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Abstract: A discrete hybrid evolutionary algorithm is developed to solve global numerical optimization problems with discrete
variables. In this algorithm, the orthogonal experimentaldesign acts as the crossover operator to achieve crossover,and the migration
operator is employed to keep the population’s diversity. Inaddition, the simplified quadratic interpolation method istaken as a local
search operator, which is adopted to improve the algorithm’s local search ability. Moreover, a few of foreign chromosomes, which are
generated via randomly perturbing the best candidate chromosome in the current population, are introduced into the next generation to
avoid most of chromosomes gradually clustering around the best candidate chromosome in some subsequent generations. Arounding
and truncation procedures is incorporated in the operations of the algorithm to ensure that the integer restrictions and box constraints
are satisfied. Numerical experiments on 22 test problems have demonstrated the efficiency of the proposed method.
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1 Introduction

Evolutionary algorithm (EA), based on the principles of
natural biological evolution, is a class of stochastic
optimization search method. During the last decades, EA
has received a considerable attraction and has
experienced a rapid development. EA has been shown to
be a global and robust method for solving highly
nonlinear, nondifferentiable, and multimodal optimization
problems, which means that traditional, gradient-based
optimization algorithms fail and stochastic optimization
techniques must be employed [1].

Generally speaking, all population-based optimization
algorithms suffer from long computational times because
of their evolutionary or stochastic nature [2]. Several
studies have shown that incorporating some form of
domain knowledge can greatly improve the search
capability of EAs [2][3]. Many problem dependent
heuristics, such as approximation algorithm, local search
techniques, specialized recombination operators, etc.,
have been tried in many different ways to accomplish this
task. In particular, the hybridization of EAs with local
searches has proven to be very promising [3].

Most of the ongoing research in the global
optimization centers on the development of algorithms for
solving the continuous problem, in which the decision
variables are restricted to real-value (continuous)
variables (see, e.g., [3][4]). However, it is much difficult
to solve integer programming problems that involve
discrete variables. This is mainly because these problems
pose major algorithmic challenges in the development of
effective solution strategies. Especially, it is an algorithm
challenge to locate the global optima of large-dimensional
integer programming problems. Generally speaking, the
efficient methods designed for continues optimization
problems can not be directly used to solve integer
programming problems. However, an integer
programming problem with bounded discrete variables,
especially binary variables, may be transformed into an
equivalent continuous global optimization problem, such
that the problem can be solved by the methods of
continuous global optimization [5][6]. Unfortunately, the
transformed problems usually have large numbers of local
minimizers, making them harder to solve than typical
global optimization problems [6].

Stochastic or heuristic approaches can be applied to
almost all discrete optimization problems [7], especially
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for high-dimensional cases [8]. This is mainly because
stochastic approaches need not depend on some analytical
properties of problems. There exist some stochastic
approaches to solve discrete optimization problems, such
as the simulated annealing algorithms [9][10], the
evolutionary algorithms [11][12][13][14], the tabu search
algorithms [15], particle swarm optimization [16][17],
and controlled random search technique [18].

In this paper, we develop a discrete hybrid
evolutionary algorithm (DHEA) to deal with the integer
programming problems. The corresponding evolutionary
operations, i.e. mutation, crossover, and selection, are
discussed in detail. For the performance enhancement, a
migration operation and a local search strategy are
introduced. The performance of the proposed DHEA is
assessed by carrying out optimization on 22 test
problems. Compared to some available algorithms such as
PSO [16], RST2ANU [18], and DDCM [8], DHEA is
shown to be able to achieve more accurate results and yet
with a much reduced computational effort in almost all
the cases examined. It is shown that DHEA maintains a
superior effectiveness for such problems.

This paper is organized as follows. The integer
programming is formulated in the next section. A discrete
hybrid evolutionary algorithm is proposed for solving
integer programming problems in Section 3.
Computational results of DHEA and comparisons with
other available algorithms are provided in Section 4.
Finally, we conclude this paper and give the future work
prospect in Section 5.

2 Problem formulation

This paper considers the general integer programming
problem formulated as

minimize f (x)

subject to g j(x)≤ 0, j = 1,2, · · · , p

x ∈ X ⊂ Z n

(1)

whereZ n is the set of integer points inRn, the setX is
box constraints, i.e.

X = {x ∈ Z
n|xL

i ≤ xi ≤ xU
i , xL

i andxU
i ∈ Z }.

In most practical applications the integer boundsxL andxU

are available or can be easily specified.
If problem (1) contains equality constrainth(x) = 0, it

may be approximated by inequality constraint|h(x)|−δ ≤
0, whereδ stands for the degree of violation.

The objective functionf (x) and constraint functions
g j(x), j = 1,2, · · · , p, may be linear or nonlinear. The
feasible integer points setF is defined by

F = {x ∈ X ⊂ Z n|g j(x)≤ 0, j = 1,2, · · · , p}. (2)

An integer pointx∗ ∈ F is called a discrete global
optimal solution of problem (1), if f (x) ≥ f (x∗), for all
x ∈ F .

3 A discrete hybrid evolutionary algorithm
for problem (1)

In this section, a novel discrete hybrid evolutionary
algorithm (DHEA) is introduced to deal with integer
programming problems. We present the following several
enhancements in the DHEA for global optimization with
discrete variables.

(1) An integer coding technique is applied to
optimization problems with discrete variables. In the
integer coding representation, each chromosome is
encoded as a vector of integer numbers, with the same
length as the vector of decision variables.

(2) The dynamic direction mutation operator is
adopted. This mutation operator can explore the region of
the optimum offspring.

(3) The two tools of the orthogonal experimental
design, two-level orthogonal array and factor analysis, are
employed in the crossover operator. The systematic
reasoning ability of the orthogonal experimental design is
used to economically identify the potentially better one of
two genes of each pair, and then obtain a potentially good
approximation to the best one of all combinations by
executing fewer experiments.

(4) Through the crossover, the population diversity
and its exploration of the search space are rapidly
decreased, and the clustered chromosomes cannot
reproduce newly better offspring. In order to greatly
increase the exploration of the search space and decrease
the selection pressure for a small population, a migration
operator is introduced to regenerate a newly diverse
population of chromosomes.

(5) The simplified three-point quadratic interpolation
method is taken as a local search operator, which is
adopted to improve the algorithm’s local search ability,
and to prevent the algorithm from getting trapped in the
local optima.

(6) A few of foreign chromosomes, which are
generated via randomly perturbing the best candidate
chromosome in the current population, are introduced
into the next generation to avoid most of chromosomes
gradually clustering around the best candidate
chromosome in some subsequent generations.

(7) A rounding and truncation procedures is
incorporated in the operations of the algorithm to ensure
that the integer restrictions imposed on the decision
variables and box constraints are satisfied.

By using these strategies, DHEA has high
performance in solving the benchmark problems
comprising many variables, as compared with some
existing algorithms. The details of the components in
DHEA are provided as follows.

3.1 Chromosome coding and Initialization

For solving integer programming problem (1) by the
discrete hybrid evolutionary algorithm, a chromosome is
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represented by an integer vector, i.e. a vector
x = (x1,x2, · · · ,xn)

⊤ is used to express a chromosome,
wherexi ∈ Z , i = 1,2, · · · ,n.

We randomly generate ann-dimensional integer
vector as an initial chromosome. By the following
Algorithm 1, generateM chromosomes such that they
should try to cover the entire search space uniformly,
whereM denotes the population size.
Algorithm 1:
Step 1. Generate ann × n random diagonal matrix
γ = diag(γ1, · · · ,γi, · · · ,γn), where γi ∈ (0,1),
i = 1,2, · · · ,n.
Step 2. Let x = INT[xL + γ · (xU − xL)], where the
operator INT[t] is expressed as the nearest integer vector
to the real vectort.
Step 3. Repeat the above stepsM times and produceM
initial chromosomes such that they constitute the initial
population.

3.2 Fitness function

The penalty function method, due to its simplicity, is by
far the most widely studied and used in handling
constraints [23]. Based on the exact penalty method, the
fitness functionf it(x) is expressed as:

f it(x) =







f (x), if x ∈ F

f (x)+Θ ·P(x), otherwise (3)

whereΘ (Θ > 0) is the penalty parameter, andP(x) =
p
∑
j=1

max{g j(x),0} .

3.3 Mutation operation

Differential evolution (DE) has been used in many
practical cases and has demonstrated good convergence
properties. The essential ingredient in the DE is mutation
operator. The difference of two random vectors acts as a
search direction in the solution space. The mutation factor
selected between zero and one is used to control the
search step. Due to the integer restriction imposed on the
decision variable, the real perturbation for the variable is
then rounded to the nearest integer number. As a result,
the each component of mutant chromosome becomes the
integer number. In this paper we adopt the mutation
operator from DE similar to that in [1] (see Eqn.(8) in
[1]).

Let pm be the mutation probability. Denote the best
chromosome, a chromosome with minimum fitness value
among all chromosomes generated till now, byxb = (xb

1,

xb
2, · · · ,x

b
n)

⊤. In current population, randomly select three
different chromosomes with probabilitypm, denoted by
xr = (xr

1,x
r
2, · · · ,x

r
n)

⊤, xp = (xp
1,x

p
2, · · · ,x

p
n)⊤ and

xq = (xq
1,x

q
2, · · · ,x

q
n)⊤.

Generate a child mutation chromosomexm = (xm
1 ,x

m
2 ,

· · · ,xm
n )

⊤ by

xm = min

{

max

{

INT[xr +α · (xb − xr)

+β · (xp − xq)],xL
}

,xU
}

, (4)

whereα = diag(α1,α2, · · · ,αn), β = diag(β1,β2, · · · ,βn),
αi and βi (i = 1,2, · · · ,n) are real random numbers
between zero and one. The operator INT[t] is expressed as
the nearest integer vector to the real vectort.

In Equation (4), a real vector is generated via using
the direction mutation operator, and then this real vector
is rounded to the nearest integer vector. For some
components of this integer vector beyond the bounds, by
truncation procedure, keep them within the bounds. For
example, if theith component of this integer vector is less
than the lower boundxL

i , let the ith component bexL
i ; if

the ith component is larger than the upper boundxU
i , let

theith component bexU
i .

3.4 Crossover operation

Crossover offspring are generated by using orthogonal
experimental design with both orthogonal array and factor
analysis. An efficient way to study the effect of several
factors simultaneously is to use orthogonal experimental
design. The factors are the variables, which affect
response variables, and a setting of a factor is regarded as
a level of the factor. A “complete factorial” experiment
would make measurements at each of all possible level
combinations. However, the number of level
combinations is often so large that this is impractical, and
a subset of level combinations must be judiciously
selected to be used, resulting in a “fractional factorial”
experiment. Orthogonal experimental design utilizes
properties of fractional factorial experiments to efficiently
determine the best combination of factor levels to use in
design problems [24][25] .

A two-level orthogonal array similar to that in [24] is
used in this paper. The general symbol for two-level
standard orthogonal arrays is LN(2N−1), whereN is the
number of experimental runs,N − 1 denotes the number
of factors. Letn ≤ N −1. If n = N −1, we directly adopt
the standard orthogonal array LN(2N−1). If n < N −1, we
adopt only the firstn columns of the standard orthogonal
array LN(2N−1) or the available orthogonal array LN(2n)
from source. According to the problem dimension, we
choose appropriate two-level orthogonal array LN(2N−1)
to execute the matrix experiments, and generateN
offspring chromosomes. The algorithm of constructing
orthogonal arrays can be found in [20]. Many existing
orthogonal arrays can also be obtained in [19]. Several
orthogonal arrays are available from a library of
orthogonal arrays at http://neilsloane.com/oadir/.
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After evaluation of each chromosome in theN
combinations, the summarized data are analyzed using
the factor analysis. Factor analysis can evaluate the
effects of individual factors on the fitness value, rank the
most effective factors, and determine the better level for
each factor. In this paper, the factor analysis in [4] is
adopted in our algorithm. Letf iti denote a fitness value of
the combination corresponding to the experimenti,
i = 1,2, · · · ,N, where N is the total number of
experiments. Define the main effect of factorj with level
k asE jk where j = 1,2, · · · ,n andk = 1,2:

E jk =
N
∑

i=1
f iti · χi (5)

whereχi = 1 if the level of factorj of experimenti is k;
otherwise,χi = 0. Considering the case that the problem is
to be minimized (smaller-the-better), the level 1 of factor
j makes a better contribution to the fitness value than level
2 of factor j does whenE j1 < E j2, so the better level is
level 1 for factor j. If E j1 > E j2, level 2 is the better one.
If E j1 = E j2, levels 1 and 2 have the same contribution.

After the better level for each factor is selected, a best
chromosome can also be obtained. This best chromosome
has the lowest fitness value among those of parents andN
combinations of factor levels, whereN is the total number
of experiments. The purpose for the use of the orthogonal
experimental design is to produce a potentially best
chromosome from two randomly selected parents
chromosomes.

3.5 Migration operation

In order to improve the population’s diversity and avoid
the premature convergence, we adopt a migration operator
similar to that in [11].

Let pmi be the migration probability. A chromosome
is randomly selected from the candidate chromosomes
generated by the crossover operation with probabilitypmi,
denoted byxc = (xc

1,x
c
2, · · · ,x

c
n)

⊤. A new chromosome
xv = (xv

1,x
v
2, · · · ,x

v
n)

⊤ is generated according to:

xv
k =

{

xc
k + INT[ρk · (xL

k − xc
k)], if τk <

xc
k−xL

k
xU

k −xL
k

xc
k + INT[ρk · (xU

k − xc
k)], otherwise

(6)

k = 1,2, · · · ,n.

where ρk and τk (k = 1,2, · · · ,n) are random numbers
between zero and one.

3.6 Local search operation

In this subsection, we introduce the simplified three-point
quadratic interpolation method [18], which is adopted to
improve the local search ability of the main algorithm, and

to prevent the main algorithm from getting trapped in the
local optima.

Denote the best chromosome corresponding to the
minimum fitness value byx1 = (x1

1, · · · ,x
1
n)

⊤, and choose
randomly two other distinct chromosomesx2 = (x2

1, · · · ,

x2
n)

⊤ and x3 = (x3
1, · · · ,x

3
n)

⊤. Let f1 = f it(x1),
f2 = f it(x2), f3 = f it(x3), then determine the
approximate minimal chromosome ¯x = (x̄1, · · · , x̄n)

⊤

using the three-point quadratic interpolation formula:

x̄i =
Ai

2Bi
, i = 1,2, · · · ,n. (7)

whereAi = [(x1
i )

2− (x2
i )

2] f3+[(x2
i )

2− (x3
i )

2] f1
+[(x3

i )
2− (x1

i )
2] f2, Bi = (x1

i − x2
i ) f3+(x2

i − x3
i ) f1+(x3

i −

x1
i ) f2. Note that ¯x is the extremal point of the quadratic

curve passing throughx1, x2, x3, and ¯x is a vector of real
variables. In order to make ¯x satisfy the integer restrictions
and box constraints, we modify ¯x using the rounding and
truncation procedures, and generate a trial chromosomexa:

xa = min

{

max

{

INT[x̄],xL
}

,xU
}

. (8)

3.7 Selection operation

We first compare the fitness values of all the
chromosomes, including those in the current population
and all the offspring, rearrange all the chromosomes in
the ascending order of their fitness values, and find the
best chromosomexb = (xb

1,x
b
2, · · · ,x

b
n)

⊤ with the
minimum fitness value. We choose the firstM − M1
chromosomes, and then randomly generateM1 new
chromosomesxd = (xd

1,x
d
2, · · · ,x

d
n)

⊤ by:

xu
j = xb

j + INT[−1+ rand(0,1)∗2], (9)

xd
j =















xL
j , if xu

j ≤ xL
j

xu
j , if xL

j < xu
j < xU

j

xU
j , if xu

j ≥ xU
j

(10)

j = 1,2, · · · ,n.

where rand(0,1) represents a random number between
zero and one. The resultingM chromosomes constitute
the next population. In addition, we retain the best
chromosome of every generation.

3.8 Stopping criterion

If the optimal solution is reached first, then the algorithm
stops; otherwise, the algorithm is executed to the maximal
number of generationsMaxG, then the algorithm stops
and the best chromosome with minimum fitness value
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will be then taken as a global minimizer of problem.

Now the discrete hybrid evolutionary algorithm for
problem (1) is presented as follows.
Algorithm 2:
Step 0. Parameter Setting
Choose population sizeM, mutation probability pm,
cross-over probabilitypc, migration probabilitypmi, the
degree of violationδ , penalty parameterΘ , number of the
foreign chromosomes introduced into the next population
M1, suitable two-level orthogonal array LN(2N−1), and
the maximal number of generationsMaxG.
Step 1. Initialization
Let t = 0, an initial populationP(t) is generated by the
Algorithm 1, and evaluate the fitness values of initial
chromosomes in theP(t).
Step 2. Mutation operation
Step 2.1. Determine the best chromosome with minimum
fitness value among all chromosomes generated till now.
Step 2.2. Choose randomly three different chromosomes
in the current population with probabilitypm.
Step 2.3. Generate a mutant chromosome by using
Equation (4), and evaluate its fitness value.
Step 2.4. Repeat Steps 2.2-2.3M times, produce
Mm(= pm ∗ M) mutant chromosomes, which form a
temporary populationPm(t).
Step 3. Crossover operation
Step 3.1. Choose randomly two chromosomes from the
populationPm(t) with probabilitypc to execute the matrix
experiment.
Step 3.2. Evaluate the fitness values of the chromosomes
generated by the matrix experiment.
Step 3.3. Calculate the effects of the various factors(E j1,
E j2), j = 1,2, · · · ,n, thus generate a best chromosome,
and then evaluate its fitness value.
Step 3.4. Repeat Steps 3.1-3.3Mm times, produce
Mc(= pc ∗ Mm) offspring chromosomes, which form a
temporary populationPc(t).
Step 4. Migration operation
Step 4.1. Choose randomly a chromosome from the
temporary populationPc(t) with probabilitypmi.
Step 4.2. Generate a new chromosome by using Equation
(6), and evaluate its fitness value.
Step 4.3. Repeat Steps 4.1-4.2Mc times, produce
Mmi(= pmi ∗ Mc) offspring chromosomes, which form a
temporary populationPmi(t).
Step 5. Local search operation
Step 5.1. Rearrange all the chromosomes in the current
population and all the temporary populations
(P(t)∪Pm(t)∪Pc(t)∪Pmi(t)) in ascending order of their
fitness values, and choose the firstM chromosomes to
form a trial populationP′(t).
Step 5.2. Find the best chromosomex1 with minimal
fitness valuef it(x1), and the worst chromosomexw with
maximal fitness valuef it(xw) in the populationP′(t).
Randomly choose two other distinct chromosomes from
the populationP′(t), denoted byx2, andx3, respectively.
Let f1 = f it(x1), f2 = f it(x2), and f3 = f it(x3).

Step 5.3. For some i ∈ {1,2, · · · ,n}, if
(x1

i − x2
i ) f3 + (x2

i − x3
i ) f1 + (x3

i − x1
i ) f2 < ε (ε = 10−4),

then letxa = xw, and f it(xa) = f it(xw), go to Step 5.5;
Otherwise, go to Step 5.4.
Step 5.4. Calculatexa by using the Equations (7)(8), and
then the fitness valuef it(xa).
Step 5.5. If f it(xa) < f it(xw), then replace the worst
chromosomexw in the populationP′(t) with xa and form
a new populationP′′(t); Otherwise, keep the population
P′(t) unchangeable and the new populationP′′(t) = P′(t).
Step 6. Selection operation
Step 6.1. Choose the firstM −M1 chromosomes from the
populationP′′(t) based on the ascending order of fitness
values.
Step 6.2. Generate randomlyM1 chromosomes according
to Equations (9)(10).
Step 6.3. The resultingM chromosomes constitute the
next populationP(t + 1). In addition, we retain the best
chromosome of every generation.
Step 7. Stopping criterion
If the stopping criterion is met, then stop, and output the
best chromosome with minimal fitness value. This
chromosome is taken as the global optimal solution of
problem (1). Otherwise, sett = t +1, and go to Step 2.

4 Computational experiences and
comparison

To demonstrate feasibility and efficiency of the proposed
algorithm (DHEA), we test 22 integer programming. The
test problems are selected from the literature [8] [16]
[18]. The details of these problems are provided in the
Appendix.

The proposed algorithm is programmed in Matlab 7.0
for working on a microcomputer with Intel Pentium
IV/3.06 GHz CPU and 1GB RAM.

During the simulations, we adopted the following
parameter settings of the DHEA for each test problem.
Population size:M = 50 forn < 50;M = n for n ≥ 50;
Mutation probability:pm = 0.3;
Crossover probability:pc = 0.8;
Migration probability:pmi = 0.4;
Degree of violation:δ = 0.0001;
Penalty parameter:Θ = 10000;
Number of the foreign chromosomes introduced into the
next population:M1 = 5;
The maximal number of generationsMaxG = 1500 for
each test problem.

Two-level orthogonal arrays used in this paper are
provided as follows:
L4(23) for 2-dimensional or 3-dimensional problem;
L8(27) for 4-dimensional or 5-dimensional problem;
L12(211) for 10-dimensional problem;
L16(215) for 13-dimensional problem;
L32(231) for 25-dimensional or 30-dimensional problem;
L64(263) for 40-dimensional or 50-dimensional problem;
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L200(2100) for the problem with 100 dimensions;
L400(2200) for the problem with 200 dimensions.

The performance of the DHEA is evaluated based on
the optimization results on the 22 test problems as
compared with some existing discrete global optimization
algorithms. For each test problem, 20 independent runs
with different seeds from the random number generator
are performed to observe the consistency of the outcome.

The computational results of DHEA are summarized
in Table 1, including the following:

(1) Success rate (SR), i.e., the proportion of
convergence to the global optimum;

(2) Mean number of fitness evaluations (FES) for the
algorithm to stop at Step 7.

From Table 1, it is obvious that DHEA can find the
global optimal solutions with high success rate for all
problems. It indicates that DHEA is robust and stable in
finding an optimal solution. The computational cost of
DHEA can be measured by computing the mean number
of fitness evaluations. As described in Table 1, DHEA
requires a small number of fitness evaluations. On the
whole, DHEA exhibits a consistent and satisfactory
performance in terms of the success rate, as well as the
computational cost. It is, therefore, concluded that DHEA
is a promising technique in performing discrete global
optimization for future practical applications.

We compared our approach against the following three
approaches:

(1) Particle Swarm Optimization (PSO) [16]: PSO is
an evolutionary computing scheme; it explores the insect
swarm behavior. Each particle of the swarm was truncated
to the closest integer, after the determination of its new
position.

(2) Controlled Random Search Technique
Incorporating the Simulated Annealing Concept
(RST2ANU algorithm)[18]: This algorithm, which
primarily is based on the original controlled random
search approach of Price, incorporates a simulated
annealing type acceptance criterion in its working so that
not only downhill moves but also occasional uphill moves
can be accepted. In its working it employs a special
truncation procedure which not only ensures that the
integer restrictions imposed on the decision variables are
satisfied, but also creates greater possibilities for the
search leading to a global optimal solution.

(3) Discrete Dynamic Convexized Method
(DDCM)[8]: An auxiliary function is constructed, which
has the same discrete global minimizers as the problem.
The minimization of the function using a discrete local
search method can escape from previously converged
discrete local minimizers by taking increasing values of a
parameter. The algorithm called discrete dynamic
convexized method is proposed for original problem by
minimizing the auxiliary function.

Since the optimization results from the literature
using these algorithms are available only for some of the
22 selected test problems, the comparison will be made

accordingly. The comparative results are summarized in
Table 1.

From the literature [16] the optimization results using
PSO are available only for seven of the 22 test problems
which are problems 1−7. For all experiments the initial
population was only taken randomly inside[−100,100]n

by the DHEA, wheren is the corresponding dimension.
Table 1 presents the optimization results obtained by the
DHEA in comparison with those from the PSO. As can be
seen, the DHEA is able to find the global optimal
solutions for the 7 test problems with relatively high
success rate, indicating that the algorithm is both effective
and statistically stable. Comparing with the PSO, the
DHEA achieves generally much higher success rate
except for problem 4, while the required computational
effort is reduced considerably. The comparative study
shows that the performance of DHEA is superior to that
of the PSO.

From the literature [18] the optimization results using
RST2ANU are available only for eight of the 22 test
problems which are problems 8−15. From Table 1, it can
be seen that DHEA can achieve satisfied results for the
listed problems. On average, the computational cost
required by DHEA is much less than that required by
RST2ANU. For the problem 8, RST2ANU provided the
known maximal function value 303062432, and the
DHEA can determine the better maximal function value
304148583 with high success rate. For the problem 11,
RST2ANU provided the known maximal function value
1030361, and the DHEA can identify the better maximal
function value 1352439 with high success rate. For the
problem 13, RST2ANU reported a maximum solution
with function value 209205232, and the optimal function
value obtained using the DHEA is 216300719. For the
remaining problems, once again, the DHEA exhibits a
superior performance.

From the literature [8] the optimization results using
the DDCM are available only for eleven of the 22 test
problems, which are problems 12− 22. For
high-dimension problem 16, DHEA can optimize the
problems with up to 200 dimensions. From Table 1, it can
be seen that DHEA can achieve global optimization
results for problem 16, while the required computational
effort is small. For small-dimension problems, DHEA is
also able to obtain global minimum solutions with lower
computational cost except for problems 13−15 and 17.

5. Conclusion and future work

In this paper, a discrete hybrid evolutionary algorithm is
developed to globally solve integer programming
problems, including nonlinear integer programming
problems, linear integer programming problems as well
as 0-1 integer programming problems. The behavior of
the proposed algorithm seems to be stable even for high
dimensional cases, exhibiting fairly high success rates
even with modest population sizes. Experiments on 22
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Table 1: Comparison of DHEA with other algorithms in the literature for benchmark problems.
DHEA PSO RST2ANU DDCM

Problem n SR (%) FES SR (%) FES SR (%) FES SR (%) FES
1 25 100 1276.8 100 171110.0 - - - -
1 30 100 1288.7 80 274692.0 - - - -
2 25 100 1271.3 100 171610.0 - - - -
2 30 100 1283.7 84 274284.0 - - - -
3 5 85 16938.4 80 75060.0 - - - -
4 2 85 1652.4 100 8066.4 - - - -
5 2 100 816.0 100 8321.6 - - - -
6 2 100 975.6 100 8388.0 - - - -
7 4 100 1021.9 92 18476.8 - - - -
8 100 70 410335.5 - - 100 46617 - -
9 30 100 610.5 - - 100 26042 - -
10 10 95 1069.3 - - 100 279255 - -
11 40 100 759.6 - - 100 150562 - -
12 5 100 5571.0 - - 100 187794 100 24679.2
13 10 100 24388.8 - - 100 2695 100 13655.1
14 13 100 2237.4 - - 100 7887 100 658.1
15 3 90 5229.2 - - 70 206 100 689.7
16 25 90 13932.3 - - - - 100 28089.6
16 50 85 34960.1 - - - - 100 180368.3
16 100 85 203659.0 - - - - 100 1559704
16 200 100 1204337.7 - - - - 100 10234584
17 4 100 1020.1 - - - - 100 752.8
18 2 75 5320.9 - - - - 100 756941.2
19 2 100 958.1 - - - - 100 12780839
20 4 100 2101.2 - - - - 100 16622286
21 2 100 969.3 - - - - 100 55685.9
22 3 100 3157.5 - - - - 100 7055.2

test problems show that the proposed algorithm is able to
find the global optimal solution in all cases. Compared
with other algorithms, the proposed algorithm achieves a
considerable reduction of the computational effort.
Experimental results indicate that the proposed algorithm
is an efficient and robust method and should be
considered as a good alternative to handle integer
programming problems.

One issue that deserves some further study is the
sensitivity of our approach to parameters such as
population size, mutation probability, crossover
probability, migration probability, and number of the
foreign chromosomes introduced into the population.
Another path of future research consists of modifying
relevantly this discrete hybrid evolutionary algorithm to
solve mixed integer programming problems. Additionally,
we are also interested in applying our approach to the
solution of real-world optimization problems.
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Appendix

Problem 1[16]:

min f (x) = |x1|+ |x2|+ · · ·+ |xn|
s. t. −100≤ xi ≤ 100, xi ∈ Z , i = 1,2, · · · ,n

The global minimum solution isx∗i = 0, i=1,2, · · · ,n, with
f (x∗) = 0.
Problem 2[16]:

min f (x) = x2
1+ x2

2+ · · ·+ x2
n

s. t. −100≤ xi ≤ 100, xi ∈ Z , i = 1,2, · · · ,n

The global minimum solution isx∗i = 0, i=1,2, · · · ,n, with
f (x∗) = 0.
Problem 3[16]:

min f (x) =−Ax+ x⊤Bx
s. t. −100≤ xi ≤ 100, xi ∈ Z , i = 1,2,3,4,5

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


3198 H. Li et al.: A Heuristic Method for Integer Programming using...

whereA =











15
27
36
18
12











⊤

, B =











35 −20−10 32 −10
−20 40 −6 −31 32
−10 −6 11 −6 −10
32 −31 −6 38 −20
−10 32 −10−20 31











.

The global minimum solutions arex∗ = (0,11,22,16,6)⊤

andx∗ = (0,12,23,17,6)⊤, with f (x∗) =−737.
Problem 4[16]:

min f (x) = (x2
1+ x2−11)2+(x1+ x2

2−7)2

s. t. −100≤ xi ≤ 100, xi ∈ Z , i = 1,2

The global minimum solution isx∗ = (3,2)⊤ with f (x∗) =
0.

Problem 5[16]:

min f (x) = (9x2
1+2x2

2−11)2+(3x1+4x2
2−7)2

s. t. −100≤ xi ≤ 100, xi ∈ Z , i = 1,2

The global minimum solution isx∗ = (1,1)⊤ with f (x∗) =
0.

Problem 6[16]:

min f (x) = 100(x2− x2
1)

2+(1− x1)
2

s. t. −100≤ xi ≤ 100, xi ∈ Z , i = 1,2

The global minimum solution isx∗ = (1,1)⊤ with f (x∗) =
0.

Problem 7[16]:

min f (x) = (x1+10x2)
2+5(x3− x4)

2+(x2−2x3)
4

+10(x1− x4)
4

s. t. −100≤ xi ≤ 100, xi ∈ Z , i = 1,2,3,4

The global minimum solution isx∗ = (0,0,0,0)⊤ with
f (x∗) = 0.

Problem 8[18]:

max f (x) = 50x1+150x2+100x3+92x4+55x5
+12x6+11x7+10x8+8x9+3x10+114x11
+90x12+87x13+91x14+58x15+16x16
+19x17+22x18+21x19+32x20+53x21
+56x22+118x23+192x24+52x25+204x26

+250x27+295x28+82x29+30x30+29x2
31

−2x2
32+9x2

33+94x34+15x3
35+17x2

36−15x37

−2x38+ x39+3x4
40+52x41+57x2

42− x2
43

+12x44+21x45+6x46+7x47− x48+ x49
+x50+119x51+82x52+75x53+18x54+16x55
+12x56+6x57+7x58+3x59+6x60+12x61
+13x62+18x63+7x64+3x65+19x66+22x67
+3x68+12x69+9x70+18x71+19x72+12x73
+8x74+5x75+2x76+16x77+17x78+11x79
+12x80+9x81+12x82+11x83+14x84+16x85
+3x86+9x87+10x88+3x89+ x90+12x91

+3x92+12x93−2x2
94− x95+6x96+7x97

+4x98+ x99+2x100

s. t. ∑100
i=1 xi ≤ 7500, ∑50

i=110xi +∑100
i=1 xi ≤ 42000

0≤ xi ≤ 99, xi ∈ Z , i = 1,2, · · · ,100

The best known function value given in [18] is f (x∗) =
303062432.

Problem 9[18]:

min f (x) = 1−exp[(−1/60)∑30
i=1 x2

i ]
s. t. 0≤ xi ≤ 5, xi ∈ Z , i = 1,2, · · · ,30

The global minimum solution isx∗ = (0,0, · · · ,0)⊤ with
f (x∗) = 0.

Problem 10[18]:

min f (x) =C⊤x−0.5x⊤Qx
s. t. Ax ≤ B, xi ∈ {0,1}, i = 1,2, · · · ,10

whereA =











−2 −6 −1 0 −3 −3 −2 −6 −2 −2
6 −5 8 −3 0 1 3 8 9 −3
−5 6 5 3 8 −8 9 2 0 −9
9 5 0 −9 1 −8 3 −9 −9 −3
−8 7 −4 −5 −9 1 −7 −1 3 −2











,

B⊤ = (−4,22,−6,−23,−12), Q = 100× I10,
C⊤ = (48,42,48,45,44,41,47,42,45,46).
The global minimum solution isx∗ = (1,0,0,1,1,1,0,
1,1,1)⊤ with f (x∗) =−39.

Problem 11[18]:

max f (x) = 215x1+116x2+670x3+924x4+510x5
+600x6+424x7+942x8+43x9+369x10
+408x11+52x12+319x13+214x14+851x15
+394x16+88x17+124x18+17x19+779x20
+278x21+258x22+271x23+281x24+326x25
+819x26+485x27+454x28+297x29+53x30
+136x31+796x32+114x33+43x34+80x35
+268x36+179x37+78x38+105x39+281x40

s. t. 9x1+11x2+6x3+ x4+7x5+9x6+10x7
+3x8+11x9+11x10+2x11+ x12+16x13
+18x14+2x15+ x16+ x17+2x18+3x19
+4x20+7x21+6x22+2x23+2x24+ x25
+2x26+ x27+8x28+10x29+2x30+ x31
+9x32+ x33+9x34+2x35+4x36+10x37
+8x38+6x39+ x40≤ 25000,
5x1+3x2+2x3+7x4+7x5+3x6+6x7
+2x8+15x9+8x10+16x11+ x12+2x13
+2x14+7x15+7x16+2x17+2x18+4x19
+3x20+2x21+13x22+8x23+2x24+3x25
+4x26+3x27+2x28+ x29+10x30+6x31
+3x32+4x33+ x34+8x35+6x36+3x37
+4x38+6x39+2x40≤ 25000,
3x1+4x2+6x3+2x4+2x5+3x6+7x7
+10x8+3x9+7x10+2x11+16x12+3x13
+3x14+9x15+8x16+9x17+7x18+6x19
+16x20+12x21+ x22+3x23+14x24+7x25
+13x26+6x27+16x28+3x29+2x30+ x31
+2x32+8x33+3x34+2x35+7x36+ x37
+2x38+6x39+5x40≤ 25000,
10≤ xi ≤ 99, i = 1,2, · · · ,20,
20≤ xi ≤ 99, i = 21,22, · · · ,40

The best known function value given in [21] is f (x∗) =
1030361.
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Problem 12[21][18]:

min f (x) = x2
1+ x2

2+3x2
3+4x2

4+2x2
5−8x1−2x2

−3x3− x4−2x5
s. t. x1+2x2+2x3+ x4+6x5 ≤ 800,

2x1+ x2+6x3 ≤ 200,
x3+ x4+5x5 ≤ 200, x1+ x2+ x3+ x4 ≥ 48,
x2+ x4+ x5 ≥ 34, 6x1+7x5 ≥ 104,
55≤ x1+ x2+ x3+ x4+ x5 ≤ 400,
0≤ xi ≤ 99, xi ∈ Z , i = 1,2,3,4,5,

The global minimum solution isx∗ =(16,22,5,5,7)⊤ with
f (x∗) = 807.

Problem 13[21][18]:

max f (x) = x2
1+ x1x2− x2

2+ x3x1− x2
3+8x2

4
−17x2

5+6x3
6+ x4x5x6x7+ x3

8+ x4
9− x5

10
−x10x5+18x3x7x6

s. t. 0≤ xi ≤ 99, xi ∈ Z , i = 1,2, · · · ,10

The global maximum solution isx∗ = (99,49,99,99,
99,99,99,99,99,0)⊤ with f (x∗) = 216300719.

Problem 14[21][18]:

min f (u,v) = c⊤u− 1
2u⊤Qu+ d⊤v

s. t. 2u1+2u2+ v6+ v7 ≤ 10,
2u1+2u3+ v6+ v8 ≤ 10,
2u2+2u3+ v7+ v8 ≤ 10,
−2u4− v1+ v6 ≤ 0, −2v2− v3+ v7 ≤ 0,
−2v4− v5+ v8 ≤ 0,
−8ui + vi+5 ≤ 0, i = 1,2,3
u j,vk ∈ {0,1}, j = 1,2,3,4,k = 1,2,3,4,5,9
vl ∈ {0,1,2,3}, l = 6,7,8

wherec⊤ = (5,5,5,5), Q = 10· I4,
d⊤ = (−1, · · · ,−1), x = (u,v).
The global minimum solution isx∗ = (1,1,1,1,1,1,
1,1,1,3,3,3,1)⊤ with f (x∗) =−15.

Problem 15[21][18]:

min f (x) = ∑9
i=1{exp[− (ui−x2)

x3

x1
]− i

100}
2

s. t. 1≤ x1 ≤ 100, 0≤ x2 ≤ 25, xi ∈ Z , i = 1,2
x3 = j/2, 0≤ j ≤ 10, j ∈ Z

whereui = 25+[−50log(i/100)]2/3.
The global minimum solution isx∗ = (50,25,1.5)⊤ with
f (x∗)≈ 0.

Problem 16[21]:

min f (x) = x⊤Qx

s. t. ∑n
i=1

x2
i

9n+i ≤ 1, ∑n
i=1 ixi ≥ n/2

−5≤ xi ≤ 5, xi ∈ Z , i = 1,2, · · · ,n

whereQ = [Qi j], Qii = 2, Qi j = 1 for i 6= j.
The global minimum solution isx∗ = (0, · · · ,0,−1,
0, · · · ,0,1,0, · · · ,0)⊤with f (x∗) = 2, where x∗i = −1,
x∗j = 1, j ≥ ⌈n/2⌉+1, i ≤ j−⌈n/2⌉ for all n.

Problem 17[21]:

minf (x) = 100(x2− x2
1)

2+(1− x1)
2+90(x4− x2

3)
2

+(1− x3)
2+10.1[(x2−1)2+(x4−1)2]

+19.8(x2−1)(x4−1)
s. t. −10≤ xi ≤ 10, xi ∈ Z , i = 1,2,3,4

The global minimum solution isx∗ = (1,1,1,1)⊤ with
f (x∗) = 0.

Problem 18[21]:

min f (x) = [1.5− x1(1− x2)]
2+[2.25− x1(1− x2

2)]
2

+[2.625− x1(1− x3
2)]

2

s. t. xi = 0.001j,−104 ≤ j ≤ 104, j ∈ Z , i = 1,2

The global minimum solution isx∗ = (3,0.5)⊤ with
f (x∗) = 0.

Problem 19[21]:

min f (x) = 100(x2− x2
1)

2+(1− x1)
2

s. t. x2
1+ x2

2 ≥ 0.25, − 1
3x1+ x2 ≥−0.1,

xi = ji ×10−4, 0≤ ji ≤ 105, ji ∈ Z , i = 1,2

The global minimum solution isx∗ = (1,1)⊤ with f (x∗) =
0.

Problem 20[21]:

min f (x) = (x1+10x2)
2+5(x3− x4)

2+(x2−2x3)
4

+10(x1− x4)
4

s. t. xi = 0.001j,−104 ≤ j ≤ 104, j ∈ Z , i = 1,2,3,4

The global minimum solution isx∗ = (0,0,0,0)⊤ with
f (x∗) = 0.

Problem 21[21]:

min f (x) = g(x)h(x)
s. t. xi = 0.001j, −2000≤ j ≤ 2000, j ∈ Z , i = 1,2

where g(x) =
1+(x1+ x2+1)2(19−14x1+3x2

1−14x2+6x1x2+3x2),
h(x) = 30+ (2x1 − 3x2)

2(18− 32x1 + 12x2
1 + 48x2 −

36x1x2+27x2
2).

The global minimum solution reported in [21] is x∗ =
(0,−1)⊤ with f (x∗) = 3.

Problem 22[8]:

min f (x) = 33.7539
x1

+ 1.4430
x2

+ 1.3885
x3

s. t. x1+ x2+ x3 = 24
1≤ x1 ≤ 16,1≤ x2 ≤ 20,1≤ x3 ≤ 28,
xi ∈ Z , i = 1,2,3

The global minimum solution isx∗ = (16,4,4)⊤ with
f (x∗) = 2.817494.
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