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Abstract: This paper considers the energy minimization problem in a multi-hop wireless ad hoc network that consists of regular
nodes and mobile relays. In such a network, mobile relays mayrelocate to optimal positions such that energy consumptionfor data
transmission is minimized. In order to find the optimal positions for mobile relays, the mobile relay optimal relocation(MROR) problem
is first defined. Since the cost in terms of data transmission energy can be modeled using a convex function, the problem is formulated
as a convex optimization problem over mobile relay positionvariables. Using dual decomposition and subgradient methods enables
mobile relays to cooperate in a distributed manner to attainthe optimal relocations. Numerical results confirm that theproposed method
can result in minimal energy consumption for data transmission. This study appears to be the first attempt to relocate mobile relays to
globally minimize data transmission energy consumption ina multi-hop wireless network where multiple data flows exist.
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1 Introduction

Recently, the use of controllable mobile nodes (aerial or
ground vehicles) has been considered in wireless
networks. For example, mobile nodes can be used as
moving sensors and can form mobile sensor networks [1,
2]. Mobile nodes can also be used as a data ferry or
mobile elements that collect or carry data in a sparse
wireless network [3,4].

This paper considers a multi-hop wireless ad hoc
network that consists of regular (stationary or mobile)
nodes and mobile relays (e.g., autonomous aerial
vehicles) for which movement can be controlled. By
exploiting controllable mobility of mobile relays, the
network can achieve better connectivity and network
performance. One major concern in an ad hoc network is
energy consumption, which relates to network lifetime.

Each node in the network transmits frames using
transmission power with which an acceptable
signal-to-noise ratio (SNR) can be obtained. The required
transmission power mainly depends on the distance
between transmitter and receiver. Therefore, if mobile
relay nodes relocate to a certain position, the consumed
energy may increase or decrease.

There have been several studies that use mobile nodes
for relaying data in a wireless ad hoc network [5,6,7,8].
For example, Goldenberg et al. [5] showed that
transmission energy consumption can be minimized by
evenly spacing relay nodes along a line segment between
source and destination nodes. Hamouda et al. [7] also
used controllable mobility of mobile nodes in order to
reduce energy consumption while nodes are maintaining
network connectivity. Liu et al. [6] first determined the
optimal number of hops to minimize transmission energy
consumption between a source and destination pair, and
then mobile nodes are placed based on the obtained
number of hops.

Those studies in [5,6,7,8], however, only considered
one source and destination connection pair to obtain the
minimum energy consumption. Therefore, when there are
multiple data connections that share mobile relays, the
global optimal value in terms of energy consumption may
not be achieved.

Le et al. [9] considered mobile relays in an ad hoc
network. However, they also only added a mobile relay on
the route between a single source and destination pair
without taking the effect on the entire network into
consideration. Moreover, their objective was to maximize
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data throughput rather than minimize energy
consumption.

In this paper, in order to find mobile relays’ globally
optimal positions that minimize total energy consumption
for data transmission in a network that has multiple data
source-destination pairs, the mobile relay optimal
relocation (MROR) problem is defined and formulated as
a convex optimization problem such that a global
optimum can be attained. In addition, for practical usage
in a wireless ad hoc network, using a distributed method
based on dual decomposition and a subgradient algorithm
enables mobile relays to cooperate to obtain optimal
positions. Due to the convex formulation of the MROR
problem and strong duality holding, the proposed
distributed method achieves the global optimal solution
even when multiple data connections share mobile relays.
The proposed method is validated by numerical results
and analysis.

The rest of the paper is organized as follows. Section
2 presents the network model and problem definition. The
proposed distributed method is described in Section 3. In
Section 4, numerical results and analysis are presented.
Finally, Section 5 concludes the paper.

2 Network Model and Problem Definition

The network is modeled as a directed graphG = (V,E)
where E = {(u,v) : u,v ∈ V,u 6= v}. If an edge(u,v)
exists, a communication link can be established and node
u can transmit data to nodev. This work focuses on the
case where each link uses an allocated communication
channel by using frequency-division multiple access
(FDMA), code-division multiple access (CDMA), or
time-division multiple access (TDMA). For example, a
lot of tactical networks use TDMA for multiple access
[10,11], and the proposed network scheme is particulary
useful in such tactical networks where ground vehicles
and aerial vehicles coexist.

The network includes the set of mobile relay (MR)
nodes,M. MR nodes are labeled 1, ...,M. NoteM ⊂ V . A
subset of regular nodes are source nodes that send the data
to the destination nodes, which are also regular nodes.
The path between source and destination nodes may have
multiple intermediate nodes (regular or MR nodes). This
work assumes that the paths between source-destination
pairs are given using ad hoc routing protocols.

Each MR node is associated with the position vector
xu ∈ R2, u ∈ M. Definex as the vector for positions of
the MR nodes,x ∈ R|M|×2. The position of regular node
n is given bypn, n ∈ V\M. The traffic amount carried by
link (u,v) is denoted asfu,v. D(u) denotes a set of regular
nodes that transmit data to MR nodeu. Similarly, U(u)
denotes a set of regular nodes that receive data from MR
nodeu. R(u) denotes a set of MR nodes that receive data
from another MR nodeu.

The functionCuv denotes the transmission power cost
to transmit one bit at link(u,v), which is modeled based

on the distance between two communicating peers. Also,
denote αamp as an amplification constant for the
transmitter to obtain an acceptable SNR. Then, the
transmission energyEt to transmitl bits over distanced
can be modeled as done by Kumar et al. [12] and Perumal
et al. [7], which is

E1
t (l,d) = αamp× l× dw (1)

where exponentw≥ 2 is given by the path loss model [12].
Accordingly, given distanced, or the length of link

(u,v), Cuv(d) , αamp× dw. Note thatαamp, andw are
constants.

It is worth while to note that, in some energy models
[13], the energy to keep the transmitter circuitry powered
up, denoted asEc, is also considered i.e., the transmission
energy consumption can be modeled asE2

t (l,d) = Ec× l+
αamp× l × dw. Note that the use of this model does not
affect the problem formulation, becauseEc is a constant,
and hence, it does not affect the optimal solution.

The objective is to select the optimal positions of MR
nodes such that total transmission energy consumption is
minimized. Note that the positions of regular nodes, data
paths, and traffic amounts on the paths are given (i.e., the
consumed data transmission energy at a link between two
regular nodes is given). Therefore, the problem can be
regarded as one to minimize the sum of transmission
energy consumption over links where at least one end is
an MR node. This problem is defined as the mobile relay
optimal relocation problem, which is formulated as

minimize ∑
u∈M

(

∑
v∈G(u)

fuvC(‖xu − pv‖2)

+ ∑
v∈R(u)

fuvC(‖xu − xv‖2)
) (2)

whereG(u) representsD(u)∪U(u).
Here, the optimization variables arex (i.e., the

positions of MR nodes xu, u ∈ M). The term
∑v∈G(u) fuvC(‖xu − pv‖2) represents the energy cost for
transmissions between regular nodes and MR nodexu.
Similarly, the term∑v∈R(u) fuvC(‖xu − xv‖2) represents
the energy cost for transmissions between MR nodes.

This problem is a convex optimization problem
because the objective function is the sum of norms, which
implies that it can be solved efficiently by using descent
methods. However, a distributed algorithm for solving the
problem is desirable in a wireless ad hoc network
scenario.

3 Distributed Algorithm

This paper considers the dual decomposition and
subgradient method to solve the problem in a distributed
manner.
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3.1 Dual Problem Formulation

The object function in equation (2) is not separable due to
the coupled variables, i.e.,xu andxv. Therefore, in order
to decompose and make it solvable in a distributed way,
auxiliary variablesxuv for coupled arguments in the
objective function are introduced, with equality
constraints added to enforce consistency. In order to
simplify the notations, defineP(u,v) , fuvC(‖xu − pv‖2).
Then, the problem formulation becomes

minimize ∑
u∈M

(

∑
v∈G(u)

P(u,v)+ ∑
v∈R(u)

fuvC(‖xu − xuv‖2)
)

subject to xuv = xv ∀u,v ∈ R(u)
xbl � x � xur

(3)
Now, the coupling in the objective function is

transferred to constraints coupling. Coupled constraints
can be decoupled via dual decomposition and solved by
usingconsistency pricing.

Therefore, the dual problem is defined by introducing
Lagrange multipliersp ∈ R. The partial Lagrangian is

L(x,xuv,p) = ∑
u∈M

(

∑
v∈G(u)

P(u,v)+ ∑
v∈R(u)

fuvC(‖xu − xuv‖2)
)

+ ∑
u∈M

∑
v∈R(u)

pT
uv(xv − xuv)

(4)
Then, consider the term∑

u∈M
∑

v∈R(u)

pT
uvxv. This term can

be re-arranged as follows because of its additive structure:

∑
u∈M

∑
v∈R(u)

pT
uvxv = ∑

u∈M
( ∑

v:u∈R(v)

pvu

)T xu (5)

Therefore, equation (4) is equivalent to

L(x,xuv,p) = ∑
u∈M

(

∑
v∈G(u)

P(u,v)+ ∑
v∈R(u)

fuvC(‖xu − xuv‖2)

+
(

∑
v:u∈R(v)

pvu

)T xu − ∑
v∈R(u)

pT
uvxuv

)

(6)
The objective function of the dual problem is thus

g(P) = inf
x,xuv

xbl�x�xur

{

L(x,xuv,p)

}

(7)

Due to the additivity structure of the Lagrangian in
equation (6), the objective function in equation (7) can be
separated into multiple sub-problems, in which
minimization is done only using local variables (note the
uth subproblem uses only variables with the first subscript

index u). The uth node, for all u, locally solves the
problem

minimize ∑
v∈G(u)

P(u,v)+ ∑
v∈R(u)

fuvC(‖xu − xuv‖2)

+
(

∑
v:u∈D(v)

pvu

)T xu − ∑
v∈R(u)

pT
uvxuv

(8)

Finally, the dual problem is

maximize g(P) (9)

The dual problem in equation (9) is a convex
optimization problem since the dual function (i.e.,g(P))
is always convex [14,15]. In addition, Slater’s condition
for constraint qualification is satisfied because all
constraints are linear in equation(3) [16]. Therefore,
strong duality holds and the optimal values of the dual
problem are equal to the optimal values of the primal
problem.

3.2 Solving the Problem via Subgradient
Method

Since the objective function in equation (2) is not strictly
concave in xuv, the dual function may be piecewise
differentiable i.e., the dual problem in equation (9) is a
non-differentiable convex optimization problem.
Therefore, this paper considers a subgradient method [15,
Ch.6] [17].

A subgradient of a nondifferentiation convex function
g at p is a vectorh such that

g(q)≥ g(p)+ hT (q− p), ∀q (10)

Given a dual variablep, let x⋆, x⋆uv be an optimal
solution to the problem in equation (8). From the
definition of the dual function in equations (6) and (7), a
negative dual problem’s subgradienth is given by

huv = x⋆uv − x⋆v v ∈ R(u) (11)

In the subgradient algorithm, start with an initial point

p(1)uv . At each iteration stept = 1,2, . . ., compute the dual

function g(p(t)uv ) and a subgradient h(t). Then, update the
dual variable by

p(t+1)
uv =

[

p(t)uv −αkh
(t)
uv
]

=
[

p(t)uv −αk(x
(t)
uv − x(t)v )

]

, v ∈ R(u)
(12)

whereαt denotes a positive scalar size.
A convergence condition requires that the stepsize

sequence satisfiesαt → 0 and ∑∞
t=1 αt = ∞ (i.e., the

subgradient algorithm converges with a stepsize that
satisfies those properties [18]). Therefore, a simple
stepsize can be determined by

αt =
c
t

(13)

wherec is a constant.
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(a) Network topology
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(c) Positions of MRs after optimization

Fig. 1: A wireless network with regular nodes and MR nodes
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Fig. 2: Convergence of the subgradient method

4 Numerical Results

In order to validate the problem formulation and the
algorithm, a wireless network that consists of 50 regular
nodes and 8 MR nodes is considered. Those nodes are
randomly distributed in an area 2000×2000 meters. The
transmission range is 800meters. The resulting network
topology is shown in Fig.1 (a) where dark triangles,
circles, and dotted lines represent MR nodes, regular
nodes, and communication links, respectively.

Assume there are 10 communicating pairs. The source
and destination nodes are randomly selected. The data
rate of each of 10 connections is selected from the range
[50, 550] kbps. Dijkstra’s algorithm is used to find the
path between source and destination pairs. Figure1 (b)
shows the data path with bold blue lines.

The transmission energy model defined in equation (1)
is used. The value ofαamp is set to 100pJ/bit/m2, which
was introduced in [13]. The value of the path loss exponent
w is set to 2.

Figure 2 shows the difference between the optimal
solution and the dual objective function value in
milliwatts over the number of iterations. This paper uses
two types of step size. First isct , wherec and t are a
constant and the iteration step number, respectively. For
the values of c, {10,50,100} are used for the

experiments. In addition, the algorithm with constant step
sizes is also evaluated. The numbers{0.1,1,10} are used
as constant step sizes. As shown in Fig.2, the algorithm
with a different step size converges at a different rate. As
expected, the algorithm converges quickly with step sizes
100

k and 10. With100
k , the algorithm shows the highest rate

of convergence in the beginning phase up to around 60
rounds, after which the algorithm with the step size 10
takes first place.

Table 1: The optimal set and optimal value

Before optimization After optimization

MR x1 x2 x1 x2

m1 523.36 836.02 194.78 855.79

m2 1391.60 658.83 1292.70 780.20

m3 548.45 1660.90 427.87 810.76

m4 1427.40 1224.80 1683.80 1135.40

m5 1087.30 1007.40 962.05 811.86

m6 958.10 577.23 962.27 800.58

m7 803.46 446.14 523.31 1207.50

m8 820.48 1543.80 869.97 1427.30

Tx Power
3.78×103 2.73×103

(mW)

Table1 shows the optimal set (i.e.,x∗) obtained from
500 iteration steps and step size100

t . The second and third
columns indicate the coordinates of MR nodes before
optimization, and the fourth and fifth columns are the
coordinates after optimization. As shown in the table, all
eight MR nodes’ positions have been updated. Note that
MR node 5 and MR node 6 have similar positions. Those
positions are depicted in Fig.1(c). The last row indicates
the total required transmission power before and after
optimization. As can be seen from that row, applying the
algorithm can reduce transmission power by about 27%.
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5 Concluding Remarks

This work has used controlled mobility of mobile relays
(MRs) in order to minimize data transmission energy. In
order to find the optimal positions for MRs, the mobile
relay optimal relocation (MROR) problem has been
defined and formulated as a convex optimization problem
over MRs’ position variables. Then, dual decomposition
and subgradient methods have been used to find the
solution and enable mobile relays to cooperate in a
distributed manner to attain the optimal relocations.
Numerical results show that the proposed method can
achieve minimal energy consumption for data
transmission.
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