 363-367. MR 26:6139.
[3] D. Harvey and Y. Gallot, Distribution of Generalized Fermat numbers, Math. Comp. Vol. 71, No. 238, pp.825832 (2001).
[4] D. Harvey and W. Keller, Factors of Generalized Fermat numbers, Math. Comp. Vol. 64, No. 209, pp.397-408 (1995).
[5] P. Ribenboim, The New Book of Prime Number Records. New York: Springer-Verlag, 1996.
[6] H. Riesel, Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser (1994).
[7] A. Witno, On Generalized fermat numbers $3^{2^{n}}+1$. Applied Math. \& Information sciences, Vol. 4, No. 3, pp. 307313 (2010).

[^0]: * Corresponding author: e-mail: heleuch@fulbrightmail.org

