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Abstract: This paper presents the mathematical aspects of a generalized Sine map with arbitrary powers and scaling factor. The added
parameters increase the degrees of freedom of the Sine map and give a versatile response that can be utilized in many applications.
For each added parameter, the map’s chaotic behavior is analyzed using fixed points, bifurcation diagrams and Lyapunov exponents.
Furthermore, two image encryption applications are introduced based on the generalized Sine map. The first system only performs pixel-
value substitutions to focus on the effect of utilizing the generalized map. This system is controlled by fifteen different parameters and
initial conditions of three generalized Sine maps.The second system performs both permutations and substitutions to achieve Shannon’s
diffusion and confusion properties. The two systems are analyzed using miscellaneous evaluation criteria such as pixel correlation
coefficients, differential attack measures, histogram distributions and the National Institute of Standards and Technology (NIST)
statistical test suite. Key sensitivity analysis is also performed and the mean square error and entropy measures are calculated. The
analysis results are promising and demonstrate the benefitsof utilizing the designed generalized map in image encryption applications.
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1 Introduction

Since the 1930’s, chaotic systems have been used in the
modeling and processing activities of miscellaneous areas
of science [1,2]. Such areas include biology [3], medicine
[4], business [5], computer science [6,7], physics and
chemistry [8]. In engineering and communication, chaotic
dynamics have also been extensively utilized. Some
approaches design new chaotic generators based on
analog [9], digital [10] or mixed circuits [11]. Other
approaches utilize classical or new designs of discrete
chaotic systems. For example, the well-known logistic
map is extensively utilized in secure communication and
image encryption (refer for example to [12] and [13]). In
addition, some pseudorandom number generators utilize
different discrete-time chaotic circuits (e.g., [14,15]).

Chaos-based cryptography has been used for more
than two decades and numerous chaotic systems have
been utilized in text, image, sound or video encryption. In
order to fulfill some basic cryptographic requirements,
Alvarez and Li provide guidelines to be followed when
designing a new chaos-based cryptosystem [16]. The
utilized chaotic systems include discrete maps,
continuous attractors, fractional-order attractors, or
fractals [17,18,19,20,21]. For instance, [17] uses the
fractional-order Lorenz attractor in image encryption. In

[18], a color image encryption scheme is designed based
on coupled 3D continuous chaotic systems and a secure
hash algorithm is employed to generate one-time keys
dependent on the plain image. On the other hand, Tong
and Cui design a new 2D chaotic function by exploiting
two 1D chaotic functions which switch randomly [19].
Their image encryption scheme uses the new 2D chaotic
function, image pixel permutation and 3D baker scheme.
In addition, Zhanget al. [20] utilize the characteristics of
bit-level operations and the intrinsic bit features of the
image in an expand-and-shrink strategy that shuffles the
image with reconstructed permuting plane. Fractals are
also used as the stream, or medium, for encrypting images
by combining ideas from symmetric-key stream
cryptography and spatial domain steganography [21].

Despite the fact that the logistic map is widely used in
encryption, many approaches introduce new chaotic maps
or enhance and combine existing ones in order to improve
security and performance (e.g., [22,23,24]). In [22], a
new hybrid chaotic map, which is constructed by
composition of the logistic map, Henon map and Ikeda
map, reveals remarkable sensitivity to initial condition
and parameters. On the other hand, Chenet. al [23] use
multiple chaotic dynamics and two chaotic maps are
required in their cryptosystem.One map encrypts the first
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plaintext block and, then, the other map encrypts the next
plaintext block using final output of the first map as initial
value. Pisarchik and Zanin [24] also presented a
cryptosystem for direct encryption of color images, based
on chaotically coupled chaotic maps. Their proposed
cipher provides good confusion and diffusion properties
because of the chaotic mixing of pixels’colors.

The classification, bifurcation, and similarities of
iterated maps can be explained by the mathematical
theory on one-dimensional maps [25]. According to the
Sarkovskii theorem [26], if the function has a periodic
point of period three then chaos can be achieved at a
certain range of the control parameter. The conventional
Sine map is defined byxn+1 = r sin(πxn) , wherer, x∈ R.
This map generates a bifurcation diagram that is
symmetric with respect to both axes of ther-x plane.
Figure 1(a) shows this bifurcation diagram for
r ∈ [−π ,π ]. By keepingr andx in the interval[0,1], the
map is restricted to the first quadrant as shown in Fig.
1(b). The conventional Sine map depends on a single
parameter r, which limits the map’s behavior and
applications.

This paper introduces a generalized Sine map where
the conventional map is considered as a special case. The
added parameters, which are arbitrary powers and scaling
factor, increase the degrees of freedom of the map and
produce a versatile response that can be utilized in many
applications. The generalized Sine map is described by

xn+1 = f (xn, r,γ,β ,α) = r sinγ (απxβ
n ), (1)

whereα,β , andγ are real parameters greater than zero.
The new generalized one-dimensional Sine map has four
parameters(r,γ,β ,α).

To analyze the effect of each of the newly added
parameters on the Sine map’s chaotic behavior, three
special cases are discussed. In each of the three special
cases,r and one of the newly introduced parameters
(γ,β ,α) are varied while the other two are set to unity. In
addition to the presentation and discussion of the
generalized Sine map, this paper utilizes it in an image
encryption application which demonstrates the advantage
of the added degrees of freedom. It should be mentioned
that generalized logistic and tent families have been
recently investigated in [27,28,29].

Sections 2 to 4 of this paper provide detailed analysis
of the chaotic behavior of the Sine map due to the three
parametersγ, β andα, respectively. In this analysis, fixed
points, bifurcation diagrams and maximum Lyapunov
exponents are discussed. Section 5 presents two image
encryption applications based on the generalized Sine
map, which give promising results. Finally, conclusions
and future work are provided in Section 6.

2 Chaotic Behavior Whenγ 6= 1 and
α = β = 1

Assuming thatf (x, r,γ) = r sinγ (πx), then the peak of this
function equalsr and it exists atx = xp = 0.5. To ensure
the closure property ofx ∈ [0,1], r ∈ [0,1] in all cases
independent ofγ. Figure 2 shows the projection of the
fifth iteration f 5 in thex-γ plane for different values ofr.
As r increases, values of the fifth iteration increase up to
almost the full range, whenr = 1.0. As γ increases, the
peaks increase in number and get deformed with different
rotations as evident from Fig. 2 whenr = 0.9 andr = 1.0.

2.1 Nontrivial Fixed Points

Figure 3 plotsf (x, r,γ) versusx for different values ofr
and γ. This figure indicates the expected number and
location of the fixed points,x∗. For γ < 1, only one
nontrivial fixed point can exist. This fixed point,x∗, is less
thanxp = 0.5 whenr < 0.5 and is greater thanxp when
r > 0.5. For γ > 1, there can be zero, one, or two
nontrivial fixed points depending on the values ofγ andr.
Given this qualitative information, the fixed points can be
numerically calculated for different values of the
parametersr andγ from:

x∗ = f (x∗, r,γ) = r sinγ (πx∗). (2)

Figure 4 shows the values of the fixed points,x∗, and
the derivativef ′(x∗, r,γ) at those fixed points. Forγ ≤ 1,
Fig. 4 shows the nontrivial solutions wherex∗ increases as
r increases. In addition, the nonlinearity of the curvex∗
increases asγ increases. The stability of the fixed points
is determined based on the derivative off (x∗, r,γ). Hence,
Fig. 4 also shows the values off ′(x∗, r,γ) for different
values ofr andγ. If | f ′(x∗, r,γ)| < 1, then the fixed point
is stable (i.e., sink). If| f ′(x∗, r,γ)| > 1, then the fixed
point is unstable (i.e., source).

Whenγ = 0.1, the system has a single fixed point in
the full range ofr and it is always stable. However, asγ
increases the absolute derivative at the fixed point begins
to decrease below−1 asr increases. Therefore, there are
critical points (rb,x∗b) at which this derivative absolute
value becomes unity as follows:

f ′(x∗b, rb,γ) =±1= πrbγ sinγ−1(πx∗b)cos(πx∗b). (3)

By substitutingrb =
x∗b

sinγ (πx∗b)
from (2) into (3), the flip

bifurcation point(rb,x∗b) in the region[0,1]× [0,1] occurs
when f ′(x∗b, rb,γ) = −1. Hence,x∗b ∈ [0,1] is obtained
from the following equation:

πγx∗b+ tan(πx∗b) = 0. (4)

Consequently, the equation of the bifurcation curve is:

rb = x∗b(sin(πx∗b))
tan(πx∗b)

πx∗b . (5)
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(a) (b)

Fig. 1: Sine bifurcation diagrams when (a)r,x∈ [−π ,π ] and (b)r,x∈ [0,1].

Fig. 2: Projection of the function iterationf 5 in thex-γ plane for different values ofr.

(a) (b)

Fig. 3: Expected fixed points off (x, r,γ) = r sinγ (πx) for different values ofr andγ (a) r = 0.2 and (b)r = 0.9.
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Fig. 4: Fixed points and derivatives off (x, r,γ) = r sinγ(πx) for different values ofγ.

For γ > 1, Fig. 3 and Fig. 4 show that there are no
nontrivial fixed points for small values ofr. As r
increases, there is a fold bifurcation point(rs,x∗s) at
which the nontrivial fixed-points start to appear. When
r > rs and based on the fixed point stability criteria
discussed in [30] , two fixed-points occur. One of the
fixed points is always unstable (f ′ > 1) and the other
remains stable untilf ′ reaches−1 (i.e., it is stable as long
as| f ′|< 1).

The fold bifurcation point(rs,x∗s) is obtained by
solving f ′(x∗, r,γ) = 1 to get

πγx∗s− tan(πx∗s) = 0. (6)

It is also at the location where the peak in ther-x∗ curve

occurs
(

∂ r
∂x∗

|x∗=x∗s = 0
)

(see Fig. 4) [25]. The following

flip bifurcation point(rb,x∗b) occurs whenf ′(x∗b, rb,γ) =
−1 similar to the case whenγ ≤ 1.

Figure 5 plots the fold bifurcation points(rs,x∗s),
which indicate the onset of nontrivial fixed points. It also
plots the following period-two flip bifurcation points
(rb,x∗b). As long asx∗s = 0, the bifurcation diagram is
continuous and whenx∗s > 0 the bifurcation diagram
suffers from discontinuity. From Fig. 5(a), it is clear that
the bifurcation diagram is continuous whenγ ≤ 1 and
suffers from discontinuity whenγ > 1. In addition, since
the parameterr is restricted tor ∈ [0,1], Fig. 5(b) shows
that there is no bifurcation at all whenγ < γth = 0.17. It
should also be noted that Fig. 5(b) demonstrates that the
value ofrs increases asγ increases.

The values of the bifurcation points given in Fig. 5 are
in accordance with the bifurcation diagrams given in Fig.
6. In Fig. 6(a),γ < γth = 0.17 and there is no bifurcation
at all. In Figs. 6(b) and 6(c),γth ≤ γ ≤ 1 andx∗s = 0.
Hence, the bifurcation diagram is continuous and the
nontrivial fixed points start from the correspondingrs
given in Fig. 5(b). Forγ = 1, nontrivial fixed-points start
to occur when f ′ = 1 at rs = 1/π and x∗s = 0 and,
therefore, the bifurcation diagram is still continuous (refer
to Fig. 1(b)). In Fig. 6(d), γ > 1 and there is a
discontinuity in the bifurcation diagram because of the
nonzerox∗s.

2.2 Bifurcation Diagrams

From the previous analysis, the bifurcation diagram of the
proposed map depends on some critical values as shown
in Fig. 5. Figure 6(a-d) illustrate the differences and
progress of the diagram versusr ∈ [0,1] as γ increases
from 0.1 to 1.5. As explained in Section 2.1, there is a
single stable fixed point and no bifurcation occurs at
γ = 0.1. As γ increases beyondγth, the first flip
bifurcation (period two) occurs at the points(rb,x∗b),
which are given in Fig. 5. The bifurcation diagram suffers
from discontinuities once the parameterγ exceeds 1.
Figure 6(d) shows that two supplementary fixed points are
caused by the fold bifurcation at(rs,x∗s) and, then, the
flip bifurcation occurs at(rb,x∗b) given in Fig. 5. In
addition, the bifurcation diagram changes considerably by
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(a) (b)

Fig. 5: Coordinates of the bifurcation points(rb,x∗b) and the start points(rs,x∗s) for the first special case case (a)x values
and (b)r values..

(a) (b) (c) (d)

Fig. 6: Bifurcation diagram of the first special case versusr (a)γ = 0.1, (b)γ = 0.4, (c)γ = 0.95 and (d)γ = 1.5.

changingγ. For example, atr = 0.9, the system response
changes from fixed point, period two, to chaos whenγ
equals 0.1,0.4, and 0.95, respectively, as shown in Figs.
6(a-c).

Since this special case has another parameterγ, it is
possible to study the bifurcation diagram with respect toγ
for fixed values ofr as shown in Figs. 7(a-c). Forr = 0.3,
only one stable fixed point occurs for all values ofγ < 1. In
addition, no nontrivial fixed points exist forγ > 1. Hence,
Fig. 7(a) is consistent with the results given in Fig. 4. Forr
equals 0.7 and 0.9, the first flip bifurcation occurs at thex
andγ values shown in Fig. 7(b) and Fig. 7(c). These values
are also consistent with the values given in Fig. 5.

2.3 Maximum Lyapunov Exponent

To prove the chaotic behavior of the output response, it is
necessary to have a positive value of the Lyapunov
exponent. There are many numerical techniques to
calculate the value of Lyapunov exponent. For the 1D
map defined byxk+1 = f (xk, r), the maximum Lyapunov
exponent (MLE) for the orbit starting atx0 can be
calculated by

MLE = lim
n→∞

(

1
n

n−1

∑
i=0

ln | f ′(xi)|

)

. (7)

where f ′(x) is the derivative of the functionf (x).
The MLE of the proposed map is shown in Fig. 8(a) for

different values ofγ whenr = 0.7. Comparing this figure
with the corresponding bifurcation diagram of Fig. 7(b)
demonstrates how MLE characterizes chaos. For instance,
whenr = 0.7 andγ = 0.5, there is one fixed point in Fig.
7(b) and the MLE in Fig. 8(a) is negative. Whenr = 0.7
andγ = 2.0, there are two fixed points and MLE is still
negative. Asγ increases from 2.5 to 4.0 chaos exists and
MLE becomes positive and increases, which indicates that
chaos becomes more pronounced asγ increases.

On the other hand, Fig. 8(b) plots MLE for different
values ofr whenγ = 1.5. Comparing this figure with the
corresponding bifurcation diagram in Fig. 6(d), it is clear
that there is no chaos forr below 0.8 as MLE is negative
and the bifurcation diagram shows fixed points.

In general, Fig. 9 shows 3D and contour plots of the
MLE against a sub-region in ther-γ plane. The right edge
in the contour plot is consistent with the bifurcation
diagrams ofγ > 1 in Fig. 6(d) where the chaotic region
can terminate beforer reaches unity. Figure10(a) shows
the cobweb diagram of the first special case whenr = 0.9
andγ = 1.8 and Fig. 10(b) shows the corresponding time
series. Those two diagrams further confirm the chaotic
behavior, which is indicated by the positive MLE given in
Fig. 9.
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(a) (b) (c)

Fig. 7: Bifurcation diagrams of the first special case versusγ (a) r = 0.3, (b)r = 0.7 and (c)r = 0.9.

(a) (b)

Fig. 8: MLE of the first special case (a)r = 0.7 (b) γ = 1.5.

3 Chaotic Behavior Whenβ 6= 1 and
α = γ = 1

Assuming thatf (x, r,β ) = r sin(πxβ ), then the peak of this
function equalsr and it exists atx = xp = (0.5)1/β . To
ensure that themth iteration of the functionf , f m(x, r,β ),
is enclosed in the interval[0,1], the range of the parameters
r andx in this generalized Sine map is set tor, x∈ [0,1] in
all cases independent ofβ .

3.1 Nontrivial Fixed Points

The fixed-points analysis for the second special case is
similar to the corresponding analysis for the first special
case. Forβ < 1, only one nontrivial fixed point can exist.
For β > 1, there can be zero, one, or two nontrivial fixed
points depending on the values ofr and β . The fixed

points can be numerically calculated for different values
of the parametersr andβ by solvingx∗ = f (x∗, r,β )

The critical bifurcation point(rb,x∗b) can only occur
when f ′(x∗b, rb,β ) =−1 (i.e., flip bifurcation). Hence,rb,
x∗b and the equation of the bifurcation curve are given by
the following equations, respectively:

rb =
x∗b

sin(πxβ
∗b)

, (8)

πβxβ
∗b+ tan(πxβ

∗b) = 0, (9)

sin−1
(

x∗b

rb

)

ln





sin−1
(

x∗b
rb

)

π



+
x∗b ln(x∗b)
√

r2
b− x2

∗b

= 0. (10)

Equation (9) is similar to (4) except for the power of
x∗b. Hence, the following relation can be concluded:

(x∗b|Second special case)
β = x∗b|First special case (11)
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(a) (b)

Fig. 9: MLE in the r-γ plane (a) 3D plot (b) contour plot.

(a) (b)

Fig. 10: (a) Cobweb diagram and (b) time series of the first special case.

For β > 1, the fold bifurcation point(rs,x∗s) at which
the nontrivial fixed-points start to appear is obtained by
solving f ′(x∗, r,β ) = 1 and the following relation can be
obtained:

(x∗s|Second special case)
β = x∗s|First special case (12)

The following flip bifurcation point(rb,x∗b) occurs
when f ′(x∗, r,β ) =−1 similar to the case whenβ ≤ 1.

Figure 11 depicts the values ofrb andx∗b againstβ .
Because the parameterr in this map is also restricted to
r ∈ [0,1], then there is no bifurcation at all when
β < βth = 0.17 . Figure 11 also shows the values of the
fold bifurcation points(rs,x∗s) at which the nontrivial
fixed-points start to occur whenf ′(x∗s, rs,β ) = 1. As
βth ≤ β ≤ 1, the value ofx∗s = 0 which means that the
nontrivial fixed points start fromx = 0 as shown in Fig.
12(a). However, the value ofrs begins to increase asβ
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Fig. 11: Coordinates of the bifurcation points(rb,x∗b) and the start points(rs,x∗s) for the second special case.

increases. In Fig. 12(a),β = 0.95 and the nontrivial fixed
points start at the correspondingrs given in Fig.11. When
β > 1, there is a discontinuity in the bifurcation diagram
as the nontrivial fixed points start to appear for nonzero
values of bothrs andx∗s as shown in Figs. 12(b, c).

3.2 Bifurcation Diagrams and MLE

Although the bifurcation diagrams are different from
those of the first special case, the general discussions of
Sections 2.2 apply. Figure 12 illustrates the differences
and progress of the diagram versusur ∈ [0,1] as β
increases. It shows that asβ exceeds 1, two
supplementary fixed points are caused by the fold
bifurcation at(rs,x∗s) given in Fig. 11(b). Then, a flip
bifurcation occurs at(rb,x∗b) given in Fig. 11.

On the other hand, Fig. 13 shows the bifurcation
diagram with respect toβ for fixed values ofr. For
r = 0.3, only one stable fixed point occurs for all values
of β < 1. In addition, no nontrivial fixed points exist for
β > 1. Hence, Fig. 13(a) is consistent with the results
given in Fig. 11. Atr = 0.86 andr = 0.96, Figs. 13(b, c)
show the flip (period-doubling) bifurcations to chaos.

To characterize the chaotic behavior of the output
response, the Lyapunov exponent is calculated using Eq.
(7). Figure 14 plots the MLE against a sub-region in the
r-β plane. Similar to the first special case, the calculated
values of the MLE are consistent with the bifurcation
diagrams of Figs. 12 and 13. It should be noted that
according to (7), the MLE can only be calculated and
plotted if f ′(xi) 6= 0. This fact, along with the nonzero
values of rs shown in Figs. 11 and 12, explain the
occurrence of the left edge in the contour plot of Fig.
14(b).

4 Chaotic Behavior Whenα 6= 1 and
β = γ = 1

Assuming thatf (x, r,α) = r sin(απx), then the peak of
this function equalsr and it exists atx = xp = 0.5/α. To
keep the successive positive values forx, then 0≤ αx≤ 1
and 0≤ x ≤ 1/α. Consequently,r should also be limited
to 0≤ r ≤ 1/α. The nontrivial fixed-points start to occur
at the point(rs,x∗s) wherex∗s = 0 and rs = 1/(πα) as
shown from the fixed point curves in Fig. 15(a). The flip
bifurcation point (rb,x∗b) occurs when
f ′(x∗b, rb,α) = −1, which consequently demonstrates
that the third special case is a scaling of the conventional
Sine map where:

α × (x∗b|Third special case) = x∗b|Conventional map (13)

Figure 15(b) depicts the values ofrs, rb, x∗s, x∗b and
rmax againstα for 0.4≤ α ≤ 2.0. For a specific value of
α, the chaotic region extends between the lowerrb curve
and the upperrmax curve. Hence, wider chaotic regions
are obtained whenα < 1.0, as depicted in the bifurcation
diagrams of Fig. 16(a). Once more, the scaling property is
clearly demonstrated in these bifurcation diagrams.
Figure 16(b) depicts the contour plot of the MLE against
a sub-region in ther-α plane. Comparing this figure with
the bifurcation diagrams of Fig. 16(a) further
demonstrates how MLE characterizes chaos. The upper
edge in the contour plot of Fig. 16(b) is due to the fact
thatrmax=

1
α as shown in Fig. 15(b).

5 Encryption Based on the Generalized Sine
Maps

It is clear from the previous sections that the output of the
generalized Sine map can be controlled via the four
parameters(r,α,β ,γ). The generated MLE diagrams of
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(a) (b) (c)

Fig. 12: Bifurcation diagrams of the second special case versusr for (a)β = 0.95, (b)β = 1.1, and (c)β = 2.0.

(a) (b) (c)

Fig. 13: Bifurcation diagrams of the second special case versusβ for (a) r = 0.3, (b) r = 0.86 and (c)r = 0.96.

(a) (b)

Fig. 14: MLE in the r-β plane (a) 3D plot (b) contour plot.

Figs. 9, 14 and 16 can be used to find common regions of
the parameters at which the response behaves chaotically.
Figure 17(a) shows the MLE of the generalized Sine map

when r = 0.99, α = 1.0 and for different values of
β ,γ ∈ [0.5,1.5]. While the maximum MLE value in the
above range exists atβ = 1.048 andγ = 1.172 and equals
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(a) (b)

Fig. 15: (a) Fixed points and derivatives off (x, r,α) = r sin(απx) for different values ofα and (b) coordinates of the
bifurcation points(rb,x∗b) and the start points(rs,x∗s) for 0.4≤ α ≤ 2.0.

(a) (b)

Fig. 16: (a) Bifurcation diagram of the third special case forα = 0.8,2.0, andr = 0.8,1.25, and (b) contour plot of the
MLE for the third special case.

MLEmax ≈ 0.65, the MLE in the conventional case
(β = 1,γ = 1) is 0.603.

Sensitivity analysis of the Sine map parameters is
studied in Fig. 17(b), which shows the cross correlation of
the parametersr,β and γ through simulating the map
twice and introducing an error in the second run in one
parameter only while fixing other values. The point at
which the correlation coefficient becomes maximum
(≈ 1) indicates that the map is insensitive to the error
introduced in the second run.

In order to demonstrate the benefits of using the
generalized forms of the Sine map, Fig. 18 depicts the
block diagram of a simple encryption that utilizes it and
its equivalent decryption block diagram. To focus on the
effect of utilizing the generalized map, this initial
encryption system only involves pixel-value substitutions
that are described as follows.

–Substitutions: At the beginning, the parameters and
initial values of the generalized Sine maps are
calculated from the system key. For each pixel in the

c© 2015 NSP
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input image, a new output value is generated from the
three Sine maps. The encrypted pixel is produced by
XORing the three color channels of the input pixel
with the three outputs from the Sine maps and the
three color channels of the previously encrypted pixel.
This encrypted pixel is then delayed and multiplexed
for utilization in the next pixel encryption cycle. As
shown in Fig. 18(b), the decryption system is the
reverse of the encryption system.

Table 1 shows the multiplexing table used in the
system block diagram. Based on the Least Significant Bit
(LSB) of the Red (R), Green (G) and Blue (B) channels,
the multiplexer output is determined. While the
multiplexing block works as a nonlinear element that
improves the differential attack measures, the delay block
improves the pixel correlation coefficients. It should be
noted that the initial delay for the first pixel is chosen as
zero.The decimal values generated from the maps,
Xi , i = 1,2,3, are transformed into integer values in the
range from 0 to 255 using the following equation:

Xnewi = INT (Xi × s f1)MOD256. (14)

where theINT function returns the integer part of a
number, theMOD function returns the remainder of
integer division and the scaling factors f1 is selected so
that the resulting 8 bits ofXnewi are highly chaotic.
Hence,Xnew1,Xnew2 andXnew3 are XORed with the R,
G and B channels of the input pixel, respectively.

To accomplish Shannon’s confusion and diffusion
properties, a good image encryption scheme should
consist of two main permutations and substitutions phases
[16]. While the permutations phase changes the pixels’
positions, the substitutions phase changes the pixels’
values, usually using a pseudo random number generator.
The initially described encryption system of Fig. 18
involves substitutions only to demonstrate the good effect
of utilizing the generalized Sine map. To improve the
security of the encryption system, a permutations phase is
added as shown in Fig. 19. This figure shows a
permutations-substitutions encryption system as well as
its corresponding decryptions system. Compared to Fig.
18, only the permutations phase is added, which is
described as follows.

–Permutations: The Arnold’s cat map, which is a very
well-known technique for pixel permutations, is used
[31]. The generalized 2D Arnold’s cat map is defined
as:

(

xnew
ynew

)

=

(

1 a
b 1+ab

)(

x
y

)

MOD M, (15)

wherea,b∈ {1,2, . . . ,M −1}, M is the square image
size, x,y ∈ {1,2, . . . ,M} represent the pixel column
and row positions in the image respectively andxnew,
ynew give the new column and row positions for the
pixel under transformation, respectively. The
permutations phase is designed to be dependent on the

Table 1: Multiplexing Table

Selection Bits Output
RLSB GLSB BLSB Rout Gout Bout

0 0 0 B R G
0 0 1 G B R
0 1 0 R G B
0 1 1 B R G
1 0 0 G B R
1 0 1 R B G
1 1 0 B G R
1 1 1 G R B

input plain image by calculating the algebraic sum of
the input image three color channels as follows.

PSum= RSum+GSum+BSum, (16)

whereRSum, GSum andBSum are the sums of the red,
green and blue channels of the input image,
respectively. Then, the Arnold’s cat map parametersa
andb are calculated using the system key andPSum.

The next subsection will explain the design of the
system key and how to compute the permutation and
substitution parameters from it.

5.1 System Key

Based on the block diagrams of Fig. 19, the system key
consists of two parts; one part is for the substitution
parameters and the other part is for the permutation
parameters. The permutation parameters includeL bits to
store theM × M size of the image being encrypted. If
L = ceil(log2 M), thenL needs 4 bits to define the image
size. In addition, twoL-bit integersakey andbkey are used
for the Arnold’s cat map parameters. Hence, the length of
this part is(4+ 2× ceil(log2 M)).The parameter values
obtained from the system key,akey andbkey, are modified
according to (17) and (18) to get the Arnold cat map
parametersa andb.

a= MOD(PSum+akey,M−1)+1, (17)

b= MOD(PSum+bkey,M−1)+1. (18)

The substitutions part can consist of 15 variables (4
parameters for each generalized Sine map and 3 initial
values). Assuming that the register size is 32 bits, then
this part can reach up to 480 bits. However, in order to
design a key with an appropriate length and good
sensitivity, Fig. 20 shows the proposed key structure. The
substitutions part of the key consists of four 32 bit values
V1 toV4. Hence, 128 bits are used to fill-up the required
480 bits with a random distribution that makes every bit
of the key affect many parameters. Hence, the total length
of the key is(4+ 2× ceil (log2 M)+ 128) bits, whereM
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(a) (b)

Fig. 17: (a) The MLE versus theβ -γ plane, and (b) sensitivity of the parametersr,γ andβ .

(a) (b)

Fig. 18: Encryption based on substitutions only: (a) encryption block diagram and (b) decryption block diagram.

is the square image size. For an image of size
1024× 1024,M = 1024,L = ceil (log2 M) = 10 and the
total key length is 152 bits.

Each of the valuesVi is divided into four sub-values
Vi j of 8 bits eachi, j ∈ {1,2,3,4}. These 16 sub-values
are utilized in constructing the 15 parameters and initial
values of the generalized Sine maps. An example of this
construction is given in Fig. 20. In any such construction,
each sub-valueVi j should affect different parameters or
initial conditions of the three maps. Consequently, each
valueVi affects all parameters and initial conditions of the
three maps. The main idea behind this construction is that
any single bit change in the system key affects more than

one parameter or initial condition of the three maps and,
hence, improves key sensitivity.

In order to keep the Sine maps in the chaotic range,
each parameterSand initial valueXo are calculated from
the key, shown in Fig. 20, as follows:

S= Sf +K S× s f2 (19)

Xo= K Xo× s f3 (20)

whereSf is the fixed part of the parameter andK S is the
integer value obtained from the key. The scaling factor
s f2 ensures that the first two decimal places ofSf are not
affected. Those fixed parts and scaling factors of the
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(a) (b)

Fig. 19: Encryption based on permutations and substitutions: (a) encryption block diagram and (b) decryption block
diagram.

Fig. 20: Example utilization of the system key in constructing the parameters and initial conditions of the three maps.

parameters are chosen to guarantee that the generalized
Sine map will maintain its chaotic behavior for any
choice of the system key. Similarly,K Xo is the integer
value obtained from the key and the scaling factors f3
ensures that the initial values are in the interval(0,1).

5.2 Encryption Results

In this subsection, standard evaluation criteria are used to
test the performance of the encryption systems [32,33,
34]. These criteria include pixel correlation coefficients,
histogram distributions and NIST statistical test suite. The
sensitivity of the encryption system to small changes in
the input is evaluated using differential attack measures.
Those measures include the Mean Absolute Error (MAE),

Number of Pixels Change Rate (NPCR) and Unified
Average Changing Intensity (UACI) [33]. The sensitivity
of the system key to only one bit change is discussed
using the Mean Square Error (MSE) and entropy.

The used values of the scaling factorss f1,s f2 ands f3
are 1012,10−12 and 10−10, respectively. The used fixed
values of the generalized Sine maps’ parameters are
{α f ,β f ,γ f , r f } = {1,1.172,1.048,0.99}. As previously
mentioned and demonstrated by Fig. 17, those fixed
values and scaling factors ensure operation in the chaotic
region of the generalized Sine map for any given system
key. The key for the permutations-substitutions system is
chosen as:
′′F1219959A7E9F7D773B2B6C9D6F66900A0641E′′

(hex).
The same key, without the last six hexadecimal digits, is
used for the substitutions system. Using those keys, the
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Fig. 21: Histogram distributions for the original Lena image (first row) and its encrypted image based on substitutions
only (second row).

Table 2: Analysis Results of the Proposed Encryption Systems

Substitutions Only Permutations-Substitutions
Color Pixel Correlations Pixel Correlations Differential Attack Measures

Horz. Vert. Diag. Horz. Vert. Diag. MAE NPCR(%) UACI(%)
R 0.0006 0.0011 0.0011 0.0002 0.0005 -0.0004 84.1717 99.609233.4540
G 0.0007 0.0001 0.0008 -0.0001 -0.0004 -0.0011 78.0309 99.6109 33.4498
B 0.0003 0.0005 0.0010 -0.0003 0.0008 -0.0003 70.3813 99.6089 33.4998

Avg. 0.0005 0.0006 0.0010 0.0002 0.0005 0.0006 77.5280 99.6096 33.4679

Table 3: NIST Suite Results of the Proposed Encryption
Systems for Lena(1024×1024)

Test Subst. Perm.-Subst.
PV PP PV PP

Frequency X 1.000 X 1.000
Block Frequency X 0.958 X 1.000
Cumulative Sums X 1.000 X 0.979
Runs X 0.958 X 1.000
Longest Run X 1.000 X 1.000
Rank X 1.000 X 1.000
FFT X 1.000 X 0.958
Non Overlapping Template X 0.991 X 0.992
Overlapping Template X 1.000 X 1.000
Universal X 0.958 X 0.958
Approximate Entropy X 1.000 X 1.000
Random Excursions X 1.000 X 0.967
Random Excursions Variant X 0.997 X 0.993
Serial X 0.979 X 1.000
Linear Complexity X 0.958 X 0.958
Final Result Success Success

calculated parameters and initial condition of the three
generalized maps are{α,β ,γ, r,x0} = {1.0015001,
1.1756172, 1.0513884, 0.9900120, 0.1507243},
{1.0028077, 1.1739435, 1.0516036, 0.9940434,
0.4149860} and {1.0029973, 1.1761348, 1.0485677,
0.9939249, 0.3002555}, respectively. In addition, the
parameters of the Arnold’s cat map are{akey,bkey}= {25,
30}.

The systems are tested using the color Lena image
(1024× 1024). Figure 21 shows the histograms of the
original and encrypted Lena image using substitutions
only. The uniform distributions of the encrypted image
represent a positive sign for the quality of the
substitutions using the generalized map. Table 2 shows
the pixel correlation coefficients due to the substitutions
system as well as due to the permutations-substitutions
system. The analysis results are promising as they give
low correlation coefficients due to the substitutions
system and even lower values for the
permutations-substitutions system. The differential attack
measures for the permutations-substitutions system are
also given in Table 2. These measures analyze the
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Fig. 22: (a) Lena image, (b) permuted image, (c) encrypted image using permutations and substitutions and (d) encrypted
image using permutations and substitutions after changingone pixel in the plain image.

Fig. 23: Decrypted Lena image with one bit change in the key for (a) Case I, (b) Case II and (c) Case IV.

Table 4: MSE and Entropy as Measures of Sensitivity

Case MSE Entropy
Red Green Blue Red Green Blue

I 0.00 0.00 0.00 7.2516 7.5919 6.9491
II 10628.82 9038.22 7074.75 7.9998 7.9998 7.9998
III 10636.14 9072.22 7086.55 7.9998 7.9998 7.9998
IV 10626.49 9068.54 7094.82 7.9998 7.9998 7.9998
V 10642.08 9055.04 7099.60 7.9998 7.9998 7.9998

sensitivity of the encryption system to one-pixel change
in the input plain image and they are in the expected good
ranges [33]. In Table 3, the NIST statistical test suite
results are provided. The success in all of the 15 tests
indicates that the output is almost random and that the
encryption systems are effective despite their simplicity.

It should be noted that when calculating the
differential attack measures, two plain images with only
one pixel difference produce different ciphered images.
For instance, changing one pixel at the last location, i.e.,
location(1024,1024), in the Lena image and encrypting
both the original and the modified plain images using the

permutations-substitutions system produces the ciphered
images given in Figs. 22(c) and 22(d), respectively. The
cross correlation and MSE values between the red, green
and blue channels of the images in Figs. 22(c) and 22(d)
are (−0.0004, 0.0014, −0.0006) and (10918.50,
10915.65, 10925.23), respectively. Even if we consider an
all-zero color plain image and an all-zero color plain
image except for one nonzero pixel at the end, the
ciphered images are different. For example, if we encrypt
two such plain images, the two ciphered images become
different with cross correlation and MSE values in the
red, green and blue channels of (0.0003,−0.0007,
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Table 5: Results of Encrypting Different Standard Images

Img. Col. Original Image Corr. Encrypted Image Corr. Entropy MAE NPCR UACI
Horz. Vert. Diag. Horz. Vert. Diag. Orig. Enc. (%) (%)

M
an

dr
ill

4.
2.

03 R 0.9231 0.8660 0.8543 -0.0012 -0.0009 -0.0011 7.7067 7.9992 76.3814 99.5922 33.5660
G 0.8655 0.7650 0.7348 -0.0017 0.0025 -0.0018 7.4744 7.9994 72.9883 99.6128 33.4639
B 0.9073 0.8809 0.8399 -0.0002 0.0001 0.0024 7.7522 7.9993 79.6467 99.6067 33.4833

P
ep

pe
rs

4.
2.

07 R 0.9606 0.9615 0.9533 -0.0017 0.0015 -0.0001 6.3319 7.9992 72.7905 99.6128 33.4633
G 0.9828 0.9830 0.9767 0.0029 -0.0034 -0.0044 6.4072 7.9993 85.7679 99.6040 33.4842
B 0.9582 0.9599 0.9483 0.0029 -0.0017 -0.0015 6.1304 7.9993 87.5711 99.6071 33.4636

A
ir

pl
an

e
4.

2.
05 R 0.9726 0.9568 0.9343 -0.0049 -0.0010 -0.0015 6.7178 7.9994 81.5433 99.6071 33.3853

G 0.9578 0.9678 0.9326 -0.0010 -0.0008 -0.0002 6.7990 7.9992 84.2761 99.6105 33.4674
B 0.9640 0.9353 0.9146 0.0026 0.0001 -0.0042 6.2138 7.9994 83.4903 99.6109 33.4496

B
ou

t
4.

2.
06 R 0.9558 0.9541 0.9420 -0.0015 -0.0003 -0.0001 7.3124 7.9993 71.2405 99.5964 33.4416

G 0.9715 0.9663 0.9530 -0.0006 -0.0006 -0.0032 7.6429 7.9992 87.5358 99.6334 33.3972
B 0.9710 0.9694 0.9530 0.0027 -0.0020 -0.0006 7.2136 7.9992 87.6360 99.6075 33.4986

S
pl

as
h

4.
2.

01 R 0.9936 0.9951 0.9894 0.0016 0.0014 -0.0006 6.9481 7.9994 87.1703 99.6250 33.4528
G 0.9812 0.9871 0.9711 0.0015 0.0022 0.0010 6.8845 7.9994 90.8088 99.6189 33.4045
B 0.9826 0.9789 0.9649 -0.0026 0.0009 -0.0019 6.1265 7.9993 81.3107 99.6037 33.4556

B
la

ck
Im

ag
e R 1.0000 1.0000 1.0000 -0.0011 0.0023 -0.0007 0.0000 7.9993 127.2606 99.6105 33.4730

G 1.0000 1.0000 1.0000 0.0007 -0.0005 -0.0033 0.0000 7.9993 127.5760 99.6334 33.4391
B 1.0000 1.0000 1.0000 0.0001 -0.0015 0.0008 0.0000 7.9993 127.4015 99.6155 33.4736

Table 6: Comparison with Other Systems

Pixel Correlations NPCR UACI Entropy
Horz. Vert. Diag. (%) (%)

This Work 0.0051 0.0029 0.0014 99.61 33.51 7.999
[18] 0.0058 0.0026 0.0024 99.61 33.45 7.991
[19] 0.0095 0.0112 0.0283 99.61 33.40 7.999
[20] 0.0014 0.0020 0.0018 99.61 33.45 7.999

Table 7: Comparison Between the Main Effects of the Newly IntroducedSine Map Parameters

Case First Second Third

xn+1 = r sinγ (πxn) xn+1 = r sin(πxβ
n ) xn+1 = r sin(απxn)

Range r,xn ∈ [0,1],γ > 0 r,xn ∈ [0,1],β > 0 r,xn ∈ [0,1/α],α > 0

Critical Values • xp = 0.5 • xp = (0.5)(1/β ) • xp = 0.5/α
• γ ≤ 1 : x∗s = 0 • β ≤ 1 : x∗s = 0 • x∗s = 0

• γ > 1 : πγx∗s− tan(πx∗s) = 0 • β > 1 : πβxβ
∗s− tan(πxβ

∗s) = 0
• rs =

x∗s
sinγ (πx∗s)

• rs =
x∗s

sin(πxβ
∗s)

• rs =
1

πα

Bifurcation • No bifurcation ifγ < γth = 0.17 • No bifurcation ifβ < βth = 0.17
• Flip points(rb,x∗b) : • Flip points(rb,x∗b) : • Flip points(rb,x∗b) :

πγx∗b+ tan(πx∗b) = 0 πβxβ
∗b+ tan(πxβ

∗b) = 0 παx∗b+ tan(απx∗b) = 0
rb =

x∗b
sinγ (πx∗b)

rb =
x∗b

sin(πxβ
∗b)

rb =
x∗b

sin(απx∗b)

• γ > 1: Fold points at(rs,x∗s) • β > 1: Fold points at(rs,x∗s)

−0.0002) and (10929.74, 10922.61, 10918.58),
respectively.

5.3 Key Sensitivity Analysis

In order to test the sensitivity of the system to one bit
change in the key, the following cases are examined
during decryption.

–Case I: Exact Key
–Case II: one bit change in the LSB of V1
–Case III: one bit change in the LSB of V2
–Case IV: one bit change in the LSB of V3
–Case V: one bit change in the LSB of V4

Figure 23 shows the results for cases I, II and IV. It is
obvious that the system is very sensitive to only one bit
change in the key. The reason for this key sensitivity is
the high sensitivity of the generalized Sine map to any
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change in the parameters and initial condition. In
addition, the design of the system key makes any single
bit change affect more than one parameter or initial
condition of the three maps. Table 4 shows the MSE and
entropy values for each of the five cases. For Case I, the
MSE values are zeros and this proves that the decryption
system succeeds in recovering the original image as is
with no errors. In the other four cases, the MSE values are
large, which imply that the decrypted image is not related
to the input image. Furthermore, the entropy values
approach 8, which indicate that the wrongly decrypted
images are almost random.

5.4 Additional Results and Comparisons

In order to test the performance of the
permutations-substitutions system with other images,
different standard images from the USC-SIPI image
database [35], in addition to the black image, are
encrypted by the system. Table 5 shows the encryption
results, which demonstrate that the system is successful in
encrypting different images. Furthermore, the proposed
system is compared with other related systems using the
color Lena image(256× 256). Table 6 shows the results
of this comparison and it is clear that the correlation
coefficients and the differential attack measures are in the
same order as the other systems.

Despite that fact that the structures of the proposed
encryption systems are simple, their analysis results are
comparable with other recent systems having more
complicated structures and operations. The good results
obtained by our systems are based on the studied chaotic
behavior of the introduced generalized Sine map.
However, the other systems given in Table 6 have more
complicated structures that either involve 3D continuous
chaotic generators [18], several rounds of confusion and
diffusion [19] or a confusion-diffusion architecture in
which ordinary confusion operations are replaced by a
bit-level expand-and-shrink strategy [20]. Furthermore,
while the proposed encryption system is controlled by 15
different parameters and initial values of the generalized
Sine maps and 2 different parameters of the Arnold’s cat
map, other systems are controlled by fewer variables
(e.g., from 5 to 9 in [18,19,20]).

6 Conclusions and Future Work

In this paper, we have presented a new generalization of
the conventional Sine map. In addition to the original
parameter of the Sine map,r, the new generalization
includes three different parametersγ,β , and α. To
analyze the chaotic behavior of the generalized map due
to each of the newly added parameters, three special cases
have been discussed. In each special case, r and one of the
newly introduced parameters are varied and the other two
are set to unity.

For each case, we have discussed the fixed points and
bifurcation diagrams with respect to the two parametersr
and (γ,β , or α). The maximum Lyapunov exponent is
also calculated for different values of the parameters
r,γ,β andα. In addition, this paper has utilized the newly
designed map in two image encryption applications which
demonstrate the advantage of the added degrees of
freedom. Table 7 provides a brief summary and
comparison of the characteristics of the three special
cases. Designing and analyzing generalizations of other
one dimensional maps should also be considered and
compared with the presented generalization. In addition,
more encryption systems, which utilize other generalized
maps, can be studied and compared with the proposed
one.
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