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Abstract: An improved iterative sparse algorithm is proposed to accelerate the execution of sparse least squares support vector
machines(LS-SVM). Firstly, the technique of iterative approximation to the L0-norm is used to sparsify the LS-SVM for regression.
However, each iteration requires solving a linear system with expensive computation compared to training a single LS-SVM. In
this paper, improved conjugate gradient (ICG) method is given to reduce the computational cost, which is based on transforming
the constrained primal problem in LS-SVM into an unconstrained minimization problem. Then the solution to the unconstrained
minimization problem is obtained by using the CG method onlyonce at each iteration. Finally, the result of numerical experiment
shows that the proposed method get sparse LS-SVM model with significant reduction in computational cost.
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1 Introduction

Least squares support vector machines(LS-SVM) is a
powerful tool for classification and function
approximation [1]. The LS-SVM has excellent
generalization performance by performing structural risk
minimization (SRM) [2,3,4]. The LS-SVM is considered
as a simplification of conventional support vector
machine(SVM). Instead of using nonnegative errors in
cost function and inequality constraints as in SVM, the
LS-SVM uses square errors in cost function and equality
constrains. As a result, the LS-SVM finds the solutions of
a set of linear equations instead of a quadratic
programming problem in SVM. The performance of
SVM and LS-SVM are excellent in real-world problems.

Although the LS-SVM shows good performance,
there are still two obvious limitations. Firstly, LS-SVM
lacks sparseness which is important for accurate and fast
evaluation of new data points [4,5]. To obtain sparseness
in LS-SVM solution, many efficient methods have been
proposed. Suykens [4] proposed a simple yet effective
approach by pruning the samples that have the smallest
absolute support value. Hoegaerts [5] made a comparison
of six pruning methods and showed that the second
pruning algorithm with weighed support values achieved
excellent performance,. In [6] a fast pruning strategy is

presented to delete redundant hidden nodes of MFN to
impose sparseness of LS-SVM. In [7] the feature vector
selection (FVS) algorithm using kernel trick to define a
subspace as support vectors was given to construct a
sparse LS-SVM. Similar to FVS algorithm, Carvalho [8]
introduced a strategy that the support vectors of LS-SVM
were selected by the reduced remaining subset (RRS)
technique and the decision surface between the classes
was found. Brabanter [9] proposed a fixed-size kernel
model to impose sparseness of LS-SVM. Secondly,
solution of LS-SVM involves inverting a square matrix
whose dimension grows with the number of training data.
For large training data, the inversion of the matrix leads to
problems of computation and storage. In order to deal
with the problems caused by large samples, Suykens [10]
presented a conjugate gradient (CG) method to solve an
Nth order linear system twice in each iteration withN
denoting the number of training data. In [11] an iterative
computation of the inverse kernel matrix was developed
to reduce computational cost of the linear system. Tian
[12] proposedε−insensitive loss function instead of the
least squares error in LS-SVM and used SMO method to
resolve the dual transformation of primal problem .The
work [13] applied an iterative approximation of L0-norm
to sparsify LS-SVM and showed that the resulting models
had a generalization ability comparable to standard
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LS-SVM and SVM. However, the method in [13] is
computationally expensive, which is not applicable to
large scale problems. In this paper, to deal with the
computational problem in [13], we proposed an improved
conjugate gradient(CG) algorithm, which only needs to
solve the (N − 1)th order linear system once withN
denoting the number of training data. The proposed
method is based on transforming the constrained primal
problem in LS-SVM into an unconstrained minimization
problem. Numerical experiments demonstrate that the
LS-SVM sparseness is obtained by the L0-norm term and
the computational cost is reduced by improved CG
method. The paper is organized as follows. Section 2
introduces LS-SVM. The formulation of iterative sparse
method for LS-SVM is given in section 3. Section 4
presents an improved conjugate gradient algorithm.
Numerical experiment results based on three datasets are
reported in section 5. Finally, conclusions are given in
section 6.

2 LS-SVM regression

Given a training set{xi,yi}
N
i=1, wherexi ∈ Rn is the ith

input vector andyi ∈ R is the corresponding known
output. Consider the regression modelyi = f (xi)+ ei,
i = 1, ...N where f : Rn → R is an unknown real-valued
smooth function ande1, ...,eN are uncorrelated random
errors withE[ei] = 0, E[e2

i ] = σ2
e < ∞ .The support vector

machines(SVM) have been used for estimating the
nonlinear function of the form

f (x) = ωT ·ϕ(x)+ b (1)

whereϕ(x) : Rn → RnH denotes the feature map to the
high dimensional feature space whose dimension can be
infinite(nH = ∞), ω ∈ Rn

H ,b ∈ R. The LS-SVM regression
problem in the primal weight space is formulated as
follows

min︸︷︷︸
ω,b,e

J(ω ,e) =
1
2
‖ω‖2+

γ
2

N

∑
i=1

e2
i

s.t yi = ωT ·ϕ(x)+ b+ ei, i = 1, ...,N

(2)

where positive valueγ is termed as regularization
parameter to control the tradeoff between the data fitting
and the smoothness of the solution. By using Lagranian
multipliers, the solution of constrained optimization
problem(2) can be obtained by taking
Karush-Kuhn-Tucker(KKT[1,4]) conditions for
optimality. The result is given by the following set of
linear equations

[
0 1T

N
1N Ω + γ−1I

][
b
α

]
=

[
0
y

]
(3)

where y = [y1, ...,yN ]
T , α = [α1, ...,αN ]

T denote the
Lagrange multipliers, 1N = [1,1, ...,1]T is a column

vector ofN ones,andΩi, j = ϕ(xi)
T ϕ(x j) = K(xi,x j) for

i, j = 1,2, ...N with K(., .) a positive definite kernel
function. According to Mercers theorem, the resulting
LS-SVM model for function estimation can be evaluated
at a new pointx∗ as

f̂ (x∗) =
N

∑
i=1

αi •K(xi,x∗)+ b (4)

whereb,α is the solution to (3).

3 Sparse LS-SVM

The LS-SVM as a simplification of SVM has been
successfully applied in many regression and classification
problems[4,13,14]. Despite the good performance of
LS-SVM, the. main drawback of LS-SVM is the lack of
sparseness, i.e.αi 6= 0 for i = 1,2, ...N .This means that
nearly all patterns become support vectors. The
nonsparseness of LS-SVM slows down the test speed and
limits the utility of LS-SVM in large scale
problems[7,14]. For this reason, a range of methods have
been proposed for obtaining the sparseness of LS-SVM,
see [4,5,6].Recently, the method based on an iterative
approximation to the L0-norm is proposed for sparsifying
SVM classifiers [16] and classical LS-SVM [13]. In this
paper, we adapt the scheme in[13][16] to sparsify the
LS-SVM for regression as follows.

To apply an iterative approximation to L0-norm for
sparsifying LS-SVM, let us consider the following primal
optimization problem

min
1
2

N

∑
i=1

λiα2
i +

γ
2

N

∑
i=1

e2
i

s.t
N

∑
i=1

α jKi j + b = yi − ei, i = 1,2, ...,N

(5)

whereλi are prefixed coefficients. Comparing (5) to (2),
the regularization term‖ω‖2 in (2) is replaced by
∑N

i=1 λiα2
i in (5), which is the main difference between

the pruning method and relevance subset selection
algorithms. The L2-norm term∑N

i=1 λiα2
i plays the effect

to control the model complexity[16].
In order to solve the constrained optimization

problem(5), a Lagrangian [4,13,16] for problem (5) is

L(α,b,e,β ) =
1
2

N

∑
i=1

λiα2
i +

γ
2

N

∑
i=1

e2
i

−
N

∑
i=1

βi(
N

∑
j=1

α2
j Ki j + b+ ei− yi)

(6)

where β = [β1,β2, ...,βN ]
T is the new Lagrange

multipliers. The Karush-Kuhn-Tucker(KKT) conditions
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[4,5,13] for optimality are





∂L
∂αi

= 0⇒ αi = ∑N
j=1 β jKi j/λi

∂L
∂b= 0⇒ ∑N

i=1 βi = 0

∂L
∂ei

= 0⇒ βi = γei

∂L
∂βi

= 0⇒ ∑N
j=1 α jKi j + b = yi − ei

i, j = 1,2, ...N

(7)

Eliminating variablesαi and ei yields the following
linear equations in Lagrange multipliers [13,16]

[
0 1T

N
1N Π

][
b
β

]
=

[
0
y

]
(8)

whereΠ = Kdiag(λ )−1K + I/γ ,I is identity matrix. To
get sparse Lagrange multipliersα is sparse, an iterative
sparse LS-SVM (IS-LS-SVM) algorithm is proposed by
iteratively approximating to the L0-norm [13,16]. The IS-
LS-SVM algorithm is summarized as follows

Step1: Getαt and b by solving linear system (3),let
t = 1.

Step2: Setλ t
i = αt

i .i = 1,2, ...N.
Step3: Solve linear system (8) to getβ t andbt , then

updateαt+1
i = ∑N

i=1 β t
i Ki j/λ t

i according to eqs(7).

Step4: Computeλ t+1
i = 1/α(t+1)2

i , sett = t +1.
Step5: ift ≤ 50 or‖ αt+1

i −αt
i ‖ /N ≥ 10−4 , return to

step3.
Step6: Get the finalα andb.
As discussed in [13,16], the multipliersα converges

to a stationary pointα∗ as t → ∞, and the L2-norm
regularization term ∑N

i=1 λiα2
i in (5) converges to

L0-norm∑N
i=1 α∗

i ,(α∗
i 6= 0) . This makes the IS-LS-SVM

model to be sparse. This scheme of iterative
approximation to L0-norm is different from the pruning
method[4,5,6] selecting the support vectors by pruning
the samples with the smallest absolute support value. The
sparseness of IS-LS-SVM model can reduce
computational load for accurate and fast evaluation of
new data points. However, the above algorithm to
sparsifying LS-SVM is time-consuming since each
iteration involves solving the linear system (8) with
complexityO(N3). The computational cost is reduced by
ICG algorithm in the next section.

4 Improved conjugate gradient for
IS-LS-SVM

In this section, we adopt the improved conjugate gradient
(ICG) algorithm [14] to accelerate the execution of linear
regression system(8). The ICG algorithm gives the
solutions of β and b in (8) with an unconstrained
minimization dual problem, which involves solving an
(N −1)th order linear system by conjugate gradient (CG)

algorithm. The principle of ICG method is described as
follows.

According to eqs.(6)(7), the dual problem (5) can be
equivalently be expressed as

minW (β ) =
1
2

β T Πβ −β T y

s.t
N

∑
i=1

βi = 0
(9)

whereβ ∈ RN ,Π ∈ RN×N are respectively defined in (6)
and (8) , i.e.β = [β1,β2, ...,βN ]

T , Π = Kdiag(λ )−1K +
I/γ . The matrixΠ is denoted as

Π =

(
Π (N−1) h

hT ΠNN

)
(10)

whereΠ (N−1) is the(N − 1)th order principal submatrix
of Π ,ΠNN is the last element of theNth row vector ofΠ ,
andh is the last column ofΠ by removingΠNN .In terms
of the constraint (9),βN can be computed as

βN =−1T
N−1β (N−1) (11)

whereβ (N−1) = [β1,β2, ...,βN−1]
T ,1N−1 = [1,1, ...1]T is a

column vector of(N −1) ones
Substituting (11) into the objective function of (9)

leads to the following unconstrained minimization
problem

min
1
2

β (N−1)T
Π̃β (N−1)− (y(N−1)− yN1N−1)

T β (N−1)

(12)

where
Π̃ = Π (N−1) − 1(N−1)h

T − h1T
N−1 + ΠNN1(N−1)1

T
(N−1),

y(N−1) = [y1,y2, ...,yN−1]
T and yN is the last element of

vectory.
Comparing (12) to (9), the parameter vector to be

optimized is β N−1 ∈ RN−1 instead ofβ ∈ RN in (9),
which means that the number of optimization parameters
is reduced by one in (12).

The solutionβ N−1 to the unconstrained optimiazation
(12) is described as follows.

Firstly, we denote an invertible matrix

ρ =

(
I(N−1) −1N−1

0 1

)
(13)

whereI(N−1) is (N −1)× (N−1) identity matrix.
In terms of eqs.(8), we can get a linear system

ρ(b1N +Πβ ) = ρy (14)
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The left side of (14) can be formulated as

bρ1N +ρΠρT (ρT )−1β =

(
0N−1

b

)

+

(
Π̃ h−ΠNN1N−1

hT −ΠNN1T
N−1 ΠNN

)
×

(
β (N−1)

0

)

=

(
0N−1

b

)
+

(
Π̃β (N−1)

(Πβ )N

)
(15)

where(Πβ )N = hT β (N−1)−ΠNN1T
N−1β (N−1)

The right side of (14) is
(

I(N−1) −1N−1
0 1

)
y =

(
y(N−1)− yN1N−1

yN

)
(16)

By combining (15)(16), the linear system (14) can be
equivalently expressed as
(

0N−1
b

)
+

(
Π̃β (N−1)

ΠβN

)
=

(
y(n−1)− yN0N−1

yN

)
(17)

According to Eqs.(11)(17), the solution of unconstrained
optimization (12) is obtained





Π̃β (N−1) = yN−1− yN1N−1

b = yN − (Πβ )N

βN =−1T
N−1β N−1

(18)

It can be seen from (18) that we only need to solve an
(N −1)th order linear system by CG method once at each
iteration with complexityO((3m+2)N2), wherem is the
number of iterations for solving the(N −1)th order linear
system Π̃β (N−1) = yN−1 − yN1N−1. As a comparison,
solving Eqs.(8) directly involves inverting an(N + 1)th
order square matrix which is computationally expensive
with large N, The method proposed by Suykens[4]
involve solving anNth order linear system twice at each
iteration.

Notice that there are some Lagrange multipliers
αi < 0, i = 1,2, ...N in Step1 of IS-LS-SVM algorithm in
section 3, which yields that the matrix̃Π defined in(12) is
not positive definite due to relationλ 1

i = α1
i , i = 1,2, ...N.

In order to makeΠ̃ positive definite which is important to
solve the linear system̃Πβ (N−1) = yN−1 − yN

−→
1 by CG

method, the initial values of coefficientλ 1
i are settled as

λ 1
i = 1/(α1

i −αmin +η),η > 0, where αmin is the
minimum value ofα1

i , i = 1, ...,N .
In addition, the execution of linear system (8) is

accelerated by using improved CG algorithm. The
detailed analysis of ICG method is given in Ref [14].

5 Experiments

To illustrate the performance of IS-LS-SVM computed by
ICG method, we run experiments on three datasets:

simulation dataset ofsinc function, motorcycle dataset
and diabetes dataset. Detailed information about the three
datasets is presented in the following subsection. We
compare the IS-LS-SVM against LS-SVM and SVM over
the three datasets. We also compare the running time to
solve linear system(8) by the proposed ICG method, CG
method in [4] and INV method with INV denoting
solution to (8) by inverting an(N +1)th square matrix. In
all experiment, the radial basis function is used as kernel
function ,i.e.

K(x,xi) = exp(−‖x− xi‖/2σ2) (19)

where the hyper-parameters (kernel bandwidthσ and
regularization parameterγ) is optimized by coupled
simulated annealing (CSA) algorithm[17] , which performs
10-fold cross validation (CV) to minimize the mean
squared error (MSE) of prediction value

MSE =
n

∑
i=1

(y(xi)− yi)
2/n (20)

wherey(xi) is the predicted value of models(i.e. IS-LS-
SVM, LS-SVM and SVM), andyi is output of the sample,
n is the number of samples.

5.1 The simulation dataset

The following sinc function model is considered to
illustrate the sparseness and the running time of solving
linear system (8)

y = sin(x)+ ε∗
√

0.05x2+0.01 (21)

where y is the output,x is the input equally spaced
between -5 and 5. Andε is random disturbance subject to
normal distribution. 300 datapoints are generated bysinc
model(21), which are randomly divided into 200 training
data and 100 testing data. The regression estimates of
IS-LS-SVM and LS-SVM model based on training data is
shown in Fig 1.

Fig. 1: The regression curve for simulation data

The red and green points respectively represent
training data and support vectors (SV). The LS-SVM

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 6, 3297-3303 (2015) /www.naturalspublishing.com/Journals.asp 3301

regression curve is marked by black line, the blue
dot-dash line denotes the IS-LS-SVM curve. Fig.1
illustrates that the IS-LS-SVM model only needs 5
support vectors while all the 200 datapoints are support
vectors in LS-SVM model. In addition, The IS-LS-SVM
model is almost functionally identical to the LS-SVM
model. Table1 shows the number of SV and mean squared
error(MSE) of the IS-LS-SVM, LS-SVM and SVM.

Table 1 Number of SV and MSE for simulation dataset

Method SV Training MSE Testing MSE

SVM 192 0.3965 0.4479

LS-SVM 200 0.3579 0.4414

IS-LS-SVM 5 0.3549 0.4465

Table 1 shows that IS-LS-SVM obtain better
sparseness with 5 SV comparing to 192 SV for SVM
model. Regarding sparsity, IS-LS-SVM is sparser than
SVM and LS-SVM. From the MSE results we can see
that the training MSE of IS-LS-SVM is smallest and the
generalization ability of IS-LS-SVM is comparable to
that of SVM and LS-SVM.

Moreover, we compared the running time of three
methods: the proposed ICG method, the CG method in
[4] and INV method with INV denoting solution to linear
system (8) by inverting an(N + 1)th square matrix. The
training time of these three methods is tabulated in Table
2.

Table 2 Running time for simulation datase

INV CG ICG

Running time 0.0452 0.0008377 0.0005584

Table 2 shows that the ICG method is faster than CG
method and INV method is slower than CG method. The
reason is that ICG method solves the(N − 1)th order
linear system only once instead of solving anNth linear
system twice by CG method in [4]. On the other hand, the
testing time for LS-SVM model and IS-LS-SVM model
are respectively 1.37× 10−4s and 7.69× 10−5s. So the
prediction speed of IS-LS-SVM model is faster than
LS-SVM due to the sparseness of IS-LS-SVM.

5.2 The motorcycle dataset

The motorcycle data consists of accelerometer readings
through time following a simulated motor-cycle crash to
determine the efficacy of crash-helmets [7]. The
motorcycle dataset can be downloaded athttp://www.stat.
cmu.edu/∼larry/all-of-statistics/=data/motor.dat.We take
the time of motorcycle data as input and the
accelerometer readings as output. The original
motorcycle data is preprocessed by eliminating samples
with the same time, which results in 94 datapoints instead

of the original 133 samples. The 94 datapoints are used to
establish IS-LS-VM model and LS-SVM model. Fig 2
shows the performance of the IS-LS-SVM and LS-SVM
model to the 94 training data. Table 3 gives the number of
SV and training MSE. From the results of Fig 2 and Table
3, we can see that the IS-LS-SVM model with 14 SV is
sparser than LS-SVM model with 94 SV. And the training
MSE of LS-SVM is larger than that of IS-LSSVM.

In addition, the running time to solve linear system (8)
by ICG, CG and INV is tabulated in Table 2. We can see
that the INV method with 0.0425 second is slower than CG
method with 8.37710−4 second, and ICG method is faster
than INV method with 0.0425 second, but CG method is
slower than ICG method with 5.8410−4 second.

Fig. 2: The regression curve for Motorcycle data

Table 3 Number of SV and MSE for motorcycle dataset

Method SV Training MSE

LS-SVM 94 429.47

IS-LS-SVM 14 414.698

Table 4 Running time for Motorcycle dataset

INV CG ICG

Running time 0.0112 0.0028 0.0018

5.3 The diabetes dataset

The diabetes dataset came from measurements of 442
diabetes patients[19]. The diabetes dataset describes the
relation between ten baseline variables and a quantitative
response variable of disease progression one year after
baseline. The ten baseline variables are age, sex, body
mass index, average blood pressure and six blood serum
measurements. Since the diabetes dataset is related to the
health problems of human being, it is widely used in the
fields such as information science, statistical learning and
pattern recognition etc. The diabetes dataset is
downloaded at http://www.stanford.edu/∼hastie/Papers/
LARS/. The diabetes dataset is first standardized with
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each element having zero mean and unit variance. In this
experiment, the ten baseline variables and the response
variable are respectively used as input vector and output
for IS-LS-SVM, LS-SVM and SVM models. The total
442 samples are randomly divided into 300 training data
and 112 testing data. The training MSE, testing MSE and
support vectors(SV) of LS-SVM, SVM and IS-LS-SVM
models are tabulated in Table 5. Fig 3 shows the predicted
values for the 142 testing data using the LS-SVM, SVM
and IS-LS-SVM models.

Table 5 Number of SV and mse for diabetes dataset

Method SV Training MSE Testing MSE

SVM 297 0.4811 0.4627

LS-SVM 300 0.4593 0.4607

IS-LS-SVM 6 0.4739 0.4658

Table 5 illustrates that IS-LS-SVM with 6 SV is
sparser than SVM with 297 SV and LS-SVM with 300
SV, which is similar to the result of Table 1. From the
MSE results we can see that the training MSE of
LS-SVM is smaller than that of SVM and IS-LS-SVM,
and the testing MSE of IS-LS-SVM is comparable to that
of SVM and LS-SVM. Fig 3 shows that the predicted
value of the three models can fit well the 142 testing data.
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0.5

1
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Number of test data

O
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t y
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Fig. 3: Predicted performance of the three models

In addition, the running time to solve linear system (8)
by ICG, CG and INV is tabulated in Table 6. We can see
that the INV method with 0.1482 second is slower than CG
method with 0.0653 second. The proposed ICG method
with 0.017 second is faster than CG method.

Table 6 Running Time for diabetes dataset

INV CG ICG

Running time 0.1482 0.0653 0.0170

Remark: Note that the number of training data for
simulation dataset, motorcycle dataset and diabetes
dataset are respectively 300, 94, 200. By comparing the
running time of each method(i.e. INV, CG , ICG) in Table
6, Table 4 and Table2, we can see that the running time of
INV method increased rapidly with more training data.
The proposed ICG method is more efficient than INV and
CG method for small and medium scale training datasets.
Moreover, from the sparseness results of Table 1, Table 3
and Table 5, it is shown that the proposed IS-LS-SVM
model is sparser than the SVM and LS-SVM model for
the three different datasets. In addition, the generation
ability of IS-LS-SVM is comparable to that of SVM and
LS-SVM for the three different datasets.

6 Conclusion

In this paper, we apply the technique of iterative
approximation to the L0-norm to sparsify the LS-SVM
model. In order to reduce the computational cost of
solving a(N + 1)th order linear system withN denoting
the number of training data, improved conjugate gradient
(ICG) method is given by transforming the constrained
primal problem in LS-SVM into an unconstrained
minimization problem. Then CG method is used to get
solutions to the unconstrained minimization problem
which involves solving a(N − 1)th order linear system
only once at each iteration. Numerical experiments on
several regression datasets show that the proposed method
get sparse LS-SVM model as well as significant reduction
in computational cost.
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