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Abstract: On-line/off-line threshold proxy re-signatures can efficiently improve the the performance of threshold proxy re-signature
schemes. A simulation theorem for on-line/off-line threshold proxy re-signature schemes is presented in this paper. This theorem
provides a theoretical basis for constructing an on-line/off-line threshold proxy re-signature scheme through the simulation approach,
where the security of an on-line/off-line threshold proxy re-signature scheme can be reduced to that of its underlying divisible on-
line/off-line proxy re-signature scheme. Furthermore, wepropose an on-line/off-line threshold proxy re-signaturescheme which is
proven secure (unforgeable and robust) under the computational Diffie-Hellman assumption and the discrete logarithm assumption.
The on-line phase of the proposed scheme is efficient: computing a re-signature does not require any heavy computations such as
exponentiations or pairings.
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1 Introduction

Proxy re-signatures, introduced by Blazeet al. [1], enable
a semi-trusted proxy to convert signatures from a
delegatee into signatures from a delegator on the same
messages by using a re-signing key. However, the proxy
can not learn anything about either signing key. Due to
the transformation function, proxy re-signature schemes
can be used in many applications [2]. For example, in the
case of an e-passport, the various check points can be
associated with a semi-trusted proxy, which turns the
signature of the traveler into the signature of the
corresponding check point indicating which the traveler
has been verified at the point. Proxy re-signature schemes
can also be used in other applications, such as
management of group signatures [3], identity
authentication, and construction of digital rights
management (DIM) interoperable system [4].

However, the semi-trusted problem is the serious
defect in the existing proxy re-signature schemes [5,6,7].
Because the proxy has the re-signing key, he can
transform signatures signed by the delegatee into
signatures of the delegator. To address the semi-trusted
issue, Yanget al. [8,9] produced the notion of threshold
proxy re-signaturesTPRS to avoid concentrating trust in

any single proxy. In a threshold proxy re-signature
scheme, given a set ofn proxies and a thresholdt < n,
re-signatures can be generated by a set of at leastt + 1
proxies (rather than a single proxy) who hold the
re-signature key in a shared form among them. A (t,n)
threshold proxy re-signature scheme is said to be
existential unforgeability, if no coalition oft proxies can
not generate a new valid signature/re-signature on a new
message event proxies are corrupted by an adversary. It
means that at mostt of n proxies may be compromised
without endangering the security of the threshold proxy
re-signature scheme.

At present, the direct reduction approach and the
simulation approach are two ways to prove existential
unforgeability of a threshold proxy re-signature scheme
[8,9]. In the direct reduction approach, the security of a
threshold proxy re-signature scheme can directly reduced
to the hardness of an underlying difficult problem such as
the discrete logarithm problem. Based on a simulation
theorem, the security of a threshold proxy re-signature
scheme is directly reduced to the security of its
underlying proxy re-signature scheme through the
simulation approach. In fact, two approaches are
essentially the same. The security of the threshold scheme
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is eventually reduced to the hardness of an underlying
difficult problem. However, if the underlying proxy
re-signature scheme is unforgeable, the simulation
approach can efficiently simplify the proof of the
threshold proxy re-signature scheme.

The time to generate re-signatures is the biggest
obstacle in the actual implementation of a threshold proxy
re-signature scheme, since the costs of re-signature key
operations required by a underlying proxy re-signature
are amplified by the distributed protocols which produce
re-signatures. Therefore, it is very important to seek
methods of accelerating re-signature computation without
compromising security.

To improve the performance of threshold proxy
re-signature schemes, a notion called on-line/off-line
threshold proxy re-signaturesOTPRS is introduced in
this paper. The idea is that the on-line/off-line techniques
[10,11,12,13,14] are applied to a threshold proxy
re-signature scheme in order to move most of re-signature
computations to the off-line phase. In an on-line/off-line
threshold proxy re-signature scheme, the proxies perform
the bulk of re-signature computation in the off-line phase
before knowing the message to be re-signed. The results
of this pre-computation are stored and then utilized to
re-sign actual messages in the on-line phase.
Consequently, the computation of the authentic
re-signature does not require any heavy computations
such as exponentiations or pairings.

In order to efficiently construct on-line/off-line
threshold proxy re-signature schemes through the
simulation approach, we introduce a notion called
divisible on-line/off-line proxy re-signaturesDOPRS in
this paper. A divisible on-line/off-line proxy re-signature
scheme divides the re-signing computation into two
stages: off-line (before knowing the message to be
re-signed) and on-line (when the message must be
re-signed). The re-signature of the message consists of
two parts. The first part is called the off-line re-signature
token, which is generated and may be sent to the recipient
in the off-line stage. This part might be exposed before
the message to be re-signed is given. The second part is
called the on-line re-signature token, which is generated
and may be sent to the recipient in the on-line stage.

In an on-line/off-line threshold proxy re-signature
scheme, partial re-signature might be exposed all proxies
in the off-line re-signing stage. Because the simulation
theorem for ordinary threshold proxy re-signature
schemes [8,9] implicitly assumes that no partial
re-signature can be exposed in the re-signing stage, this
theorem is not suitable for on-line/off-line threshold
proxy re-signature schemes. We propose a simulation
theorem for on-line/off-line threshold proxy re-signature
schemes in this paper. This theorem shows that if an
on-line/off-line threshold proxy re-signature scheme is
simulatable from a divisible on-line/off-line proxy
re-signature scheme, then the unforgeability of an
on-line/off-line threshold proxy re-signature scheme can
be reduced that of its underlying divisible on-line/off-line

proxy re-signature scheme. Using this simulation
theorem, we can efficiently buildOTPRS schemes based
onDOPRSschemes.

1.1 Related work

Yang et al. [9] proposed a bidirectional threshold proxy
re-signature scheme through the direct reduction
approach, which is existentially unforgeable and robust
without random oracle. We denote this scheme by
BTPRS10. Later, Yanget al. [8] proposed two threshold
proxy re-signature schemes through the simulation
approach. The first one, referred to asBTPRS11, is a
bidirectional scheme which is existentially unforgeable
and robust without random oracle. The second scheme,
referred to asUTPRS11, is a unidirectional scheme
which is existentially unforgeable and robust in the
random oracle model. As far as we know, there exists no
OTPRSscheme that has been publicly put forward yet.

1.2 Our contribution

In this paper, we first give a simulation theorem for
on-line/off-line threshold proxy re-signature schemes
(Theorem 1). This theorem provides a theoretical basis
for efficiently constructing on-line/off-line threshold
proxy re-signature schemes through the simulation
approach. Based on Shaoet al.’s proxy re-signature
scheme Smb [7], we then propose a divisible
on-line/off-line proxy re-signature scheme which is
existentially unforgeable without random oracle. Using
the proposed divisible scheme as an ingredient, we
present an efficient on-line/off-line threshold proxy
re-signature scheme through the simulation approach,
which is existentially unforgeable and robust under the
computational Diffie-Hellman (CDH) and discrete
logarithm assumptions. Our scheme can achieve
robustness in the presence of⌈n/4⌋ malicious proxies.
The on-line stage of the proposed scheme is efficient:
computing a re-signature only requires a few modular
multiplications when a message must be re-signed.

1.3 Organization

Our paper is organized as follows. We review some
preliminaries and basic protocols in Section 2. The
simulation theorem forOTPRS schemes is given in
Section 3. Section 4 gives aDOPRSscheme. AOTPRS
scheme is presented in Section 5 and our paper is
concluded in Section 6.
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2 Preliminaries and building blocks

2.1 Notations and definitions

We use|x| to denote the length ofx. If S is a finite set, by
s∈R S means selecting an elements from S uniformly at
random. We useN to denote the set of natural numbers,R

to denote the set of real numbers, andZ to denote the set of
integers. Forl ∈ N, we use 1l to denote the concatenation
of l ones,{0, 1}∗ to denote the set of binary strings of
arbitrary length,dlgh to denote the discrete logarithm ofh
to the base ofg. PPT is the abbreviation of probabilistic
polynomial-time.
Definition1 A functionη : N→ R is negligible if for all
constantsc> 0, there exists an integerN ∈N such that for
all integersk> N it holds thatη(k)< k−c.
Definition 2 Given a groupG of prime orderp and a
generatorg of G, the discrete logarithm problem inG is to
computex ∈ Zp given (p, g, gx). The discrete logarithm
assumption inG states that no PPT algorithm solves the
discrete logarithm problem with non-negligible
probability.
Definition 3 Given a groupG of prime orderp and a
generator g of G, the computational Diffie-Hellman
(CDH) problem in G is to compute gab given
(g, ga, gb) ∈ G3 for some a, b ∈ Zp. The CDH
assumption inG states that no PPT algorithm solves the
CDH problem with non-negligible probability.
Definition 4 G1 and G2 are two multiplicative cyclic
groups of prime orderp, andg is a generator ofG1. A
map e : G1 × G1 → G2 is a bilinear paring with the
following properties:

1.Bilinearity:e(ga, gb) = e(g, g)ab, for all a, b∈ Zp.
2.Non-degeneracy:e(g, g) 6= 1G2.
3.Computability: e(ga, gb) can be computed in

polynomial time.

2.2 Building blocks

We briefly review some basic protocols that we will use in
our scheme. We assume that secrets of all protocols
presented in this subsection are shared through Shamir’s
secret sharing scheme, using polynomials of degreet. We
use P1, · · · , Pn to denoten players participated in the
following protocols.

Shamir’s secret sharing scheme. By using this
scheme, a dealer can distribute the secret among a group
of n players in the following way [15].

–Distribution phase: Given a primep and a shared
secrets ∈ Z

∗
p, the dealer first chooses a numbert

satisfying 1≤ t < n< p. Then, the dealer choosesa1,
· · · , at ∈ Z

∗
p, and constructs a polynomialf (x) of

degreet such that

f (x) = s+a1x+a2x
2+ · · ·+atx

t .

For 1≤ i ≤ n, the dealer computessi = f (i) ∈ Z
∗
p and

sendssi to thei-th playerPi.
–Reconstruction phase: Let Φ ⊂ {P1, · · · , Pn} be a set
of players such that|Φ| > t. These participants can
reconstruct the polynomial f (x) by computing
f (x) = ∑

j∈Φ
λ jxsj , whereλ jx = ∏

l∈Φ ,l 6= j

x−l
j−l ∈ Zp is the

Lagrange interpolation coefficient. Note that
s= f (0) = ∑

j∈Φ
λ j0sj andλ j0 = ∏

l∈Φ ,l 6= j

−l
j−l .

If there are at mostd malicious participants, by using
error-correcting techniques [16], the number of players
required to correctly reconstruct the secrets is at least
t + 2d+ 1 according to the Berlekamp-Welch bound. We
uses=EC-Interplate(s1, · · · , sn) to denote an execution of
this error-correcting-based reconstruction algorithm [16].

Multiplying two shared secrets (MUL). The
multiplication protocol proposed by Ben-Oret al. [17]
allows to multiply two shared secrets. Assume that player
Pi holds the shares (ai , bi) of two secrets (a, b). The
players jointly run this protocol to computec = ab. Each
player Pi receives his shareci of c at the end of the
protocol.

Computing shares of the inverse of a shared secret
(INV). Given a primep and a shared secreta ∈ Z

∗
p, the

player Pi holds the sharesai of a. The well-known
protocol proposed by Bar-Ilan and Beaver [18] allows to
compute shares ofa−1, such thata ·a−1 ≡ 1 modp. Each
playerPi can obtain his sharea−1

i of a−1 at the end of the
protocol.

Distributed key generation protocol (DKG). Our
scheme uses a discrete logarithm-based DKG protocol
(see [19] for details) to jointly produce a random shared
secrets (where the public value isgs for someg). This
protocol has the property that there is a simulatorSIMDKG
which on inputgs can simulate the execution of an the
adversary, such that the output is fixed to begs. Moreover,
SIMDKG can recover secret shares held by the corrupted
participants.

2.3 Divisible on-line/off-line proxy re-signature

Definition 5 A divisible on-line/off-line proxy
re-signature schemeDOPRS = (KeyGen, ReKey, Sign,
ReSignoff, ReSignon, Verify ) is defined by the following
algorithms:

–(sk, pk) ← KeyGen(1k) is the key generation
algorithm. Given a security parameterk ∈ N, this
algorithm outputs signer’s secret/public key pair
(sk, pk).

–RSKA→B ← ReKey(skA, skB, pkA, pkB) is the
re-signature key generation algorithm. On input an
(optional) delegatee’s secret keyskA, a delegator’s
secret keyskB, and the corresponding public keys
(pkA, pkB), this algorithm outputs a re-signature key
RSKA→B for the proxy to convert the delegatee’s
signatures into the delegator’s signatures.
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–σ ← Sign(sk, m) is the signing algorithm. Given a
secret keysk and a messagem, it generates signature
σ onm.

–(σo f f
B , St) ← ReSignoff(pkA, pkB, RSKA→B) is the

off-line re-signing algorithm. Given a re-signature key
RSKA→B, a delegatee’s public keypkA and a
delegator’s public keypkB, it generates a public
off-line re-signature tokenσo f f

B and a secret state
informationSt. This state information will be passed
to the execution of the on-line re-singing algorithm.

–σon
B ← ReSignon(RSKA→B, St, pkA, m, σA) is the

on-line re-signing algorithm. Given a re-signature key
RSKA→B, a state informationSt, a delegatee’s public
key pkA, a messagem and a signatureσA, it first
validates thatσA is valid underpkA. It then generates
an on-line re-signature token σon

B if
Verify (pkA, m, σA) = 1, ⊥ otherwise. The
re-signature form is defined asσB = (σo f f

B , σon
B )

which verifies under the delegator’s public keypkB.
–0/1← Verify (pk, m, σ) is the verification algorithm.
Given a public keypk, a signatureσ and a messagem,
it outputs 1 ifσ is a valid signature onmunderpk and
0 otherwise.

For practical applications, this definition is required
that the computation cost of the on-line re-signing phase
is as small as possible. A divisible on-line/off-line proxy
re-signature scheme is also a proxy re-signature scheme
in which the re-signing algorithm is split into two
sub-algorithms: the off-line re-signing algorithm and the
on-line re-signing algorithm. A divisible on-line/off-line
proxy re-signature scheme allows an adversary to query
the signing/re-signing oracles with a message depending
on this message’s off-line re-signature token. By using
divisible on-line/off-line proxy re-signature schemes,
on-line/off-line threshold proxy re-signature schemes can
be efficiently constructed through the simulation
approach.

3 Simulation theorem for on-line/off-line
threshold proxy re-signature schemes

3.1 On-line/off-line threshold proxy re-signature

We extend the definition of threshold proxy re-signature
schemes [8,9] to define on-line/off-line threshold proxy re-
signature schemes.
Definition6 Assume thatP = {P1, · · · , Pn} be a group of
n proxies. An on-line/off-line threshold proxy
re-signature schemeOTPRS is a tuple of algorithms
(KeyGen, T − ReKey, Sign, T−ReSignoff,
T−ReSignon, Verify ), where

–(sk, pk) ← KeyGen(1k) is the key generation
algorithm. Given a security parameterk ∈ N, this
algorithm outputs signer’s secret/public key pair
(sk, pk).

–(RSKA→B, RSK1
A→B, · · · , RSKn

A→B) ← T−Rekey(
skA,
skB, pkA, pkB) is the threshold re-signature key
generation algorithm. Given an (optional) delegatee’s
secret keyskA, a delegator’s secret keyskB, and the
corresponding public keys(pkA, pkB), it generates a
re-signature keyRSKA→B and n re-signature key
sharesRSKi

A→B of RSKA→B whereRSKA→B is known
to nobody andRSKi

A→B is only known to proxyPi.
–σ ← Sign(sk, m) is the signing algorithm. Given a
secret keyskand a messagem, it generates a signature
σ onm.

–(σo f f
B , St1, · · · , Stn) ← T−ReSignoff(pkA, pkB,

RSK1
A→B, · · · ,

RSKn
A→B) is the off-line threshold re-signing

algorithm. Given a delegatee’s public keypkA, a
delegator’s public keypkB and the re-signature key
sharesRSKi

A→B for i = 1, · · · , n, it generates a public

off-line re-signature tokenσo f f
B and a secret state

informationSti for each proxyPi .
–σon

B ←

ReSignon(RSK1
A→B, · · · , RSKn

A→B, St1, · · · , Stn, pkA,
m, σA) is the on-line threshold re-signing algorithm.
Given the re-signature key shareRSKi

A→B and the
state informationSti of proxy Pi (1 ≤ i ≤ n), a
delegatee’s public keypkA, a messagem and a
signature σA, it generates an on-line re-signature
token σon

B if Verify (pkA,, m, σA) = 1 and ⊥
otherwise. The threshold re-signature form is defined
as σB = (σo f f

B , σon
B ) which verifies under the

delegator’s public keypkB.
–0/1← Verify (pk, m, σ) is the verification algorithm.
Given a public keypk, a signatureσ and a messagem,
it outputs 1 ifσ is a valid signature onmunderpk and
0 otherwise.

3.2 The simulation theorem

Security notions of on-line/off-line threshold proxy
re-signatures include unforgeability and robustness.
Motivated by Gennaroet al.’s methodology [21] for
proving the unforgeability of threshold signature
schemes, we define the simulatability ofOTPRS
schemes. In this definition, the simulators can be seen as
abstraction of real adversaries. The adversary is allowed
to obtain the information of the corrupted proxies and the
signature/re-signature of a message. This ensures that the
executions of three protocols give the adversary no
advantage in forging signatures for theOTPRS scheme.
Namely, the adversary is allowed to get knowledge
provided that such knowledge is worthless for forging
signatures.
Definition 6 (Simulatability). Let OTPRS=(KeyGen,
T−ReKey, Sign, T−ReSignoff, T−ReSignon, Verify )
be a (t, n) on-line/off-line threshold proxy re-signature
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scheme. The schemeOTPRS is said to be simulatable if
the following conditions hold.

1.The algorithmT−ReKey is simulatable: There exists
a simulatorSIMT−ReKey that, on input a delegatee’s
public key pkA and a delegator’s public keypkB, can
simulate the view of the adversary on an execution of
T−ReKeywhich produces the public output (i.e., the
verification key).

2.The algorithmT−ReSignoff is simulatable: There
exists a simulatorSIMT−ReSigno f f that, on input a
delegatee’s public keypkA, a delegator’s public key
pkB, t re-signature key sharesRSKi

A→B of the
corrupted proxies and an off-line re-signature token
σo f f

B , can simulate the view of the adversary on an

execution ofT−ReSignoff which producesσo f f
B as

an output.
3.The algorithmT−ReSignon is simulatable: There

exists a simulatorSIMT−ReSignon that, on input a
delegatee’s public keypkA, a delegator’s public key
pkB, t re-signature key sharesRSKi

A→B of the
corrupted proxies, a messagem, an original signature
σA and an on-line re-signature tokenσon

B on m, can
simulate the view of the adversary on an execution of
T−ReSignon which producesσon

B as an output.

We now prove the following theorem about the
relationship between the security of anOTPRS scheme
and the security of aDOPRSscheme.
Theorem 1 (simulation theorem).An on-line/off-line
threshold proxy re-signature schemeOTPRS is
existentially unforgeable against adaptive chosen
message attacks, if it is simulatable and its underlying
divisible on-line/off-line proxy re-signature scheme
DOPRS is existentially unforgeable against adaptive
chosen message attacks.
Proof. Let A denote an adversary of the on-line/off-line
threshold proxy re-signature schemeOTPRS and B

denote an adversary of the divisible on-line/off-line proxy
re-signature schemeDOPRS. We show howA could
help B to break the unforgeability of the underlying
schemeDOPRS under the assumption thatOTPRS is
simulatable. First, we replaceA ’s common parameter by
B’s common parameter. We then do the following.

WhenA issues a key generation query, we intercept
and forward this query toB’s challenger. The challenger
returns the resulting key, and then we send it back toA .

WhenA issues a re-signature key generation query on
(pki , pkj), we run the simulatorSIMT−ReKeytakingpki and
pkj as input, and returnSIMT−ReKey’s output toA .

When A issues a signature query on(pki , m), we
intercept it and forward(pki , m) asB’s signature query
to B’s challenger. The challenger returns a corresponding
signatureσ . We then sendσ back toA .

When A issues an off-line re-signature query on
(pki , pkj), we intercept it and forward(pki , pkj) asB’s
off-line re-signature query toB’s challenger. The
challenger returns a corresponding off-line re-signature

token σo f f
j . We then run the simulatorSIMT−ReSigno f f

taking pki , pkj , σo f f
j and the transcript of the execution

of SIMT−ReKey(which includes re-signature key shares of
corrupted proxies) as input, and returnSIMT−ReSigno f f ’s
output toA .

When A issues an on-line re-signature query on
(pki , pkj , m, σi), we intercept it and forward
(pki , pkj , m, σi) asB’s on-line re-signature query toB’s
challenger. The challenger returns a corresponding
on-line re-signature tokenσon

j . We then run the simulator
SIMT−ReSignon taking pki , pkj , m, σi , σon

j and the
transcript of the executions ofSIMT−ReKey and
SIMT−ReSigno f f as input, and returnSIMT−ReSignon’s output
to A .

Finally, A outputs a pair(pk∗, m∗, σ∗), we intercept
and return it asB’s valid forgery. SinceOTPRS is
simulatable, A ’s view from the simulation is
indistinguishable from its view in the real attack game.

Theorem 1 provides a way to construct
on-line/off-line threshold proxy re-signature schemes: we
can use aDOPRSscheme as a building block to construct
an OTPRS scheme which is a threshold version of
DOPRS. If OTPRS is simulatable according to
Definition 6, the unforgeability ofOTPRScan be reduced
to that of its underlying schemeDOPRS.
Definition 9 (Robustness). A (t, n) on-line/off-line
threshold proxy re-signature schemeOTPRS is said to be
robust if it generates a correct output even in the presence
of a malicious adversary that makest corrupted proxies
depart from the normal execution.

4 A divisible on-line/off-line proxy
re-signature scheme

We assume that the message will be modified to anm-bit
string before computing the signature or re-signature. We
can achieve this by a collision-resistant hash function
L : {0, 1}∗ → {0, 1}nm. The divisible on-line/off-line
proxy re-signature schemeDOPRS = (KeyGen, ReKey,
Sign, ReSignoff , ReSignon, Verify ), where

–KeyGen: Given a security parameter 1k, choose two
multiplicative cyclic groupsG1 and G2 of the same
prime orderp. Assume thatg is a generator ofG1,
H : {0, 1}∗ → Z

∗
p is a collision-resistant hash

function, ande : G1 × G1 → G2 is an admissible
pairing. Furthermore, choosenm+2 random elements
(g2, u

′
, u1, · · · , unm) ∈ Gnm+2

1 . Define a function
F(m) : {0, 1}nm → G1 mapping a nm-bit string
Com= (Com1, · · · ,Comnm) ∈ {0, 1}nm onto

F(Com) = u
′ nm

∏
i=1

(ui)
Comi . The signer picks a random

number a ∈ Z
∗
p, and computes the corresponding

secret/public key pair(sk, pk) = (a, ga). The proxy
choosesy,z ∈R Z

∗
p, and computesZ = z−1(modp),

h1 = gy and h2 = gz. The public parameter is
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cp= (G1, G2, H, p, g, F, e, u
′
, h1, h2,

u1, · · · , unm).
–ReKey: Given a delegatee’s secret keyskA = a and a
delegator’s secret keyskB = b, the proxy performs as
follows:

1.Chooses and sendsw ∈R Z
∗
p to a delegatee. Then,

the delegatee sendsaw to a delegator. Furthermore,
the delegator sendsb/(aw) to the proxy. Finally,
the proxy computesrkA→B = w ·b/(aw) = b/a.

2.The secret re-signature key is set asRSK=(rkA→B,
y, z, Z).

–Sign: Given a secret keysk= a and a massagem
′
=

(m
′

1, ...,m
′

nm
) ∈ {0,1}nm, it generates a signatureσ =

(σ1, σ2) = (ga
2F(m

′
)r , gr), wherer ∈R Z

∗
p.

–ReSignoff : Given a delegatee’s public keypkA = ga,
a delegator’s public keypkB = gb and a re-signature
keyRSKA→B = (rkA→B, y, z, Z), the proxy performs as
follows:

1.Chooses m, r,s, r
′
∈R Z

∗
p and computes

Com= gmhr
1hs

2.
2.SendsCom to the delegatee to obtain a signature

σA = (σA,1, σA,2) = (ga
2F(Com)rA, grA) on Com,

where rA is randomly chosen fromZ∗p by the
delegatee.

3.Checks thatVerify (pkA, m, σA)
?
= 1. If σA is valid,

the proxy choosesrB ∈R Z
∗
p and computesσo f f

B =

(pkA, (σA,1)
rkA→BF(Com)rB, (σA,2)

rkA→BgrB)=

(pkA, gb
2F(Com)r

′
B, gr

′
B), wherer

′

B = rB+ rA ·b/a.
Otherwise, the proxy outputs⊥.

4.Computesθ = m+ yr+ sz(modp).
5.Stores the state informationSt=(θ , m, r, s, r

′
) and

outputs the off-line re-signature tokenσo f f
B .

–ReSignon: On input a re-signature keyRSKA→B
=(rkA→B,
y, z, Z), a state informationSt = (θ , m, r, s, r

′
), a

delegatee’s public key pkA, a signature

σ ′A = (ga
2F(m

′
)r
′
A, gr

′
A) and a messagem

′
, the proxy

computess
′
= (θ − H(m

′
) − yr

′
)Z (mod p) and

outputs the on-line re-signature token
σon

B = (r
′
, s
′
, σ ′A). The re-signature form

′
is defined

as
σ ′B = (σo f f

B , σon
B ) = (σB,0, σB,1, σB,2, σB,3, σB,4, σB,5,

σB,6) = (pkA, gb
2F(Com)r

′
B, gr

′
B, r

′
, s
′
, ga

2F(m)r
′
A, gr

′
A).

Note thatσo f f
B = (σB,0, σB,1, σB,2, σB,3) might be sent

to the recipient in the off-line stage.
–Verify : Given a public keypk, a purported signatureσ
and a messagem

′
, the verification algorithm performs

as follows:
–If σ is an original signatureσ = (σ1, σ2), it checks
that
e(σ1, g) = e(σ2, F(m

′
))e(pk, g2).

If the equation holds, it outputs 1; otherwise,
outputs 0.

–If σ is a re-signatureσ = (σ0, σ1, σ2, σ3, σ4, σ5,
σ6), it checks that

e(σ1, g) = e(σ2, F(gH(m
′
)hσ3

1 hσ4
2 ))e(pk, g2)

e(σ5, g) = e(σ6, F(m
′
))e(σ0, g2) .

If the above equations hold, it outputs 1; otherwise,
it outputs 0.

Note that theKeyGen and ReKey algorithms are
performed only once.

5 An efficient on-line/off-line threshold proxy
re-signature scheme

Based on the divisible on-line/off-line proxy re-signature
scheme given in Section 4, we construct an efficient on-
line/off-line threshold proxy re-signature scheme.

5.1 Construction

Suppose thatP = {P1, · · · , Pn} is a set ofn proxies. Let
DOPRS=(KeyGen, ReKey, Sign, ReSignoff, ReSignon,
Verify ) be the divisible on-line/off-line proxy re-signature
scheme described in Section 4. The resulting
on-line/off-line threshold proxy re-signature scheme
OTPRS=(KeyGen, T − ReKey, Sign,T−ReSignoff,
T−ReSignon, Verify ) with a threshold t < n/4 is
constructed as follows.

–(KeyGen, Sign, Verify ) are the same as those in
DOPRS.

–T − ReKey: The description of the threshold
re-signature key generation algorithm is presented in
Figure 1. This protocol is performed only once.

–T−ReSignoff: The re-signing protocol for the off-line
stage is presented in Figure 2.

–T−ReSignon: The re-signing protocol for the on-line
stage is presented in Figure 3. Note that each proxy
Pi first computes its re-signature share(r

′

i , s
′

i), then the
proxies jointly combine all of the re-signature shares
and generate an on-line re-signature tokenσon

B .

Robustness.The threshold re-signature key generation
and the off-line threshold re-signing protocols can achieve
robustness even if an adversary corrupted up ton/3− 1
proxies. This is because, as observed in Section 2.2, all
protocols (including DKG, INV, MUL and
EC-Interpolate) are already robust against such kind of
adversaries, or these protocols can easily be modified to
achieve robustness. However, the proxies uses a
polynomial of degree 2t to interpolate the values

′
. If the

adversary corrupts at mostt proxies, then the number of
proxies needed to correctly interpolates

′
is 2t + 2t + 1

according to the Berlekamp-Welch bound. It means that,
even if at mostt proxies behave dishonestly, 3t +1 honest
proxies are still able to create a valid re-signature. Thus,
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the whole protocol is robust against up tot < n/4
malicious proxies.

Threshold Re-Signature Key Generation
Protocol

Public parameters: a security parameter
k, a threshold t, two multiplicative cyclic
groups G1 and G2 of the same prime order
p, a bilinear pairing e : G1 × G1 → G2, a
generatorg of G1, nm + 2 random elements
(g2, u

′
, u1, · · · , unm) ∈ Gnm+2

1 , a collision-
resistant hash functionH : {0, 1}∗ → Z

∗
p and

a function F(m) : {0, 1}nm → G1 mapping a
nm-bit stringm= (m1, · · · , mnm) ∈ {0, 1}nm onto

F(m) = u
′ nm

∏
i=1

ui
mi .

Private input : a delegatee’s key pair
(pkA, skA) = (ga, a) and a delegator’s key
pair (pkB, skB) = (gb, b).
Public output : the public parameters
(h1, h2, {vki}

n
i=1).

Private output (for eachproxy Pi) : a share
RSKi

A→B of the re-signature keyRSKA→B.

1.The proxies jointly run the DKG protocol
twice in order to get two public valuesh1 and
h2. We useyi andzi to denote the shares of
two secret valuesy, z (such thath1 = gy and
h2 = gz) held by proxyPi .

2.The proxies jointly run the INV protocol so
that proxyPi obtains a shareZi of the inverse
Z of z.

3.Each proxyPi first sendswi ∈R Z
∗
p to the

delegatee. Then, the delegatee sendsawi to
the delegator. Next, the delegator chooses a
random polynomialf (x) ∈ Zp[x] of degree
t such that f (0) = b. Furthermore, the
delegator computesbi = f (i) andvki = gbi ,
and sends(bi/(awi), vki) to proxyPi . Finally,
Pi computesrki

A→B = wi · bi/(awi) = bi/a.
We denote withvki the verification key of
proxyPi.

4.The public parameters are

params=(n, t, p, g, g2, F, u
′
, {ui}

nm
i=1, {vki}

n
i=1) ,

while each proxyPi secretly retainsRSKi =
(rki

A→B, yi , zi , Zi) as his own local re-signing
key share.

Figure 1.T−ReKey

The off-line threshold re-signing algorithm is
performed per message. This algorithm is described as
follows.

Off-Line Threshold Re-Signing Protocol

Public input : a delegatee’s public keypkA = ga

and a delegator’s public keypkB = gb.
Private input (for proxy P i) : the re-signature
key shareRSKi = (rki

A→B, yi , zi , Zi).
Public output : an off-line re-signature token
σo f f

B .
Private output (for proxy P i) : a secret state
informationSti = (θi , mi , r i , si , r

′

i , µi).

1.The proxies jointly run the DKG protocol
four times to generate four shared random
valuesm, r, s, r

′
. We denote withmi , r i , si and

r
′

i the shares of the secret valuesm, r, s, r
′

(such thath3 = gm, h4 = hr
1, h5 = hs

2, h6 = hr
′

1 )
held by proxyPi .

2.The proxies jointly run the DKG protocol to
generateµi for each proxyPi through a degree
2t polynomialf0(x)∈Zp[x] such thatf0(0)=
0.

3.Now,h3, h4 andh5 are known to the proxies,
soCom= h3h4h5 = gmhr

1hs
2.

4.The delegatee generates a signatureσA =
(σA,1, σA,2) = (ga

2F(Com)rA, grA) on Com,
whererA is randomly chosen fromZ∗p.

5.Proxy Pi first verifies

Verify (pkA,Com, σA)
?
= 1. If it does

not hold, outputs⊥; otherwise,Pi chooses
rB,i ∈R Z

∗
p and broadcasts its re-signature

share

σBi = (σBi ,1, σBi ,2)

= ((σA,1)
rki

A→BF(Com)rB,i , (σA,2)
rki

A→BgrB,i )

= (gabi/a
2 F(Com)rB,i+rAbi/a, grB,i+rAbi/a)

= (gbi
2 F(Com)r

′
B,i , gr

′
B,i ),

where r
′

B,i = rB,i + rAbi/a. Each proxyPj

verifies the shareσBi = (σBi ,1, σBi ,2) from

the other proxies.Pj verifies e(σBi ,1, g)
?
=

e(F(Com), σBi ,2)e(vki , pkA). If the equation
does not verify,Pj broadcasts a complaint
against Pi . When the total number of
complaints is more thant, Pi is regarded
as disqualification. LetQUAL be the set of
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qualified proxies. If|QUAL| > t, the proxies
can compute the off-line re-signature token

σo f f
B = (σB,0, σB,1, σB,2)

= ( pkA, ∏
i∈QUAL

σ
λi,0
Bi ,1

, ∏
i∈QUAL

σ
λi,0
Bi ,2

)

= (pkA, ∏
i∈QUAL

g
bi λi,0
2 F(Com)

r
′
B,iλi,0 , ∏

i∈QUAL

g
r
′
B,i λi,0)

= (pkA, gb
2F(Com)r

′
B,gr

′
B ),

where r
′

B = ∑
i∈QUAL

r
′

B,iλi,0 and λi,0 is the

Lagrange interpolation coefficient.
6.The proxies jointly run the MUL protocol

twice to compute the shares of the productsry
andsz. Then, the proxies (non interactively)
compute shares of the valueθ = m+ ry +
sz(modp). We useθi to denote the share of
θ held by proxyPi.

7.The off-line re-signature token isσo f f
B =

(pkA, gb
2F(Com)r

′
B,

gr
′
B), while the state information for proxyPi

is Sti = (θi , mi , r i , si , r
′
, µi).

Figure 2.T−ReSignoff

Note that the efficiency of the on-line threshold
re-signing algorithm is the most important when
optimizing threshold re-signature computation. The
off-line phase of our scheme requires several rounds of
communication, but the on-line stage is typically efficient.
The proxies can compute a re-signature in a short time
once the message to be re-signed is presented.

On-Line Threshold Re-Signing Protocol

Public intput : a delegatee’s public keypkA, a
messagem

′
∈ Zq and a signatureσ ′A.

Private input (for proxy P i) : the re-signature
key shareRSKi
=(rki

A→B, yi , zi , Zi) and the state information
Sti = (θi , mi , r i ,
si , r

′
, µi).

Public output : an on-line re-signature token
σon

B .

1.Each proxyPi locally computes the shares
′

i =

(θi −H(m
′
)− r

′
y)Zi + µi(modp). Then, the

proxies broadcasts their sharess
′

i to compute
s
′
=EC-Interplate(s

′

1, · · · ,s
′

n).
2.The on-line re-signature token form

′
is given

by (r
′
, s
′
, σ ′A).

Figure 3.T−ReSignon

5.2 Security

Theorem2. The proposed on-line/off-line threshold proxy
re-signature schemeOTPRS is simulatable.
Proof. The simulation techniques used here are similar to
those used in [21,22]. We give simulators forT−ReKey,
T−ReSignoff, T−ReSignon, respectively. Without loss
of generality, suppose that the proxiesP1, · · · ,Pt are
corrupted by an adversary.

Simulator SIMT−ReKey for the protocolT −ReKey:
Given two public keys(pkA, pkB) = (ga, gb), SIMT−ReKey
performs as follows.

1.The execution of the DKG protocol is replaced by the
execution of the simulatorSIMDKG for the DKG
protocol. SIMT−ReKey runs SIMDKG(h1) to fix the
result of the DKG execution to beh1. SIMT−ReKey
runs SIMDKG(h2) to fix the result of the DKG
execution to beh2. At the end, proxyPi(1 ≤ i ≤ n)
obtains its shares(yi , zi).

2.The INV protocol is run exactly as in the real protocol.
3.Step 3 is done as follows. The simulatorSIMT−ReKey

first choosest random numbersci from Z
∗
p, and

computesvki = gci for i = 1, · · · , t. Using Lagrange
interpolation,SIMT−ReKey then constructsgf (x) such
that gf (0) = gb = pkB andgf (i) = gci for i = 1, · · · , t.
Finally, SIMT−ReKey broadcasts
vkj = gf ( j) ( j = t + 1, · · · ,n) for the uncorrupted
proxies.

4.SIMT−ReKeyexecutes the rest of this protocol as in the
real protocol.

Note thatSIMT−ReKeyprovides the adversary with a view
(public outputs and private outputs of corrupted proxies)
which is exactly indistinguishable from actual execution.

Simulator SIMT−ReSigno f f for the protocol

T − ReSignoff : Given two public keys
(pkA, pkB) = (ga, gb), t re-signature key sharesRSKi

A→B

and an off-line re-signature tokenσo f f
B = (σB,1, σB,2),

SIMT−ReSigno f f performs as follows.

1.SIMT−ReSigno f f executesSIMDKG(gm), SIMDKG(hr
1),

SIMDKG(hs
2) and SIMDKG(hr

′

1 ). As a result, proxy
Pi(1≤ i ≤ n) obtains its shares(mi , r i , si , r

′

i ).

c© 2015 NSP
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2.SIMT−ReSigno f f runsSIMDKG to simulate an execution
of the DKG protocol such that the output is fixed to 0.
ProxyPi(1≤ i ≤ n) obtains its shareµi .

3.Steps 3, 4, 6 and 7 are run exactly as in the real
protocol, so we concentrate on step 5. Let
Com = gmhr

1hs
2 and θ = m + ry + sz (mod p).

SIMT−ReSigno f f first choosesrB,i ∈R Z
∗
p and computes

the share
σBi = (σBi ,1, σBi ,2) = ((σA,1)

rki
A→BF(Com)rB,i ,

(σA,2)
rki

A→BgrB,i ) by the re-signature key share
RSKi = (rki

A→B, yi , zi , Zi) for i = 1, · · · , t, where
σA = (σA,1, σA,2) = ((pkA)

−J(Com)/K(Com)F(Com)rA,
(pkA)

−1/K(Com)grA). For the uncorrupted proxies,
SIMT−ReSigno f f uses Lagrange interpolation to
compute the sharesσB j = (σB j ,0, σB j ,1, σB j ,2) =

(pkA, σλ0, j
B,1

t
∏
l=1

σλl , j
Bi ,1

, σλ0, j
B,2

t
∏
l=1

σλl , j
Bi ,2

) for j = t +1, · · · ,n
.

The above simulation is perfectly indistinguishable
from a real execution of the protocol.

Simulator SIMT−ReSignon for the protocol
T − ReSignon: Given two public keys
(pkA, pkB) = (ga, gb), t re-signature key sharesRSKi

A→B

of the corrupted proxies, a messagem
′
, an original

signature σ ′A and an on-line re-signature token
σon

B = (r
′
, s
′
, σ ′A), SIMT−ReSignon works as follows.

1.SIMT−ReSignon computes the share
s
′

i = (θi − H(m
′
) − yir

′
)Zi + µi (mod p) for

i = 1, · · · , t. SIMT−ReSignon then chooses a 2t-degree
polynomial fs(x) ∈ Zp[x] such that fs(0) = s

′
and

fs(i) = s
′

i for i = 1, · · · , t. For the uncorrupted proxies,
SIMT−ReSignon broadcasts s

′

j = fs( j) for
j = t + 1, · · · ,n. Notice that all proxies can compute
s
′
=EC-Interplate(s

′

1, · · · ,s
′

n). The interpolation of
these valuess

′

j together with sharess
′

j of the corrupted

proxies comes out to bes
′
, just as in the real protocol.

Since the simulator does not know the secret signing
key and the re-signature key, it is clear that the adversary’s
view is exactly in the same as in the actual protocol.

From Theorems 1 and 2, we can derive the following
theorem.
Theorem 3. If the CDH problem and the discrete
logarithm problem are intractable, the proposedOTPRS
scheme is existentially unforgeable and robust against an
adversary who corrupts up to t< n/4 malicious proxies.

5.3 Comparison

We compare the proposed scheme with some existing
threshold proxy re-signature schemes in Table 1. We
mainly analyze bit complexity of all schemes required by
a proxy in computing its re-signature share when a
message to be re-signed arrives. Note that all proxies

Table 1: Comparison of computational complexity among
threshold proxy re-signature schemes

Schemes Additions Subtractions Multiplications Exponentiations Pairings

BTPRS11 0 0 0 2 3
UTPRS11 0 0 1 3 2
BTPRS10 0 0 2 4 3

Our OTPRS 1 2 2 0 0

compute their re-signature shares in parallel. However,
schemesBTPRS11[8], UTPRS11[8] andBTPRS10[9]
are not considered to be on-line/off-line threshold proxy
re-signature schemes because no pre-computation is
performed. To achieve the same level of security, assume
that the modular parameterp in all schemes is the same
size.

Referring to Table 1, in ourOTPRS scheme, each
proxy performs one modular addition, two modular
subtractions and two modular multiplications when
computing an re-signature share. This is very efficient and
comparable to the other schemes. Our scheme makes a
tradeoff by incurring a large cost in the off-line stage to
obtain a quick on-line stage.

6 Conclusion

We give a simulation theorem for on-line/off-line
threshold proxy re-signature schemes. We also propose a
divisible on-line/off-line proxy re-signature scheme.
Fruthermore, we propose an efficient on-line/off-line
threshold proxy re-signature scheme based on the
simulation theorem and the proposed divisible scheme.
Compared with existing threshold proxy re-signature
schemes, the advantages of our new scheme is lower costs
of computation when the messages to be re-signed arrive.
The security of ourOTPRS scheme can be reduced to
that of its underlyingDOPRS scheme together with the
discrete logarithm assumption.
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