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Abstract: This paper proposes a new fuzzy neural network based reinforcement adaptive iterative learning controller for a class of
nonlinear systems. Different from some existing reinforcement learning schemes, the reinforcement adaptive iterative learning con-
troller has the advantages of rigorous proofs without using an approximation of the plant Jacobian. The critic is appended into the
reinforcement adaptive iterative learning controller to generate the simple discrete reinforcement signal, which provides a satisfaction
about the tracking performance. In addition, the reinforcement signal can be further applied in the weight adaptation rules. Iterative
learning components of the reinforcement adaptive iterative learning controller are designed to compensate for the uncertainties of
plant nonlinearities. The overall adaptive scheme guarantees all adjustable parameters and the internal signals remain bounded for all
iterations. Moreover, the norm of tracking error vector at each time instant will asymptotically converge to a tunable residual set as
iteration goes to infinity even the initial state error exists. Finally, a simulation result is given to demonstrate the learning performance
of the fuzzy neural network based reinforcement adaptive iterative learning controller.
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1. Introduction

The neural or fuzzy adaptive control is a kind of the control
approach which is capable of handling the system whose
nonlinearity is not linearly parameterizable [1]–[3]. In ad-
dition to the aforementioned works, it is worth noting that
there is an interesting design configuration, i.e., the neu-
ral network or fuzzy system based reinforcement learning
control with the critic (evaluation network) and the con-
troller (action network). The objective of the neural net-
work or fuzzy system based reinforcement learning con-
trol [4]–[9] is to discover a control policy, a mapping from
states to control actions, through stochastic exploration of
the space of possible control actions. Similar to human
and animal, if the selected control actions result in a good
learning performance, then the reinforcement learning con-
trol is reward; otherwise it should be penalized. In contrast
to other forms of learning approaches, there is no super-
visor who teaches the reinforcement learning control what
the target actions should be taken. Therefore, only perfor-

mance measurement in terms of failure or success can be
used to find which control actions produce the maximum
reward by using trial and error. The reinforcement signal
in [4], a discrete number, which is usually -1 means a fail-
ure and 1 or 0 to express a success. Also, a real-valued
reinforcement signal in [5]–[9] that indicates a more de-
tailed and continuous degree of failure or success. The
main problem of the fuzzy neural network (FNN) based re-
inforcement learning control [4]–[9] is that less Lyapunov
stability analysis are applied to guarantee its convergence
and it is a time-consuming control scheme.

For controlling the nonlinear systems with repeated
tracking control or periodic disturbance rejection, itera-
tive learning control (ILC) has become one of the most
effective control strategies. The ILC system improves the
control performances by some self-tuning processes with-
out using accurate system models and can be applied to
a lot of practical applications [10]-[12] such as robotics,
servo motors, etc.. One of the main design concepts for
ILC algorithms, called PID-type ILC, updates the control
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input directly by a learning mechanism using the informa-
tion of error and input in the previous iteration. Another
interesting ILC algorithm, called adaptive ILC, tunes the
control parameters but not the control input itself between
successive iterations [13]-[15]. Recently, adaptive nonlin-
ear compensation ILCs by using fuzzy system or neural
network approximation technique were applied to iterative
learning control problems [16]–[18]. However the rein-
forcement adaptive ILC (reinforcement AILC) which is a
combination of AILC with the reinforcement learning con-
trol, has never been presented in the literature. In this pa-
per, we aim to present the FNN based reinforcement AILC
for tracking control of unknown nonlinear systems. The
critic is appended into the reinforcement AILC to gener-
ate the discrete reinforcement signal, which provides a sat-
isfaction about the tracking performance. In addition, the
reinforcement signal can be further applied in the weight
adaptation rules. The FNN is used as an universal approx-
imator to design the iterative learning component. Unfor-
tunately, the optimal FNN parameters for a best approxi-
mation is generally unavailable. They will be tuned during
the iteration processes in order to guarantee stability and
learning performance. Based on the Lyapunov-like analy-
sis, we show that all adjustable parameters as well as the
internal signals will remain bounded. Moreover, the norm
of tracking error vector will asymptotically converge to a
tunable residual set as iteration goes to infinity even there
exists variable initial state errors.

This paper is organized as follows. The problem for-
mulation will be given in section 2. Section 3 describes the
construction of reinforcement learning signal. The design
concept of the proposed FNN based reinforcement AILC
is presented in section 4. Analysis of stability and learning
performance will be studied extensively in section 5. To
clarify the performance of the proposed scheme, a simu-
lation example is presented in section 6. Finally, a conclu-
sion is made in section 7.

2. Problem Formulation

Consider a class of nonlinear systems which can repet-
itively perform a control task over a finite time interval
[0, T ] as follows

ẋj
1(t) = xj

2(t)

ẋj
2(t) = xj

3(t)
...

ẋj
n(t) = −f(Xj(t)) + b(Xj(t))uj(t) (1)

where Xj(t) = [xj
1(t), · · · , xj

n(t)]� ∈ IRn×1 × [0, T ] is
the state vector of the system, uj(t) is the control input,
f(Xj(t)) and b(Xj(t)) are unknown real continuous non-
linear functions of states. Here, j and t denote the index of
iteration number and time variable. Given a specified de-
sired trajectory Xd(t) = [xd(t), ẋd(t), · · · , x(n−1)

d (t)]�,
t ∈ [0, T ] and a possible initial resetting error Xd(0) �=

Xj(0) for all j ≥ 1, the control objective is to force the
state vector Xj(t) to follow some specified desired trajec-
tory Xd(t) for all t ∈ [0, T ] as close as possible. In order
to achieve the above control objective, some assumptions
on the nonlinear system and desired trajectory are given as
follows :

(A1)The nonlinear functions f(Xj(t)) and b(Xj(t)) are
bounded if Xj(t) is bounded.

(A2)There exists a positive but unknown lower bound bL,
such that 0 < bL ≤ b(Xj(t)).

(A3)The desired state trajectoryXd(t) = [xd(t), ẋd(t), · · · ,
x

(n−1)
d (t)]� is bounded.

(A4)Let the state errors ej
1(t), · · · , ej

n(t) be defined as ej
1(t)

= xj
1(t) − xd(t), e

j
2(t) = ẋj

1(t) − ẋd(t), · · · , ej
n(t) =

x
(n−1),j
1 (t)−x(n−1)

d (t). The initial state errors at each
iteration are not necessarily zero, small and fixed, but
assumed to be bounded.

3. Reinforcement Fuzzy-Neural Adaptive
Iterative Learning Controller

3.1. Construction of Reinforcement Learning
Signal

In order to meet the control objective, we first define an
extended error function as follows
sj(t) = c1e

j
1(t)+ c2e

j
2(t)+ · · ·+ cn−1e

j
n−1(t)+ ej

n(t)(2)
where c1, · · · , cn−1 are the coefficients of a Hurwitz poly-
nomial Δ(D) = Dn−1 +cn−1D

n−2 + · · ·+c1. It is noted
that there exists a known constant εj such that the initial
value of sj(t) will satisfy |sj(0)| = |c1ej

1(0) + c2e
j
2(0) +

· · · + ej
n(0)| ≡ εj by assumption (A4). To overcome the

uncertainty from initial state errors, the performance mea-
surement sj

φ(t) is introduced as follows :

sj
φ(t) = sj(t) − φj(t)sat

(
sj(t)
φj(t)

)
φj(t) = εje−kt, k > 0 (3)
where sat is the saturation function defined as

sat
(
sj(t)
φj(t)

)
=

⎧⎨⎩
1 if sj(t) > φj(t)

sj(t)
φj(t) if |sj(t)| ≤ φj(t)
−1 if sj(t) < −φj(t)

(4)

and φj(t) is the width of boundary layer. Note that φj(t) is
designed to decrease along time axis with the initial con-
dition chosen as φj(0) = εj for jth iteration and 0 <
εje−kT ≤ φ(t) ≤ εj ,∀t ∈ [0, T ], j ≥ 1. According to
the definition of (3), sj

φ(t) will satisfy sj
φ(0) = 0 for all

j ≥ 1. The critic for reinforcement signal Rj(t) in term
of the performance measurement can now be defined as
follows :

Rj(t) = sgn
(
sj

φ(t)
)

=

⎧⎪⎨⎪⎩
1 if sj

φ(t) > 0
0 if sj

φ(t) = 0
−1 if sj

φ(t) < 0
(5)
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3.2. Design of Iterative Learning Controller

We now propose a reinforcement AILC for the nonlinear
systems (1) satisfying assumptions (A1)–(A4). The control
input at jth iteration is designed as follows :

uj(t) = uj
m(t) − (

ψj(t) + 1
)
Rj(t)|uj

m(t)| (6)

uj
m(t) = −ksj(t) −

n−1∑
i=1

cie
j
i+1(t) + x

(n)
d (t) + uj

L(t) (7)

where ψj(t) > 0 is a control parameter to be updated and
uj

L(t) is a control force designed to compensate for the
unknown nonlinearity f(Xj(t)) by using a fuzzy neural
network (FNN) as shown in Figure 1 (for detailed, please
see [16]).

G GG GG

∏ ∏ ∏

∑

•••••••••••••

•••••••••••••

Layer 1
(Input Layer)

Layer 2
(Premise Layer)

Layer 3
(Rule Layer)

Layer 4
(Output Layer)

G G•••••

••••• •••••

)(1 tx j )(tx j
n

)()4( tO
j

Figure 1 : Structure of the FNN

For this FNN, let O(4)(Xj(t),W j(t)), O(3)(Xj(t)) and
W j(t) denote the network output (output of layer 4), firing
strength of layer 3 (output of layer 3) and network weight
between layer 3 and layer 4, respectively at time t of the
jth iteration. In this paper, the FNN will take the form of

O(4)(Xj(t),W j(t)) = W j(t)�O(3)(Xj(t)) (8)

where W j(t) ∈ RM×1 with M being the numbers of rule
nodes, O(3)(Xj(t)) = [O(3)

1 (Xj(t)), · · ·, O(3)
M (Xj(t))]�

with elements O(3)
� (Xj(t)), � = 1, · · · ,M being deter-

mined by the selected membership functions. Note that
0 < O

(3)
� (Xj(t)) ≤ 1. It is well known that the FNN

(8) can uniformly approximate a real continuous nonlinear
function vector Xj on a compact set Ac ⊂ Rn×1. An im-
portant aspect of the above approximation property is that
there exist optimal weights W ∗ such that the function ap-
proximation error between the optimal O(4)(Xj(t),W ∗)
and f(Xj(t)) can be bounded by a prescribed constant θ∗
on the compact set Ac. More precisely, if we let f(Xj(t))
= O(4)(Xj(t),W ∗) + ε(Xj(t)), then the approximation
errors will satisfy ‖ε(Xj(t))‖ ≤ θ∗, ∀Xj ∈ Ac.

uj
L(t) is now designed by using the FNN in (8) as fol-

lows:

uj
L(t) = W j(t)�O(3)(Xj(t)) −Rj(t)θj(t) (9)

whereW j(t) ∈ RM×1 and θj(t) ∈ R are the fuzzy-neural
network parameters and additional robust control parame-
ter. The parameters W j(t) and θj(t), together with ψj(t)
in (6), will be tuned by suitable adaptive laws in order to
guarantee the signal boundedness in time domain and error
convergence in iteration domain. The adaptive laws com-
bining time domain and iteration domain adaptation with-
out deadzone or bounds of unknown parameters are pro-
posed as follows:

(1 − γ1)Ẇ j(t) = −γ1W
j(t) + γ1W

j−1(t)

− β1R
j(t)O(3)(Xj(t)) (10)

(1 − γ2)θ̇j(t) = −γ2θ
j(t)

+ γ2θ
j−1(t) + β2|Rj(t)| (11)

(1 − γ3)ψ̇j(t) = −γ3ψ
j(t) + γ3ψ

j−1(t)

+ β3|Rj(t)||uj
m(t)| (12)

with W j(0) = W j−1(T ), θj(0) = θj−1(T ), ψj(0) =
ψj−1(T ) for j ≥ 1, and 0 < γ1, γ2, γ3 < 1, β1, β2, β3 >
0. In these adaptive laws, γ1, γ2, γ3 and β1, β2, β3 are de-
fined as the weighting gains and adaptation gains, respec-
tively. For the first iteration, we set W 0(t) = W 0 and
θ0(t) = θ0 to be any constant (vector) and ψ0(t) = ψ0 >
0 to be a small positive number so that ψj(t) > 0,∀t ∈
[0, T ] and ∀j ≥ 1. (10), (11) and (12) will become pure
time-domain adaptive laws if γ1 = γ2 = 0 = γ3 = 0, or
pure iteration-domain adaptive laws if γ1 = γ2 = γ3 = 1.

4. Derivation of Error Equation

An error equation is required to analyze the stability and
convergence of the proposed iterative learning control sys-
tem. To begin with, the derivative of |sj

φ(t)| with respective
to time t is firstly computed as

d

dt
|sj

φ(t)|

= sgn
(
sj

φ(t)
)
ṡj

φ(t)

=

⎧⎪⎪⎨⎪⎪⎩
sgn

(
sj

φ(t)
)(

ṡj(t) − φ̇j(t)
)

if sj(t) > φj(t)
0 if |sj(t)| ≤ φj(t)

sgn
(
sj

φ(t)
)(

ṡj(t) + φ̇j(t)
)

if sj(t) < −φj(t)

= sgn
(
sj

φ(t)
)(

ṡj(t) − sgn
(
sj

φ(t)
)
φ̇j(t)

)
= sgn

(
sj

φ(t)
){ n−1∑

i=1

cie
j
i+1(t) − x

(n)
d (t) − f(Xj(t))

+ b(Xj(t))uj(t) − sgn
(
sj

φ(t)
)
φ̇j(t)

}
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= sgn
(
sj

φ(t)
){

−ksj(t) − sgn
(
sj

φ(t)
)
φ̇j(t)

}
+ sgn

(
sj

φ(t)
){ n−1∑

i=1

cie
j
i+1(t) − x

(n)
d (t) + ksj(t)

− f(Xj(t)) + b(Xj(t))uj(t)
}

(13)

Note that sgn
(
sj

φ(t)
)

in (5) can be rewritten as

sgn
(
sj

φ(t)
)

=

⎧⎨⎩ 1 if sj(t) > φj(t)
0 if |sj(t)| ≤ φj(t)

−1 if sj(t) < −φj(t)
(14)

and hence it can be easily shown that

sgn
(
sj

φ(t)
)
sat

(
sj(t)
φj(t)

)
=
(
sgn

(
sj

φ(t)
))2

(15)

using the definition of sat
(

sj(t)
φj(t)

)
in (4) and sgn

(
sj

φ(t)
)

in (14). The first term in the right hand side of equation
(13) can now be rewritten by using the fact of (15) as

sgn
(
sj

φ(t)
){

−ksj(t) − sgn
(
sj

φ(t)
)
φ̇j(t)

}
= sgn

(
sj

φ(t)
){

− ksj
φ(t) − kφj(t)sat

(
sj(t)
φj(t)

)
− sgn

(
sj

φ(t)
)
φ̇j(t)

}
= −k|sj

φ(t)| −
(
sgn

(
sj

φ(t)
))2 (

φ̇j(t) + kφj(t)
)

= −k|sj
φ(t)| (16)

Substituting (16) into (13), it yields

d

dt
|sj

φ(t)|

= −k|sj
φ(t)| + sgn

(
sj

φ(t)
){ n−1∑

i=1

cie
j
i+1(t) − x

(n)
d (t)

+ ksj(t) − f(Xj(t)) + b(Xj(t))uj(t)

}
(17)

If we apply the reinforcement signal Rj(t) in (5) and the
proposed controller uj(t) in (6) and (7) to (17), we have

d

dt
|sj

φ(t)|

= −k|sj
φ(t)| +Rj(t)

{
n−1∑
i=1

cie
j
i+1(t) − x

(n)
d (t) + ksj(t)

− f(Xj(t)) + uj(t) + (b(Xj(t)) − 1)uj(t)

}

= −k|sj
φ(t)| +Rj(t)

{
− (

ψj(t) + 1
)
Rj(t)|uj

m(t)|

+ (b(Xj(t)) − 1)uj(t) + uj
L(t) − f(Xj(t))

}
(18)

Investigating the second and third terms in the right hand
side of (18) by using assumption (A2), we have

Rj(t)

{
− (

ψj(t) + 1
)
Rj(t)|uj

m(t)| + (
b(Xj(t))

− 1
)× uj(t)

}

= Rj(t)

{
− b(Xj(t))

(
ψj(t) + 1

)
Rj(t)|uj

m(t)|

+ b(Xj(t))uj
m(t) − uj

m(t)

}
≤ −b(Xj(t))

(
ψj(t) + 1

) (
Rj(t)

)2 |uj
m(t)|

+ b(Xj(t))|Rj(t)||uj
m(t)| + |Rj(t)||uj

m(t)|
= −b(Xj(t))ψj(t)|Rj(t)||uj

m(t)| + |Rj(t)||uj
m(t)|

≤ −bLψj(t)|Rj(t)||uj
m(t)| + |Rj(t)||uj

m(t)|
= −bL

(
ψj(t) − 1

bL

)
|Rj(t)||uj

m(t)| (19)

where we use the fact that
(
Rj(t)

)2 = |Rj(t)|. The result
of (19) implies that (18) can be simplified as

d

dt
|sj

φ(t)| ≤ −k|sj
φ(t)| +Rj(t)

(
uj

L(t) − f(Xj(t))
)

− bL|uj
m(t)||Rj(t)|

(
ψj(t) − 1

bL

)
(20)

It is clear now that uj
L(t) and ψj(t) are designed to com-

pensate for the unknown nonlinear function f(Xj(t)) and
unknown constant 1

bL
respectively. If we define the param-

eter errors as W̃ j(t) = W j(t) −W ∗, θ̃j(t) = θj(t) − θ∗,
ψ̃j(t) = ψj(t) − 1

bL
and substitute (9) into (20), we can

get the following error equation for analyzing the stability
and convergence of the iterative learning control system,

d

dt
|sj

φ(t)|

≤ −k|sj
φ(t)| +Rj(t)

{
W̃ j(t)�O(3)(Xj(t)) −Rj(t)θj(t)

− εj(t)
}
− bL|uj

m(t)||Rj(t)|ψ̃j(t)

≤ −k|sj
φ(t)| +Rj(t)W̃ j(t)�O(3)(Xj(t)) − |Rj(t)|θ̃j(t)

− bL|uj
m(t)||Rj(t)|ψ̃j(t) (21)

5. Analysis of Stability and Convergence

In order to prove stability and convergence of the proposed
reinforcement AILC system, we first give the following
two facts.
Fact 1 : The proposed reinforcement AILC system guar-
antees that all the control parameters and internal signals
are bounded for the first iteration.
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Choose a Lyapunov-like positive function as

V j
a (t) = |sj

φ(t)| + (1 − γ1)
2β1

W̃ j(t)�W̃ j(t)

+
(1 − γ2)

2β2
(θ̃j(t))2 +

(1 − γ3)bL
2β3

(ψ̃j(t))2 (22)

and compute its derivative with respective to time t along
(21), (10), (11) and (12) as follows,
V̇ j

a (t)

=
d

dt
|sj

φ(t)| + (1 − γ1)
β1

W̃ j(t)� ˙̃
W

j

(t)

+
(1 − γ2)
β2

θ̃j(t) ˙̃
θ

j

(t) +
(1 − γ3)bL

β3
ψ̃j(t) ˙̃

ψ
j

(t)

≤ −k|sj
φ(t)| +Rj(t)W̃ j(t)�O(3)(Xj(t))

− |Rj(t)|θ̃j(t) − bL|uj
m(t)||Rj(t)|ψ̃j(t)

+
1
β1
W̃ j(t)�(1 − γ1)

˙̃
W

j

(t)

+
1
β2
θ̃j(t) (1 − γ2)

˙̃
θ

j

(t)

+
bL
β3
ψ̃j(t)[(1 − γ3)

˙̃
ψ

j

(t) (23)

Since −γ1W
j(t)+γ1W

j−1(t) = −γ1W̃
j(t)+γ1W̃

j−1(t),
−γ2θ

j(t)+γ2θ
j−1(t) = −γ2θ̃

j(t)+γ2θ̃
j−1(t) and −γ3ψ

j(t)
+ γ3ψ

j−1(t) = −γ3ψ̃
j(t)+ γ3ψ̃

j−1(t), V̇ j
a (t) in (23) can

be simplified by using (10)–(12) as

V̇ j
a (t)

≤ −k|sj
φ(t)|

− γ1

β1
W̃ j(t)�W̃ j(t) +

γ1

β1
W̃ j(t)�W̃ j−1(t)

− γ2

β2

(
θ̃j(t)

)2

+
γ2

β2
θ̃j(t)θ̃j−1(t)

− γ2bL
β2

(
ψ̃j(t)

)2

+
γ2bL
β2

ψ̃j(t)ψ̃j−1(t)

= −k|sj
φ(t)| − γ1

2β1
W̃ j(t)�W̃ j(t) − γ2

2β2

(
θ̃j(t)

)2

− γ3bL
2β3

(
ψ̃j(t)

)2

− γ1

2β1

(
W̃ j(t) − W̃ j−1(t)

)�
×
(
W̃ j(t) − W̃ j−1(t)

)
− γ2

2β2

(
θ̃j(t) − θ̃j−1(t)

)2

− γ3bL
2β3

(
ψ̃j(t) − ψ̃j−1(t)

)2

+
γ1

2β1
W̃ j−1(t)�W̃ j−1(t) +

γ2

2β2

(
θ̃j−1(t)

)2

+
γ3bL
2β3

(
ψ̃j−1(t)

)2

≤ V j−1
b (t) (24)

where V j−1
b (t) = γ1

2β1
W̃ j−1(t)�W̃ j−1(t)+ γ2

2β2

(
θ̃j−1(t)

)2

+ γ3bL

2β3

(
ψ̃j−1(t)

)2

. Since W̃ 0(t) = W 0(t) − W ∗ =

W 0−W ∗ ≡ W̄ 0, θ̃0(t) = θ0(t)−θ∗ = θ0−θ∗ ≡ θ̄0 and
ψ̃0(t) = ψ0(t)− 1

bL
= ψ0 − 1

bL
≡ ψ̄0 are bounded for all

t ∈ [0, T ] so that if j = 1, (24) can be rewritten as

V̇ 1
a (t)

≤ V 0
b (t) =

γ1

2β1
W̄ 0�W̄ 0 +

γ2

2β2
(θ̄0)2 +

γ3bL
2β3

(ψ̄0)2(25)

Note that the initial value V 1
a (0) is bounded since s1φ(0) =

0, W̃ 1(0) = W 1(0) − W ∗ = W 0(T ) − W ∗ = W̄ 0,
θ̃1(0) = θ1(0) − θ∗ = θ0(T ) − θ∗ = θ̄0 and ψ̃1(0) =
ψ1(0) − 1

bL
= ψ0(T ) − 1

bL
= ψ̄0. Together with the re-

sult of (25), it implies V 1
a (t), s1φ(t), W̃ 1(t), θ̃1(t), ψ̃1(t) ∈

L∞e[0, T ] and hence, s1(t) (by (3)), ė11(t) · · · , ė1n(t) (by
(2)), u1(t) (by (6) and (7)), Ẇ 1(t) (by (10)), θ̇1(t) (by
(11)), ψ̇1(t) (by (12)) ∈ L∞e[0, T ].
Fact 2 : The proposed reinforcement AILC system guaran-
tees that W̃ j(T ), θ̃j(T ), ψ̃j(T ) are bounded for all j ≥ 1.

Define a positive function V j(T ) as

V j(T )

=
∫ T

0

[
γ1

2β1
W̃ j(t)�W̃ j(t) +

γ2

2β2

(
θ̃j(t)

)2

+
γ3bL
2β3

(
ψ̃j(t)

)2
]
dt+

1 − γ1

2β1
W̃ j(T )�W̃ j(T )

+
1 − γ2

2β2

(
θ̃j(T )

)2

+
(1 − γ3)bL

2β3

(
ψ̃j(T )

)2

(26)

Using the technique of integration by parts, we have

(1 − γ1)
2β1

W̃ j(T )�W̃ j(T )

=
(1 − γ1)
β1

∫ T

0

W̃ j(t)� ˙̃
W

j

(t)dt+
(1 − γ1)

2β1

× W̃ j(0)�W̃ j(0)
(1 − γ2)

2β2

(
θ̃j(T )

)2

=
(1 − γ2)
β2

∫ T

0

θ̃j(t) ˙̃θ
j

(t)dt+
(1 − γ2)

2β2

(
θ̃j(0)

)2

(1 − γ3)bL
2β3

(
ψ̃j(T )

)2

=
(1 − γ3)bL

β3

∫ T

0

ψ̃j(t) ˙̃
ψ

j

(t)dt+
(1 − γ3)bL

2β3

(
ψ̃j(0)

)2

The difference between V j(T ) and V j−1(T ) can be de-
rived by the facts of W̃ j(0) = W̃ j−1(T ), θ̃j(0) = θ̃j−1(T )
and ψ̃j(0) = ψ̃j−1(T ) as follows :

V j(T ) − V j−1(T )

=
∫ T

0

[
γ1

2β1

(
W̃ j(t)�W̃ j(t) − W̃ j−1(t)�W̃ j−1(t)

)
+

γ2

2β2

((
θ̃j(t)

)2

−
(
θ̃j−1(t)

)2
)
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+
γ3bL
2β3

((
ψ̃j(t)

)2

−
(
ψ̃j−1(t)

)2
)]

dt

+
(1 − γ1)
β1

∫ T

0

W̃ j(t)� ˙̃
W

j

(t)dt

+
(1 − γ1)

2β1
W̃ j(0)�W̃ j(0)

− (1 − γ1)
2β1

W̃ j−1(T )�W̃ j−1(T )

+
(1 − γ2)
β2

∫ T

0

θ̃j(t) ˙̃θ
j

(t)dt

+
(1 − γ2)

2β2

(
θ̃j(0)

)2

− (1 − γ2)
2β2

(
θ̃j−1(T )

)2

+
(1 − γ3)bL

β3

∫ T

0

ψ̃j(t) ˙̃
ψ

j

(t)dt

+
(1 − γ3)bL

2β3

(
ψ̃j(0)

)2

− (1 − γ3)bL
2β3

(
ψ̃j−1(T )

)2

=
∫ T

0

[
− γ1

2β1

(
W̃ j(t) − W̃ j−1(t)

)�
×
(
W̃ j(t) − W̃ j−1(t)

)
− γ2

2β2

(
θ̃(t) − θ̃j−1(t)

)2

− γ3bL
2β3

(
ψ̃(t) − ψ̃j−1(t)

)2
]
dt

+
∫ T

0

[
−Rj(t)W̃ j(t)�O(3)(Xj(t))

+ |Rj(t)|θ̃j(t) + bL|uj
m(t)||Rj(t)|ψ̃j(t)

]
dt

≤
∫ T

0

[
−Rj(t)W̃ j(t)�O(3)(Xj(t)) + |Rj(t)|θ̃j(t)

+ bL|uj
m(t)||Rj(t)|ψ̃j(t)

]
dt (27)

Integrating both side of (21) from 0 to T gives∫ T

0

[
−Rj(t)W̃ j(t)�O(3)(Xj(t)) + |Rj(t)|θ̃j(t)

+ bL|uj
m(t)||Rj(t)|ψ̃j(t)

]
dt

≤
∫ T

0

−k|sj
φ(t)|dt− |sj

φ(T )| (28)

where we use the property of |sj
φ(0)| = 0. Substituting

(28) into (27), it yields

V j(T ) − V j−1(T ) ≤
∫ T

0

−k|sj
φ(t)|dt− |sj

φ(T )| (29)

Since V 1(T ) is bounded by Fact 1, and V j(T ) is positive
and monotonically decreasing, V j(T ) is bounded for all

j ≥ 1 and will converge as j approaches infinity to some
limit value V (T ) (independent of j). The boundedness of
V j(T ) also ensures the boundedness of W̃ j(T ), θ̃j(T ),
ψ̃j(T ) for all j ≥ 1.

The boundedness of W̃ j(T ), θ̃j(T ) and ψ̃j(T ) (or equiv-
alently the boundedness of W̃ j(0), θ̃j(0) and ψ̃j(0)) for
all j ≥ 1 is shown in Fact 2, the convergence of sj

φ(t),
sj(t), ej

1(t), · · · , ej
n(t) and boundedness of all internal sig-

nals for all j ≥ 1 are now established in the following
Lemma.
Lemma 1 : The proposed reinforcement AILC system en-
sures that all adjustable control parameters and internal
signals sj

φ(t), sj(t), ej
1(t), · · · , ej

n(t), W j(t), θj(t), ψj(t),
uj(t), Ẇ j(t), θ̇j(t), ψ̇j(t) ∈ L∞e[0, T ] for all j ≥ 1.
Proof: Integrating (24) from 0 to t, we have

V j
a (t) ≤ V j

a (0) +
∫ t

0

V j−1
b (t′)dt′

≤ V j
a (0) +

∫ T

0

V j−1
b (t)dt (30)

Since V j(T ), defined in (26), is bounded ∀j ≥ 1 accord-
ing to Fact 2, we conclude that

∫ T

0
V j−1

b (t)dt is bounded
∀j ≥ 1. Furthermore, the initial value V j

a (0) of V j
a (t) is

also bounded for all j ≥ 1 due to Fact 2. This implies from
(30) that V j

a (t) and hence, sj
φ(t), W̃ j(t), θ̃j(t), ψ̃j(t), ∈

L∞e[0, T ]. Using the same argument as in Fact 1, it can
be easily shown that sj

φ(t), sj(t), ej
1(t), · · · , ej

n(t), W j(t),
θj(t), ψj(t), uj(t) Ẇ j(t), θ̇j(t), ψ̇j(t) ∈ L∞e[0, T ] for
all j ≥ 1.
Theorem 1 : Define Ej(t) = [ej

1(t), e
j
2(t), · · · ej

n−1(t)]
�.

The proposed reinforcement AILC system guarantees that
the tracking performance and system stability will satisfy
the following results,

(t1) lim
j→∞

|sj
φ(t)| = |s∞φ (t)| = 0 for all t ∈ [0, T ].

(t2) lim
j→∞

|sj(t)| = |s∞(t)| ≤ φ∞(t) = e−ktε∞, for all

t ∈ [0, T ].
(t3)Let λ be the positive constant such that Δ(D − λ) is

still a Hurwitz polynomial, then

lim
j→∞

‖Ej(t)‖ ≤ m1e
−λt‖E∞(0)‖

+m1ε
∞ e−kt − e−λt

λ− k
(31)

lim
j→∞

|ej
n(t)| ≤

n−1∑
i=1

ci|e∞i (t)| + e−ktε∞ (32)

for some positive constant m1 and for all t ∈ [0, T ].

Proof :

(t1)According to Lemma 1, we have |sj
φ(t)| ∈ L∞e[0, T ]

and d
dt |sj

φ(t)| = sgn
(
sj

φ(t)
)
ṡj

φ(t) ∈ L∞e[0, T ] for
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all j ≥ 1. This implies that |sj
φ(t)| is uniformly con-

tinuous over [0, T ] for all j ≥ 1. On the other hand, we
have∫ T

0

k|sj
φ(t)|dt ≤ V j−1(T ) − V j(T ) ≤ V 1(T ) (33)

for all j ≥ 1 by using (29). (33) implies that

lim
j→∞

∫ T

0

k|sj
φ(t)|dt = 0 (34)

Together with the result that |sj
φ(t)| ∈ L∞e[0, T ] for

all j ≥ 1 according to Lemma 1, we can conclude, by
using Barbalat’s lemma (e.g., Lemma 3.2.6 in [19]),
that lim

j→∞
|sj

φ(t)| = 0 for all t ∈ [0, T ].

(t2)Since lim
j→∞

sj
φ(t) = 0, we have the bound of s∞(t) by

(3) as

lim
j→∞

|sj(t)| ≤ φ∞(t) = e−ktε∞,∀ t ∈ [0, T ]

This prove (t2) of Theorem 1.
(t3)In order to investigate the tracking performance in the

final iteration when (t1) and (t2) of theorem 1 are achieved,
we consider the following state space equation :

Ė∞(t) = AcE
∞(t) +Bcs

∞(t) (35)

where

Ac =

⎡⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

−c1 −c2 −c3 · · · −cn−1

⎤⎥⎥⎦

Bc =

⎡⎢⎢⎣
0
0
...
1

⎤⎥⎥⎦
by using assumption (A4) and the definition of control
function sj(t) in (2). Solution of (35) in time domain
is given by

E∞(t) = Φ(t)E∞(0) +
∫ t

0

Φ(t− τ)Bcs
∞(τ)dτ (36)

where the state transition matrixΦ(t) satisfies ‖Φ(t)‖ ≤
m1e

−λt for some suitable positive constant m1. Tak-
ing norms on (36), it yields

‖E∞(t)‖

≤ m1e
−λt‖E∞(0)‖ +m1

∫ t

0

e−λ(t−τ)e−kτε∞dτ

≤ m1e
−λt‖E∞(0)‖ +m1ε

∞ e−kt − e−λt

λ− k

This concludes (31) of (t3). Finally, tracking perfor-
mance of e∞n (t) which is shown in (32) can be easily
derived by using the definition of (2). Q.E.D.

6. A Simulation Example

In this section, we apply the proposed reinforcement AILC
system to a mass-spring-damper system [20] whose state
equation is described by

ẋj
1(t) = xj

2(t)

ẋj
2(t) = −0.1(xj

2(t))
3 − 0.02xj

1(t) − 0.67(xj
1(t))

3

+ uj(t)

The control objective is to make the state vector Xj(t) =
[xj

1(t), x
j
2(t)]

� to track a desired trajectoryXd(t) = [xd(t),
ẋd(t)]� = [sin(t), cos(t)]� for t ∈ [0, 15]. The design
steps are summarized as follows :

(D1)Define sj(t) = c1e
j
1(t)+ ej

2(t) where ej
1(t) = xj

1(t)−
sin t, ej

2(t) = xj
2(t) − cos t and sj

φ(t) = sj(t) −
φj(t)sat

(
sj(t)
φj(t)

)
with φ̇j(t) + kφj(t) = 0 and k > 0.

(D2)Design the controller as in (6) and (7), uj
L(t) is con-

structed in (9). Since the working domain of the de-
sired trajectory Xd(t) = [sin(t), cos(t)]� is within the
interval [−1, 1], the centers and variances are chosen as
m0(t) = m0 = [m0

11,m
0
12,m

0
13,m

0
14,m

0
15,m

0
21,m

0
22,

m0
23,m

0
24,m

0
25] = [−1.5,−0.75, 0, 0.75, 1.5,−1.5, −

0.75, 0, 0.75, 1.5] and σ0(t) = σ0 = σi� = 5, i =
1, 2, � = 1, · · · , 5 at the first iteration to cover this
interval, respectively. In addition, we set the control
parameter θ0(t) = θ0 = 0.1 at the first iteration for
all t ∈ [0, 15]. It is noted that the initial values of
the consequent parameters can be roughly estimated
if the nonlinear functions f(Xj(t)) and b(Xj(t)) are
partially known. However, we often arbitrarily choose
the initial parameters.

(D3)Finally, the adaptation algorithms as in (10)-(12) are
adopted to update the FNN parameters and control pa-
rameters.

In order to show the robustness to the varying initial state
errors, we assume the initial states take the arbitrary val-
ues for the first 5 iterations : [xj

1(0), xj
2(0)]=[0.9003, 0],

[−0.028, 0.1], [−0.0871,−0.1], [−0.0829, 0.12], [0.25, 0].
The initial value of the boundary layer φj(t) is then chosen
according to φj(0) = εj = |sj(0)| = |2ej

1(0) + ej
2(0)| =

|2(xj
1(0)− sin(0))+(xj

2(0)− cos(0))| at the beginning of
each iteration. The AILC (6), (7), (10)–(12) is applied with
the design parameters c1 = 5, k = 10, γ1 = γ2 = γ3 =
0.5, β1 = β2 = β3 = 10. To study the effects of learn-
ing performances, we first show the reinforcement signal
Rj(t) in term of the performance measurement for critic
is shown in Figure 2 (a). It is shown that the reinforcement
signal provides a satisfaction about the nice tracking per-
formance. Compared with a similar work in [16], we apply
the reinforcement AILC and the hybrid AILC to control
the same nonlinear plant. The supremum value of |sj

φ(t)|
via the reinforcement AILC nd the hybrid AILC with re-
spective to iteration j are shown in Figure 2 (b). In this
simulation, it is clear that the asymptotic convergence by
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using the reinforcement AILC can be used to verify (t1)
of the main theorem. Since the learning process is almost
completed at the 5th iteration, we demonstrate the learning
error s5(t) in Figure 2 (c). The trajectory of s5(t) satisfies
−s5(0) × e−kt ≤ s5(t) ≤ s5(0) × e−kt which clearly
proves (t2) of the main theorem. In addition, it is neces-
sary to see the relation between system states xj

1(t), x
j
2(t)

and desired states xd(t), ẋd(t). The nice tracking perfor-
mances of both states at the 5th iteration are provided in
Figure 2 (d) and Figure 2 (e), respectively. Finally, the
bounded learned control force u5(t) is plotted in Figure
2 (f).
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Figure 2 :
(a) R5(t) versus time t;
(b) supt∈[0,15] |sj

φ(t)| (∗ ∗ ∗ for Reinforcement AILC and
◦ ◦ ◦ for Hybrid AILC) versus iteration j;
(c) s5(t) (solid line ) and ±φ5(t) (dashed lines) versus
time t;
(d) x5

1(t) (dotted line) and xd(t) (solid line) versus time t;
(e) x5

2(t) (dotted line) and ẋd(t) (solid line) versus time t;
(f) u5(t) versus time t, k = 10, γ1 = γ2 = γ3 = 0.5, β1 =
β2 = β3 = 10.

7. Conclusion

This paper presents a method which applies the FNN, re-
inforcement learning control and AILC to construct a new
reinforcement adaptive learning controller. The FNN based
reinforcement AILC is design for iterative learning track-
ing control of nonlinear systems. Compared with some
existing reinforcement learning method which needs the
gradient information and an approximation of plant Ja-
cobian, the proposed reinforcement AILC doesn’t require
a prior offline training phase. The discrete reinforcement
signal generated from the critic is an evaluation in terms
of the performance measurement. Based on the reinforce-
ment signal, an iterative learning component is designed
to meet the control objective. A Lyapunov-like analysis is

given to analyze the stability and convergence of the learn-
ing system. It is shown that the tracking error asymptoti-
cally converge to a tunable residual set as iteration goes to
infinity and all adjustable parameters as well as the internal
signals will remain bounded.
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