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Abstract: This paper presents the mathematical aspects of a gemer&line map with arbitrary powers and scaling factor. Theddd
parameters increase the degrees of freedom of the Sine rdagivena versatile response that can be utilized in many egipins.
For each added parameter, the map’s chaotic behavior igzathusing fixed points, bifurcation diagrams and Lyapungoaents.
Furthermore, two image encryption applications are intoedl based on the generalized Sine map. The first systemenfdyips pixel-
value substitutions to focus on the effect of utilizing tremgralized map. This system is controlled by fifteen difieparameters and
initial conditions of three generalized Sine maps.The seé®ystem performs both permutations and substitutionshieee Shannon’s
diffusion and confusion properties. The two systems ardyaed using miscellaneous evaluation criteria such asl| gieelation
coefficients, differential attack measures, histograntriistions and the National Institute of Standards and fetdgy (NIST)
statistical test suite. Key sensitivity analysis is alsofgrened and the mean square error and entropy measureslenéatsd. The
analysis results are promising and demonstrate the beagfitdizing the designed generalized map in image encoypéipplications.

Keywords: Cryptography, discrete time chaotic systems, image etiorypsine map

1 Introduction [18], a color image encryption scheme is designed based
) ] ~on coupled 3D continuous chaotic systems and a secure
Since the 1930's, chaotic systems have been used in thgash algorithm is employed to generate one-time keys
modeling and processing activities of miscellaneous areagependent on the plain image. On the other hand, Tong
of science 1,2]. Such areas include biolog@]l medicine  and Cui design a new 2D chaotic function by exploiting
[4], business §], computer science6[7], physics and  two 1D chaotic functions which switch randomigd.
chemistry B]. In engineering and communication, chaotic Their image encryption scheme uses the new 2D chaotic
dynamics have also been extensively utilized. Someynction, image pixel permutation and 3D baker scheme.
approaches design new chaotic generators based qp addition, Zhanget al.[20] utilize the characteristics of
analog P], digital [10] or mixed circuits L1]. Other  pjt-level operations and the intrinsic bit features of the
approaches utilize classical or new designs of discretgmage in an expand-and-shrink strategy that shuffles the
chaotic systems. For example, the well-known logisticimage with reconstructed permuting plane. Fractals are
map is extensively utilized in secure communication andg|so used as the stream, or medium, for encrypting images
image encryption (refer for example th and [13]). In . py combining ideas from symmetric-key stream

addition, some pseudorandom number genel’ators Ut|||z@ryptography and Spatia| domain Steganogramy[
different discrete-time chaatic circuits (e.dl4[15]).

Chaos-based cryptography has been used for more Despite the fact that the logistic map is widely used in
than two decades and numerous chaotic systems hawencryption, many approaches introduce new chaotic maps
been utilized in text, image, sound or video encryption. Inor enhance and combine existing ones in order to improve
order to fulfill some basic cryptographic requirements, security and performance (e.92223,24]). In [22], a
Alvarez and Li provide guidelines to be followed when new hybrid chaotic map, which is constructed by
designing a new chaos-based cryptosystd].[The  composition of the logistic map, Henon map and lkeda
utilized chaotic systems include discrete maps,map, reveals remarkable sensitivity to initial condition
continuous attractors, fractional-order attractors, orand parameters. On the other hand, Cheral [23] use
fractals [L7,18,19,20,21]. For instance, 17] uses the multiple chaotic dynamics and two chaotic maps are
fractional-order Lorenz attractor in image encryption. In required in their cryptosystem.One map encrypts the first
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plaintext block and, then, the other map encrypts the nex2 Chaotic Behavior Wheny # 1 and

plaintext block using final output of the first map as initial o — B=1

value. Pisarchik and Zanin2f]] also presented a

cryptosystem for direct encryption of color images, basedassuming thatf (x,1,y) = rsin’(7x), then the peak of this

on chaotically coupled chaotic maps. Their proposediunction equalg and it exists ak = xp = 0.5. To ensure

cipher provides good confusion and diffusion propertiesthe closure property of € [0,1], r € [0,1] in all cases
because of the chaotic mixing of pixels’colors. independent ofy. Figure 2 shows the projection of the
fifth iteration f° in thex-y plane for different values af.

a,f\s r increases, values of the fifth iteration increase up to
almost the full range, when= 1.0. As y increases, the
peaks increase in number and get deformed with different
éotations as evident from Fig. 2 whenr= 0.9 andr = 1.0.

The classification, bifurcation, and similarities of
iterated maps can be explained by the mathematic
theory on one-dimensional map25]. According to the
Sarkovskii theoremdg], if the function has a periodic
point of period three then chaos can be achieved at
certain range of the control parameter. The conventional
Sine map is defined bx, 1 = rsin(mx,) , wherer, x € R. .. . .
This map generates +a bifur((:atio)n diagram that is2.1 Nontrivial Fixed Points

symmetric with respect to both axes of the plane. . ,
Figure 1(a) shows this bifurcation diagram for Figure 3 plotsf(x,r,y) versusx for different values of

r € [~ 7. By keepingr andx in the interval[0, 1], the and y. This figure indicates the expected number and
map is restricted to the first quadrant as shown in Figlocation of the fixed pointsx.. For y < 1, only one
1(b). The conventional Sine map depends on a Sing|é10ntr|V|aI fixed point can exist. This fixed poing,, is less

parameterr, which limits the map’s behavior and thanXp =05 whenr <0.5 and is greater thar, when
applications. r > 0.5. For y > 1, there can be zero, one, or two

nontrivial fixed points depending on the values/aindr.
This paper introduces a generalized Sine map whera&iven this qualitative information, the fixed points can be
the conventional map is considered as a special case. Theumerically calculated for different values of the
added parameters, which are arbitrary powers and scalingarameters andy from:
factor, increase the degrees of freedom of the map and
produce a versatile response that can be utilized in many X = f(X,1,y) = rsin(7x,). 2)

applications. The generalized Sine map is described by Figure 4 shows the values of the fixed points, and

the derivativef’(x,,r,y) at those fixed points. For < 1,
Fig. 4 shows the nontrivial solutions wheteincreases as

r increases. In addition, the nonlinearity of the curye
increases ag increases. The stability of the fixed points
is determined based on the derivativef¢x.,r, y). Hence,
wherea, B, andy are real parameters greater than zero.rig. 4 also shows the values df(x,,r,y) for different
The new generalized one-dimensional Sine map has fowjajyes ofr andy. If |f/(x.,r,y)| < 1, then the fixed point
parametersr,y, 8, ). is stable (i.e., sink). Iff'(x.,r,y)| > 1, then the fixed
pointis unstable (i.e., source).

Xni1=f(Xn,1,y,B,a) =rsin (arf), (1)

To analyze the effect of each of the newly added . ) o
parameters on the Sine map’s chaotic behavior, three Wheny = 0.1, the system has a single fixed point in

special cases are discussed. In each of the three speci; € full range ofr and it is z?\lwa_lys stable._Howev_er, oS
cases,r and one of the newly introduced parameters'ncreases the absolute dgnvatlve at the fixed point begins
(v,B,a) are varied while the other two are set to unity. In to decrease below1 asr increases. Therefore, there are

addition to the presentation and discussion of theCritical points (rp, X.p) at which this derivative absolute

generalized Sine map, this paper utilizes it in an image’@lUé becomes unity as follows:

encryption application which demonstrates the advantage
of the added degrees of freedom. It should be mentioned
that generalized logistic and tent families have been By substitutingp, = —2— from (2) into (3), the flip

. . . sin’ (1x,p)
recently investigated irg{7, 28,29 bifurcation point(ry, X) in the region0, 1] x [0, 1] occurs

Sections 2 to 4 of this paper provide detailed analysiswhen f’(X,p,r,¥) = —1. Hencex., € [0,1] is obtained
of the chaotic behavior of the Sine map due to the thregrom the following equation:
parametery, 8 anda, respectively. In this analysis, fixed
points, bifurcation diagrams and maximum Lyapunov TTYX.p + tan(1x.p) = 0. (4)
exponents are discussed. Section 5 presents two ima
encryption applications based on the generalized Sin

f/ (X, T, ¥) = £1 = mrpysin’~ L (mx,p) cog mx,p).  (3)

onsequently, the equation of the bifurcation curve is:

map, which give promising results. Finally, conclusions tan(x, )
and future work are provided in Section 6. b = Xub(SIN(TX,p)) ™0 . (5)
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Fig. 1: Sine bifurcation diagrams when (ak € [—m, 7] and (b)r,x € [0, 1].
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Fig. 3: Expected fixed points of (x,r,y) = r sin’(rx) for different values of andy (a)r = 0.2 and (b)r = 0.9.
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Fig. 4: Fixed points and derivatives dix,r, y) = r sin¥(7x) for different values of;.

For y > 1, Fig. 3 and Fig. 4 show that there are no  The values of the bifurcation points given in Fig. 5 are
nontrivial fixed points for small values of. As r in accordance with the bifurcation diagrams given in Fig.
increases, there is a fold bifurcation poifi,x.s) at 6. In Fig. 6(a),y < ¥, = 0.17 and there is no bifurcation
which the nontrivial fixed-points start to appear. When at all. In Figs. 6(b) and 6(c)yy < y < 1 andx,s = 0.

r > rs and based on the fixed point stability criteria Hence, the bifurcation diagram is continuous and the
discussed in 30] , two fixed-points occur. One of the nontrivial fixed points start from the corresponding
fixed points is always unstablef’(> 1) and the other given in Fig. 5(b). Fory = 1, nontrivial fixed-points start
remains stable until’ reaches-1 (i.e., it is stable as long to occur whenf’ =1 atrs = 1/m and x.s = 0 and,

as|f'| < 1). therefore, the bifurcation diagram is still continuougégre
The fold bifurcation point(rs,x.s) is obtained by to Fig. 1(b)). In Fig. 6(d),y > 1 and there is a
solving f/(x.,r,y) = 1 to get discontinuity in the bifurcation diagram because of the
Nonzer;s.
TTyX,s — tan(71ix.s) = 0. (6)

It is also at the location where the peak in the, curve
occurs(a‘a—){*|x*=x*S = O) (see Fig. 4) 25]. The following

flip bifurcation point(ry, X,) occurs wherf’ (X,p,rp, y) = From the previous analysis, the bifurcation diagram of the
—1 similar to the case whep< 1. proposed map depends on some critical values as shown
Figure 5 plots the fold bifurcation point&s, X.s), in Fig. 5. Figure 6(a-d) illustrate the differences and
which indicate the onset of nontrivial fixed points. It also progress of the diagram versus [0,1] as y increases
plots the following period-two flip bifurcation points from 0.1 to 15. As explained in Section 2.1, there is a
(rp,Xp). As long asx.s = 0, the bifurcation diagram is single stable fixed point and no bifurcation occurs at
continuous and whemw,s > 0 the bifurcation diagram y = 0.1. As y increases beyond4,, the first flip
suffers from discontinuity. From Fig. 5(a), it is clear that bifurcation (period two) occurs at the pointsy,X.p),
the bifurcation diagram is continuous when< 1 and  which are given in Fig. 5. The bifurcation diagram suffers
suffers from discontinuity whegr > 1. In addition, since from discontinuities once the parametgrexceeds 1.
the parameter is restricted ta € [0,1], Fig. 5(b) shows  Figure 6(d) shows that two supplementary fixed points are
that there is no bifurcation at all when< y, = 0.17. It caused by the fold bifurcation dts, x.s) and, then, the
should also be noted that Fig. 5(b) demonstrates that thélip bifurcation occurs at(rp,X.p) given in Fig. 5. In
value ofrs increases agincreases. addition, the bifurcation diagram changes considerably by

2.2 Bifurcation Diagrams
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Fig. 5: Coordinates of the bifurcation points,, x.p) and the start point§'s, x,s) for the first special case case fajalues

and (b)r values..
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Fig. 6: Bifurcation diagram of the first special case vers(a) y = 0.1, (b) y = 0.4, (c)y = 0.95 and (d)y = 1.5.

changingy. For example, at = 0.9, the system response
changes from fixed point, period two, to chaos when
equals 01,0.4, and Q95, respectively, as shown in Figs.
6(a-c).

Since this special case has another paramgetéris
possible to study the bifurcation diagram with respeat to
for fixed values of as shown in Figs. 7(a-c). For= 0.3,
only one stable fixed point occurs for all values/ef 1. In
addition, no nontrivial fixed points exist fgr> 1. Hence,
Fig. 7(a) is consistent with the results given in Fig. 4. For
equals 07 and 09, the first flip bifurcation occurs at the

andy values shown in Fig. 7(b) and Fig. 7(c). These values

are also consistent with the values given in Fig. 5.

2.3 Maximum Lyapunov Exponent

To prove the chaotic behavior of the output response, it

wheref’(x) is the derivative of the functiofi(x).

The MLE of the proposed map is shown in Fig. 8(a) for
different values ofy whenr = 0.7. Comparing this figure
with the corresponding bifurcation diagram of Fig. 7(b)
demonstrates how MLE characterizes chaos. For instance,
whenr = 0.7 andy = 0.5, there is one fixed point in Fig.
7(b) and the MLE in Fig. 8(a) is negative. Whenr= 0.7
andy = 2.0, there are two fixed points and MLE is still
negative. Asy increases from .3 to 40 chaos exists and
MLE becomes positive and increases, which indicates that
chaos becomes more pronounceg &screases.

On the other hand, Fig. 8(b) plots MLE for different
values ofr wheny = 1.5. Comparing this figure with the
corresponding bifurcation diagram in Fig. 6(d), it is clear
that there is no chaos forbelow 08 as MLE is negative
and the bifurcation diagram shows fixed points.

is In general, Fig. 9 shows 3D and contour plots of the

necessary to have a positive value of the LyapunowMLE against a sub-region in they plane. The right edge
exponent. There are many numerical techniques tdn the contour plot is consistent with the bifurcation
calculate the value of Lyapunov exponent. For the 1Ddiagrams ofy > 1 in Fig. 6(d) where the chaotic region

map defined by 1 = f(X,r), the maximum Lyapunov
exponent (MLE) for the orbit starting aty can be
calculated by

) 1n—1 ,
MLE = fim 5 n1f00) ).

(7)

can terminate before reaches unity. Figure10(a) shows
the cobweb diagram of the first special case when0.9
andy = 1.8 and Fig. 10(b) shows the corresponding time
series. Those two diagrams further confirm the chaotic
behavior, which is indicated by the positive MLE given in
Fig. 9.
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Fig. 8: MLE of the first special case (a)= 0.7 (b) y=1.5.
3 Chaotic Behavior Whenf # 1 and points can be numerically calculated for different values
a=y=1 of the parametensand by solvingx. = f(x.,r,3)

The critical bifurcation pointry, x,,) can only occur
whenf’(X,p,p, B) = —1 (i.e., flip bifurcation). Hencey,
X« and the equation of the bifurcation curve are given by
the following equations, respectively:

Assuming thaf (x,r, 3) = r sin(rxP), then the peak of this
function equals and it exists at = xp = (0.5)%A. To
ensure that the" iteration of the functiorf, f™(x,r, 3),

is enclosed in the intervéd, 1], the range of the parameters N = .X;bﬁ, (8)
r andx in this generalized Sine map is setrtox € [0,1] in Sin(71x;y,)
all cases independent f 8 8
npx;, +tan(mx,) = 0, 9)
3.1 Nontrivial Fixed Points sin~1 (%
sin”1 (%) | (%) L Xelnl) o 10
b

. . . . . 2 2
The fixed-points analysis for the second special case is s —Xb

similar to the corresponding analysis for the first special Equation ) is similar to @) except for the power of
case. Fof3 <1, only one nontrivial fixed point can exist. y , Hence, the following relation can be concluded:
For 3 > 1, there can be zero, one, or two nontrivial fixed

points depending on the values ofand B. The fixed (X-b|Second special cadh = X:b|Firstspecialcase ~ (11)
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Fig. 10: (a) Cobweb diagram and (b) time series of the first specia.cas

Figure 11 depicts the values of andx.,, againstg.

the nontrivial fixed-points start to appear is obtained byBecause the parameteiin this map is also restricted to
solving f'(x.,r, ) = 1 and the following relation can be r € [0,1], then there is no bifurcation at all when

obtained:

(X*S|Sec0nd special cagg = X*s|FirstspeciaI case

The following flip bifurcation point(ry,x.,) occurs

whenf’(x,,r,8) = —1 similar to the case whef < 1.

(12)

B < B =0.17 . Figure 11 also shows the values of the
fold bifurcation points(rs,x.s) at which the nontrivial
fixed-points start to occur whet’(xs,rs,8) = 1. As
Bin < B < 1, the value ofx.s = 0 which means that the
nontrivial fixed points start fronx = 0 as shown in Fig.
12(a). However, the value af begins to increase 3
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Fig. 11: Coordinates of the bifurcation poinfs,, x.p) and the start point§'s, x,s) for the second special case.

increases. In Fig. 12(af = 0.95 and the nontrivial fixed 4 Chaotic Behavior Whena # 1 and
points start at the correspondinggiven in Fig.11. When B=y=1
B > 1, there is a discontinuity in the bifurcation diagram

as the nontrivial fixed points start to appear for NoNZeroassuming thatf (x,r,a) = rsin(amx), then the peak of

values of bothrs andx.s as shown in Figs. 12(b, c). this function equals and it exists ak = x, = 0.5/a. To
keep the successive positive valuesxXothen 0< ax < 1
and 0< x < 1/a. Consequently; should also be limited
to 0<r < 1/a. The nontrivial fixed-points start to occur

3.2 Bifurcation Diagrams and MLE at the point(rs,xs) wherex.s = 0 andrs = 1/(rar) as

9 shown from the fixed point curves in Fig. 15(a). The flip

bifurcation point  (Ip,X.p) occurs when
f'(X«p,rp, @) = —1, which consequently demonstrates

Although the' bifurcation diagrams are diﬁerent from that the third special case is a scaling of the conventional
those of the first special case, the general discussions afine map where:

Sections 2 apply. Figure 12 illustrates the differences
?’md progress of the diagram Versusie [O’ 1] as B a x (X*b|ThirdspeciaIcas;3:X*b|C0nventionaImap (13)
increases. It shows that a$8 exceeds 1, two
supplementary fixed points are caused by the fold Figure 15(b) depicts the values of ry, X.s, X.p and
bifurcation at(rs,x.s) given in Fig. 11(b). Then, a flip rmaxagainsta for 0.4 < a < 2.0. For a specific value of
bifurcation occurs afrp, X.p) given in Fig. 11. a, the chaotic region extends between the lowecurve

On the other hand, Fig. 13 shows the bifurcation@nd the uppermax curve. Hence, wider chaotic regions
diagram with respect t@ for fixed values ofr. For  are obtained wherr < 1.0, as depicted in the bifurcation
r = 0.3, only one stable fixed point occurs for all values diagrams of Fig. 16(a). Once more, the scaling property is
of B < 1. In addition, no nontrivial fixed points exist for clearly demonstrated in these bifurcation diagrams.
B > 1. Hence, Fig. 13(a) is consistent with the results Figure 16(b) depicts the contour plot of the MLE against
given in Fig. 11. Atr = 0.86 andr = 0.96, Figs. 13(b, ¢c) & Sub-region in the-a plane. Comparing this figure with

show the flip (period-doubling) bifurcations to chaos. ~ the bifurcation diagrams of Fig. 16(a) further
To characterize the chaotic behavior of the Outpu,[demonstrates how MLE characterizes chaos. The upper

X ; edge in the contour plot of Fig. 16(b) is due to the fact
response, the Lyapunov exponent is calculated using thatr — 1 as shown in Fig. 15(b)
(7). Figure 14 plots the MLE against a sub-region in the max— a g: '
r-B plane. Similar to the first special case, the calculated
values of the MLE are consistent with the bifurcation . . .
diagrams of Figs. 12 and 13. It should be noted that® Encryption Based on the Generalized Sine
according to 7), the MLE can only be calculated and Maps
plotted if f’(x;) # 0. This fact, along with the nonzero
values ofrg shown in Figs. 11 and 12, explain the Itis clear from the previous sections that the output of the
occurrence of the left edge in the contour plot of Fig. generalized Sine map can be controlled via the four
14(b). parametergr,a,3,y). The generated MLE diagrams of
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Figs. 9, 14 and 16 can be used to find common regions oivhen r = 0.99, a = 1.0 and for different values of
the parameters at which the response behaves chaoticallg., y € [0.5,1.5]. While the maximum MLE value in the
Figure 17(a) shows the MLE of the generalized Sine mapabove range exists ft= 1.048 andy = 1.172 and equals
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bifurcation pointgrp, X.») and the start point§'s, x.s) for 0.4 < o < 2.0.
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Fig. 16: (a) Bifurcation diagram of the third special case o= 0.8,2.0, andr = 0.8,1.25, and (b) contour plot of the
MLE for the third special case.

MLE nax =~ 0.65, the MLE in the conventional case
(B=1y=1)is 0603.

Sensitivity analysis of the Sine map parameters is,
studied in Fig. 17(b), which shows the cross correlation of
the parameters,3 and y through simulating the map
twice and introducing an error in the second run in one
parameter only while fixing other values. The point at
which the correlation coefficient becomes maximum
(=~ 1) indicates that the map is insensitive to the error

introduced in the second run.

In order to demonstrate the benefits of using the
generalized forms of the Sine map, Fig. 18 depicts the
block diagram of a simple encryption that utilizes it and
its equivalent decryption block diagram. To focus on the
effect of utilizing the generalized map, this initial
encryption system only involves pixel-value substituson
that are described as follows.

—Substitutions: At the beginning, the parameters and
initial values of the generalized Sine maps are
calculated from the system key. For each pixel in the
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Table 1: Multiplexing Table
input image, a new output value is generated from the

three Sine maps. The encrypted pixel is produced by Selection Bits Output
XORing the three color channels of the input pixel Rsg Gise Bise Rout Gout Bout
with the three outputs from the Sine maps and the 0 0 0 B R G
three color channels of the previously encrypted pixel. 0 0 1 G B R
This encrypted pixel is then delayed and multiplexed 0 1 0 R G B
for utilization in the next pixel encryption cycle. As 0 1 1 B R G
shown in Fig. 18(b), the decryption system is the i 8 2 g g g
reverse of the encryption system. 1 1 0 5 i =
1 1 1 G R B

Table 1 shows the multiplexing table used in the
system block diagram. Based on the Least Significant Bit
(LSB) of the Red (R), Green (G) and Blue (B) channels,
the multiplexer output is determined. While the
multiplexing block works as a nonlinear element that
improves the differential attack measures, the delay block
improves the pixel correlation coefficients. It should be
noltaed that thepinitial delay for the first pixel is chosen as Psum=Rsum+ Gsum+ Bsum (16)
zero.The decimal values generated from the maps, \yhereRg,, GsumandBsymare the sums of the red,
Xi,i = 1,2,3, are transformed into integer values in the  green and blue channels of the input image,
range from 0 to 255 using the following equation: respectively. Then, the Arnold’s cat map parameters

db Iculated using th tem k
Xnew = INT (X x s) MOD256 (14) andb are calculated using the system key &ag

input plain image by calculating the algebraic sum of
the inputimage three color channels as follows.

The next subsection will explain the design of the
where theINT function returns the integer part of a system key and how to compute the permutation and
number, theMOD function returns the remainder of substitution parameters from it.
integer division and the scaling factef; is selected so
that the resulting 8 bits oXnew are highly chaotic.

Hence Xnew, Xnew andXnevg are XORed withthe R, 5 1 System Key
G and B channels of the input pixel, respectively.

To accomplish Shannon’s confusion and diffusion Based on the block diagrams of Fig. 19, the system key
properties, a good image encryption scheme shoul¢onsists of two parts; one part is for the substitution
consist of two main permutations and substitutions phaseparameters and the other part is for the permutation
[16]. While the permutations phase changes the pixelSpharameters. The permutation parameters inclubis to
positions, the substitutions phase changes the pixelssiore theM x M size of the image being encrypted. If
values, usually using a pseudo random number generatof. — ceil(log, M), thenL needs 4 bits to define the image
The initially described encryption system of Fig. 18 sjze. In addition, twd_-bit integersayey andbyey are used
involves substitutions only to demonstrate the good effector the Arnold’s cat map parameters. Hence, the length of
of utilizing the generalized Sine map. To improve the thjs part is(4 + 2 x ceil(log, M)).The parameter values
security of the encryption system, a permutations phase igptained from the system kegyey andbye,, are modified

added as shown in Fig. 19. This figure shows aaccording to {7) and (L8) to get the Arnold cat map
permutations-substitutions encryption system as well agarameters andb.

its corresponding decryptions system. Compared to Fig.
18, only the permutations phase is added, which is a=MOD (Psym+ ey, M — 1) + 1, a7)
described as follows.

—Permutations: The Arnold’s cat map, which is a very b =MOD (Psym+ brey, M — 1) + 1. (18)
well-known technique for pixel permutations, is used

[31]. The generalized 2D Arnold's cat map is defined The substitutions part can consist of 15 variables (4

parameters for each generalized Sine map and 3 initial
X 1 a X values). Assuming that the register size is 32 bits, then
(o) = (5.1 ) () moOM. 19

bl+a this part can reach up to 480 bits. However, in order to
design a key with an appropriate length and good
wherea,b € {1,2,...,M — 1}, M is the square image sensitivity, Fig. 20 shows the proposed key structure. The
size,x,y € {1,2,...,M} represent the pixel column substitutions part of the key consists of four 32 bit values
and row positions in the image respectively aqgly, V1toV4. Hence, 128 bits are used to fill-up the required
Vnew give the new column and row positions for the 480 bits with a random distribution that makes every bit
pixel under transformation, respectively. The of the key affect many parameters. Hence, the total length
permutations phase is designed to be dependent on thef the key is(4+ 2 x ceil (log, M) + 128) bits, whereM

Ynew
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Fig. 17: (a) The MLE versus thg-y plane, and (b) sensitivity of the parametensandf3.
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Fig. 18: Encryption based on substitutions only: (a) encryptiortbidiagram and (b) decryption block diagram.

is the square image size. For an image of sizeone parameter or initial condition of the three maps and,

1024x 1024,M = 1024,L = ceil (logz M) = 10 and the  hence, improves key sensitivity.

total key length is 152 bits. In order to keep the Sine maps in the chaotic range,
each parameted and initial valueX o are calculated from

Each of the value¥i is divided into four sub-values the key, shown in Fig. 20, as follows:

Vij of 8 bits eachi, j € {1,2,3,4}. These 16 sub-values

are utilized in constructing the 15 parameters and initial S=St+K.Sxsf (19)
values of the generalized Sine maps. An example of this

construction is given in Fig. 20. In any such construction, B

each sub-valu¥i; should affect different parameters or X0=K.X0xsf (20)

initial conditions of the three maps. Consequently, eachwhereS; is the fixed part of the parameter akdSis the
valueVi affects all parameters and initial conditions of the integer value obtained from the key. The scaling factor
three maps. The main idea behind this construction is thas f, ensures that the first two decimal placesSpfare not
any single bit change in the system key affects more tharaffected. Those fixed parts and scaling factors of the
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Fig. 19: Encryption based on permutations and substitutions: (ejyption block diagram and (b) decryption block
diagram.

Substitutions Part Permutations Part
V1 (32 hits) V2 (32 hits) V3 (32 bits) V4 (32 bits) (4 Bits) | (L Bits) | (L Bits)
B|&8|8|8|8|8|8|8|8|8|&88|8|]8|8|]8]|28 4 L L
V2,{V2,|V2,|V2,| - Akey Biey
K al K a2 K a3
vz,| [vz, 3, vz, ]
K p1 K p2 K p3
V2, -
K 7yl K 72 E 73
vz, 31 v2,| vz,
Krl K r2 K_r3
vas|  [v2;
K Xo; K Xo; K Xos
V2, vz vz,

Fig. 20: Example utilization of the system key in constructing theapaeters and initial conditions of the three maps.

parameters are chosen to guarantee that the generaliz&timber of Pixels Change Rate (NPCR) and Unified
Sine map will maintain its chaotic behavior for any Average Changing Intensity (UACIBB]. The sensitivity
choice of the system key. Similarli{_Xo is the integer of the system key to only one bit change is discussed
value obtained from the key and the scaling factdy using the Mean Square Error (MSE) and entropy.

ensures that the initial values are in the inteif@all). The used values of the scaling factss, sf, andsf;
are 162,10 12 and 1019, respectively. The used fixed
values of the generalized Sine maps’ parameters are
5.2 Encryption Results {a,Bs, s, i} = {1,1.1721.048 0.99}. As previously
mentioned and demonstrated by Fig. 17, those fixed
In this subsection, standard evaluation criteria are used tvalues and scaling factors ensure operation in the chaotic
test the performance of the encryption systei3g33, ~ region of the generalized Sine map for any given system
34). These criteria include pixel correlation coefficients, key. The key for the permutations-substitutions system is
histogram distributions and NIST statistical test suitee T ~chosen as:
sensitivity of the encryption system to small changes in"F121995R7E9F7D773B2B6CID6F66900M0641E .
the input is evaluated using differential attack measuresThe same key, without the last six hexadecimal digits, is
Those measures include the Mean Absolute Error (MAE),used for the substitutions system. Using those keys, the
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Fig. 21: Histogram distributions for the original Lena image (firstv) and its encrypted image based on substitutions
only (second row).

Table 2: Analysis Results of the Proposed Encryption Systems

Substitutions Only Permutations-Substitutions

Color Pixel Correlations Pixel Correlations Differential Attack Measures
Horz. Vert. Diag. Horz. Vert. Diag. MAE NPCR(%) UACI(%)
0.0006 0.0011 0.0011 0.0002 0.0005 -0.0004 84.1717 99.609233.4540
0.0007 0.0001 0.0008 -0.0001 -0.0004 -0.0011 78.0309 09.61 33.4498
0.0003 0.0005 0.0010 -0.0003 0.0008 -0.0003 70.3813 99.608 33.4998
Avg. | 0.0005 0.0006 0.0010 0.0002 0.0005 0.0006 77.5280 99.6096 3.4679

WO

Table 3: NIST Suite Results of the Proposed Encryption

Systems for Len@l1024x 1024 calculated parameters and initial condition of the three
generalized maps arga,f3,y,r,x} = {1.0015001,
Test Subst. Perm.-Subst. 1.1756172, 1.0513884, 0.9900120, 0.1507243
PV PP PV PP {1.0028077, 1.1739435, 1.0516036, 0.9940434,

Frequency v 1000 v 1.000 0.4149860 and {1.0029973, 1.1761348, 1.0485677,
Block Frequency v 0958 v 1.000 0.9939249, 0.3002585 respectively. In addition, the
Cumulative Sums v 1000 v 0979 parameters of the Arnold’s cat map ey, bkey} = {25,
Runs v 0958 Vv 1.000 30!
Longest Run v 1000 Vv 1.000
Rank v/ 1.000 v  1.000 The systems are tested using the color Lena image
FFT v 1000 v  0.958 (1024x 1024). Figure 21 shows the histograms of the
Non Overlapping Template] v 0.991 v  0.992 original and encrypted Lena image using substitutions
Overlapping Template v 1000 v  1.000 only. The uniform distributions of the encrypted image
Universal v 0958 v 0.958 represent a positive sign for the quality of the
Approximate Entropy v~ 1000 v  1.000 substitutions using the generalized map. Table 2 shows
Random Excursions v 1000 v  0.967 the pixel correlation coefficients due to the substitutions
Random Excursions Variant v 0.997 v 0.993 system as well as due to the permutations-substitutions
Serial _ v 0979 v 1000 system. The analysis results are promising as they give
Linear Complexity v 098 + 0958 low correlation coefficients due to the substitutions
Final Result Success Success system and even lower values for the

permutations-substitutions system. The differentia @t
measures for the permutations-substitutions system are
also given in Table 2. These measures analyze the

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 6, 3215-3233 (2015)www.naturalspublishing.com/Journals.asp

(®) (c) (d)

Fig. 22: (a) Lenaiimage, (b) permuted image, (c) encrypted imageymrmutations and substitutions and (d) encrypted
image using permutations and substitutions after chargiegixel in the plain image.

(b) (©)

Fig. 23: Decrypted Lena image with one bit change in the key for (apCa) Case Il and (c) Case IV.

Table 4: MSE and Entropy as Measures of Sensitivity

Case MSE Entropy
Red Green Blue Red Green Blue
| 0.00 0.00 0.00 7.2516 7.5919 6.9491

Il 10628.82 9038.22 7074.75 7.9998 7.9998 7.9998
1] 10636.14 9072.22 7086.55 7.9998 7.9998 7.9998
v 10626.49 9068.54 7094.82 7.9998 7.9998 7.9998
\% 10642.08 9055.04 7099.60 7.9998 7.9998 7.9998

sensitivity of the encryption system to one-pixel changepermutations-substitutions system produces the ciphered
in the input plain image and they are in the expected goodmages given in Figs. 22(c) and 22(d), respectively. The
ranges 33]. In Table 3, the NIST statistical test suite cross correlation and MSE values between the red, green
results are provided. The success in all of the 15 testand blue channels of the images in Figs. 22(c) and 22(d)
indicates that the output is almost random and that theare (-0.0004, 0.0014, —0.0006) and (10918.50,
encryption systems are effective despite their simplicity 10915.65, 10925.23), respectively. Even if we consider an
all-zero color plain image and an all-zero color plain
image except for one nonzero pixel at the end, the
. . . . X ciphered images are different. For example, if we encrypt
one pixel difference produce different ciphered mages.mf)o such pIai% images, the two cipherec?images becoyrﬁe

For inStance’ changir]g one pixel at the last Iocation! i'e'different with cross correlation and MSE values in the
Iocatlon(1Q2_4 1024, in the Le.f.‘a |mage_and encrypting o4 green and blue channels of (0.00030.0007
both the original and the modified plain images using the ~ ’

It should be noted that when calculating the
differential attack measures, two plain images with only
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Table 5: Results of Encrypting Different Standard Images

3
@
0
e}

Original Image Corr. Encrypted Image Corr. Entropy MAE NPCR UACI
Horz. Vert. Diag. Horz. Vert. Diag. Orig. Enc. (%) (%)
0.9231 0.8660 0.8543 -0.0012 -0.0009 -0.0011 7.7067 7.9992| 76.3814 99.5922 33.5660
0.8655 0.7650 0.7348 -0.0017 0.0025 -0.0018 7.4744 7.9994| 72.9883 99.6128 33.4639
0.9073 0.8809 0.8399 -0.0002 0.0001 0.0024 7.7522 7.9993| 79.6467 99.6067 33.4833
0.9606 0.9615 0.9533 -0.0017 0.0015 -0.0001 6.3319 7.9992| 72.7905 99.6128 33.4633
0.9828 0.9830 0.9767 0.0029 -0.0034 -0.0044 6.4072 7.9993| 85.7679 99.6040 33.4842
0.9582 0.9599 0.9483 0.0029 -0.0017 -0.001% 6.1304 7.9993| 87.5711 99.6071 33.4636
0.9726 0.9568 0.9343 -0.0049 -0.0010 -0.001% 6.7178 7.9994| 81.5433 99.6071 33.3853
0.9578 0.9678 0.932¢ -0.0010 -0.0008 -0.0002 6.7990 7.9992| 84.2761 99.6105 33.4674
0.9640 0.9353 0.914¢ 0.0026 0.0001 -0.0042 6.2138 7.9994| 83.4903 99.6109 33.4496
0.9558 0.9541 0.942( -0.0015 -0.0003 -0.0001 7.3124 7.9993| 71.2405 99.5964 33.4416
0.9715 0.9663 0.953( -0.0006 -0.0006 -0.0032 7.6429 7.9992| 87.5358 99.6334 33.3972
0.9710 0.9694 0.953(0 0.0027 -0.0020 -0.0006 7.2136 7.9992| 87.6360 99.6075 33.4986
0.9936 0.9951 0.9894 0.0016 0.0014 -0.0006 6.9481 7.9994| 87.1703 99.6250 33.4528
0.9812 0.9871 0.9711 0.0015 0.0022 0.0010 6.8845 7.9994| 90.8088 99.6189 33.4045
0.9826 0.9789 0.9649 -0.0026 0.0009 -0.0019 6.1265 7.9993| 81.3107 99.6037 33.4556
1.0000 1.0000 1.0000 -0.0011 0.0023 -0.0007 0.0000 7.9993| 127.2606 99.6105 33.4730
1.0000 1.0000 1.0000 0.0007 -0.0005 -0.0033 0.0000 7.9993| 127.5760 99.6334 33.4391
1.0000 1.0000 1.0000 0.0001 -0.0015 0.0008 0.0000 7.9993| 127.4015 99.6155 33.4736

Black | Splasii Bout |Airplane Peppensiandrill
Image| 4.2.01| 4.2.06| 4.2.05| 4.2.07| 4.2.03

WOIVITOIITODWEOITODDVWO DO

Table 6: Comparison with Other Systems

Pixel Correlations NPCR UACI Entropy
Horz. Vert. Diag. (%) (%)
ThisWork | 0.0051 0.0029 0.0014 99.61 33.51 7.999

[18] 0.0058 0.0026 0.0024 99.61 33.45 7.991
[19 0.0095 0.0112 0.0283 99.61 33.40 7.999
[20] 0.0014 0.0020 0.0018 99.61  33.45 7.999

Table 7: Comparison Between the Main Effects of the Newly IntroduSete Map Parameters

Case First Second Third
Xni1 = rsin(10¢q) Xni1 = rsin(rod)) Xni1 = T sin(a o)
Range rx, €[0,1],y>0 rxn €[0,1],8 >0 rx, €[0,1/a],a >0
Critical Values | e xp=0.5 o xp = (0.5)/P) e xp=05/a
ey<1l:xs=0 e3<1:xs5=0 e X.s=0
o y>1:myx,s—tan(mx,s) =0 oB>1:anfS—tan(nxfs):0
p— X*S — X*S J— l
ors= sinY (7X.s) *fs= sin(mds) *fs=
Bifurcation e No bifurcation ify < , = 0.17 e No bifurcation if 8 < B, = 0.17
e Flip points(rp, X.p) : e Flip points(rp, X.p) : e Flip points(rp, X.p) :
TTyX,p +tan(mx,p) =0 anfb +tan(nxf )=0 IO X,p + tan(a mx,p) = 0
: _ % X
o= siny(;x*b) o = sin(nk:(fb) o= sin(a;)Tx*b)
e y > 1: Fold points afrs, Xs) e 3 > 1: Fold points afrs, X.s)

—0.0002) and (10929.74, 10922.61, 10918.58), —Case I: ExactKey

respectively. —Case II: one hit change in the LSB of V1
—Case llI: one bit change in the LSB of V2
—Case IV: one bit change in the LSB of V3
—Case V: one bit change in the LSB of V4

Figure 23 shows the results for cases I, Il and IV. It is
In order to test the sensitivity of the system to one bitobvious that the system is very sensitive to only one bit
change in the key, the following cases are examinedchange in the key. The reason for this key sensitivity is
during decryption. the high sensitivity of the generalized Sine map to any

5.3 Key Sensitivity Analysis
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change in the parameters and initial condition. In  For each case, we have discussed the fixed points and
addition, the design of the system key makes any singléifurcation diagrams with respect to the two parameters
bit change affect more than one parameter or initialand (y,3, or a). The maximum Lyapunov exponent is
condition of the three maps. Table 4 shows the MSE andhlso calculated for different values of the parameters
entropy values for each of the five cases. For Case |, the, y, 3 anda. In addition, this paper has utilized the newly
MSE values are zeros and this proves that the decryptiodesigned map in two image encryption applications which
system succeeds in recovering the original image as islemonstrate the advantage of the added degrees of
with no errors. In the other four cases, the MSE values ardreedom. Table 7 provides a brief summary and
large, which imply that the decrypted image is not relatedcomparison of the characteristics of the three special
to the input image. Furthermore, the entropy valuescases. Designing and analyzing generalizations of other
approach 8, which indicate that the wrongly decryptedone dimensional maps should also be considered and
images are almost random. compared with the presented generalization. In addition,

more encryption systems, which utilize other generalized

maps, can be studied and compared with the proposed
5.4 Additional Results and Comparisons one.

In order to test the performance of the
permutations-substitutions system with other imagesAcknowledgement
different standard images from the USC-SIPI image

database J3], in addition to the black image, aré Thjsresearchwas supported financially by the Science and

encrypted by the system. Table 5 shows the encryptiofrechnology Development Fund (STDF), Egypt, Grant No.
results, which demonstrate that the system is successful igo7¢6.

encrypting different images. Furthermore, the proposed

system is compared with other related systems using the

color Lena image&256 x 256). Table 6 shows the results

of this comparison and it is clear that the correlation References
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