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Abstract: In this paper, we are dealing with a new type of Baskakows&&tancu operator@rﬁa’m(f,x) defined by (1.4). First
we estimate moments of these operators and also obtaindheence relations for the moments. We estimate some ajppatzan
properties and asymptotic formulae for these operatorthdiast section, we establish some direct results in thenpatial weighted
space of continuous functions defined on the intej@ab).

Keywords: Baskakov-Szasz type operators, Asymptotic formula, Weid approximation.

1 Introduction positive operator§?* : C[0,1] — C[0, 1] defined for any
f € C[0,1] as follows:

For f € C[0,), a new type of Baskakov-Szasz operators

proposed by Gupta and Srivastaghif defined as

d k+a
S0 = 3 oot (55) 0531 @

Dn(f,X) = nkio Pnk(X) /Ow Sik(t) f(t)dt, xe [0,00) (1)

nako1 & where ppk(X) = E X(1—x)"¥ is the Bernstein basis
where  pny(x) = ( K >7(1+X)n+k and  function(ct. ).
(DK Recently, Ibrahim 7] introduced Stancu-Chlodowsky
Sk(t) =€ o polynomial and investigated convergence and
In [21] Stancu introduced the following generalization of approximation properties of these operators. Motivated by
Bernstein polynomials such type of operators we introduce Stancu type
generalization of the Baskakov-&z operators1) as

follows:

(0= 3 1 (7)ot 05x<1 @

i ® nt+a
AP (f,x) =n x/ t f( >dt,

o (M) Mbx+ a9 Mk - x+ a9 R
whereP;, 4 (X) = =) . (4)
’ k e o(l+as) : .

We get the classical Bernstein polynomials by puttingWNere Pnk(x) and s\k(t) defined as same inl). The
o = 0. Starting with two parameten, 8 satisfying the  operators @,ﬁ“’ﬁ )(f,x) in 4 are  called
condition 0< o < 3 in 1983, the other generalization of Baskakov-Sasz-Stancu operators. For = 0,3 = 0 the
Stancu operators was given 27 and studied the linear operators4) reduce to the operator$)(
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We know that and
k;pn,k(x) - 17 A pn,k(x) dX— n— 17 @n (t 7X) - (n—FB)Z@n(t 7X)+ (n—I—B)Z@n(t’X)
PP,

°° S 1 (n+p2~ "7

k;Sn,k(t) =1 /0 Sk(t) dt=—. o [n(n+1)x%+4nx+2

B ~ (n+p)? n?
In [16] Moghaddam and Aghili presented a numerical 2na nx4+ 1 a?
method for solving LNFODE (Linear Non-homogeneous + (Nt B)2 n + (Nt B)2
Fractional Ordinary Differential Equation). The method
presented is based on Bernstein polynomials _nn+1) ., (4n+2na)
approximation. (n+p)? (n+p)?

The.aim of the present paper is to sFudy some direct (2+2a+a?)

results in terms of the modulus of continuity of second TB)Z

order. We estimate moments for these operators and
obtain the recurrence relation for moments. Also, we
study direct theorem, \Voronovskaja type asymptotic

formula and weighted approximation properties for 3 v oments and recurrence relations
operators4).

Lemma 3. If we define the central moments as

2 Basic Results Hom(X) = &"*‘”((t— )M, )

. / (nt+a X)mdt
Lemmal. For Z,(t™x), m=0,1,2 we have N z Prk() | St n+p '
1 € [0,00), me N.
nx-+
Dn(1,X) =1, 9 ,
(1. n(t,x) = n Then,
o—pBx+1
Hno(X) =1, tn1(X) = —————,
Tn(t?,x) = n—lz[n(n+ 15+ 4nx+-2. " " n+ B

. . nd for n> m, we have the following recurrence relation:
Lemma 2. The following equalities hold: and for n> © have the foflowing recurrence refatio

) ) 1 (0+ B)Homs2(X) = X(L+X) [y m(X) + Mt 14
2P Wx =1, Bt = %’ +m+1+a— Bxpnm(X)
(i Ep a0 ©

(a,B) ;42 _n(n+1)x (4n+2na)x (2+2a+a)
o) = Tz + g T e
Proof. Taking derivative ofin m(X)
Proof. We observe that,

B nt+a m_ldt
2P (1,%) = Zn(1,%) = 1. Hnm(X —mnz Pnik(x / s g
t m
4—n;pnl< / Skt <n+a x) dt
AP X) = 2 Tn(tX) + = Ta(LX)

n+p n+p by /
o (nx+ 1) . o IJn7m(X) = —Minm-1(X) +nkZ0 pn,k(x)
S n+p\ N n+p - ntta m

_ nx+1+a. /O sn,k(t)<—n+B —x) dt

n+pg
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usingx(1+x) pg!k(x) = (k—nx)pnk(X), we get Now integrating by parts, we get
XL+ ) gm0 + M- 1(X)] 0B L0 S
P 1= —(m+ )mk;)npn,k(x)

<] 0 m
—ny (k- / L
nkzo( NX)Pnk(X) [ Snk(t <n+B X>
nt+a m
=nY kphk(X) /snk ( —x) dt
%
m
_nanpnk /snk <nt+a x) dt

= | —nXpnm(X). (6)
We can write | as

m
I_nzkpnk /snk (nt+a x) dt

m
—x) dt

nt+a

= [, Pt [} et (515

+n( %pnk / Shk(t (nt+a ) dt)]
=l1+1y, (say.
To estimate lo using
t:#[(fﬁg_x>—<ﬁ—x>},wehave
e @ nt+a m
l2 = [nkzonmk(X)/o %k(t)t(nw X) dt]
B n-|-[3 nt+a m1
= L;npnk / St (m—x> dt
a [oe]
(725 3 Pt
] nt+a m
fswo(fg )
= (0+8) [tamsa9 ~ (55~ .
Next to estimate Iy using the equality,
t%k = [k—nt]shk(t)

nt+a

ll:nkgopmk /t%k < B

m
x) dt,

n+l3 nt+a a
again puttingt = K g X) - (m -
get

1 =

m
/Snk <nt+a_x> at

00

+% <n4o—{[3 —x) kZonpm((x) /Owsmk(t)

(755" ]
— x) un’ml(x)} .

= [_ (M~ 1) tin m(X) + m(
Put the values ofy andl, in |, we get

n+p

| = {—(m+ 1) i m(X )+m( i )Un,ml(x)]
+(n+pB) [IJn,erl(X) - (% —x) un,m} .

Now, put value of | in 6), we get

X(14X) [ m(X) + Mpinm-1(X)]

—(M+41) tn m(x) + m< j_rB

o
n+p

) Hnm-1(X)

+148) (pama)— (55 =X ) =t

Hence,
(N+B) tnmr1(X) = X(1+X) [“rl'n,m(x) + Minm-1(X)]

+[M+1+ o — BXnm(X) — m(ﬁ - X) Hnm-1(X),

which is the required result.

Remark.Fora = 0= f3 the relation §) reduces to

Npnm-1(X) = X(1+X) [ty m(X) + Mt m-1(X)]
+(M+ 1) U m(X) + MXUn m-1(X).

Lemma4. Forne N, we have

(@.p) (1+5%) 1
AP (-2 < T g0+ 5 .

X(1+X), X € [0,0).
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Proof. Using lemma3 anda < 3, we have

2P (1 —%)2,%)

~ (n+BY) , x2n-2B-2aB) 2+2a+a?

RGEYO (n+B)2 (n+B)2
~(n+BYH ., @n—21+a)B) | 2(1+a)+a?
- (n+B)? (n+B)? (n+B)?
_(n+B%) o (2n+2B7) | 14

~ (n+B)? (n+B)2 (n+pB)2
_ (n+B? 1+ B2
— (n+B)2(X2+X)+(n+B)2'

Using(n+B2?) < (n+B)(1+B?) for ne N andp >
0, we get

AP ((t-%)2%)

(n+B)(1+p? 1+ B2

R A
1 [(n+B)A+BY, +B?
“ep | np) +X>+<n+rs>]
Thus,

(@B) s 2 (1+B?) 1
AP ((1-x20 < S oo+ 2o

which is required.

4 Direct result and asymptotic formula

Let the spaceCg[0,) of all continuous and bounded
functions be endowed with the norm
[If]| = sup{| f(x) |: x € [0,00)}. Further let us consider
the following K-functional:

Ka(f,8) = inf {||f—g|+dllg"|l}, ™)
gew?

whered > 0 andW? = {g € Cg[0,») : ¢',g" € Cg[0,)}.

By the method as givend], there exists an absolute

constant > 0 such that

Ka(f,8) < Can(f,Vd), ®)
where
w(f,V/8)= sup sup | f(x+2h)—2f(x+h)+f(x)|
0<h<y/3XE[0)
)

We denote the usual modulus of continuity of
f € Cgl0,). In what follows we shall use the notations

@(X) = \/X(x+ 1), wherex € [0, ).

Now, we give local approximation theorems for the
operatorsZ\* ).

Theorem 1. Let f € Cg[0,). Then, we have following
inequality,

(a,8) |14 a—Bx|

A0~ 109 < an (1,250
(1+B2) 1

+Ca>2<f,\/ wy {qoz(x)+—n+ﬁ]>,

where C is a positive constant.

Proof. Let us define the auxiliary operatﬁﬁ(a’ﬁ) by

1+a—Bx)

n+ g
(11)

are linear and

L1 = AR+ 10— (x+

for everyx € [0,»). The operatorZ\ @)
preserve the linearity properties:

LOP (¢ —xx) =0, t € [0,0). (12)

Letg € W2 andx,t € [0,0). By Taylor’s expansion
0t) =900 + g0t )+ [ (¢ g (du, t < [0.).
Applying .,%(“’B) on above and usind.®), we get

“P(g,x) = g(x) + L "P ( /X ‘- g (u)du, x) .

)

Hence by Lemma2) one has
| 4P (gx)—g(x) | < 2P (] [1t-ulig @iy,
< AP (%2 x|
u) Il e

/( -+ ‘”j < L Lra—px

n+pg
(1+B?) 1 1+a-px\?|, ,
B (e g )+ (B )]m n

B (w25 )] el

+

IN

g

is the second order modulus of smoothness ofSince

f € Cg[0, ). Also we set

w(f,V/3)= sup sup | f(x+h) —f(x)].

0<h< /3 %€[0,)

(10)

7P (1,%) dt<|f].

(13)

< 32 oPi) J5 st (28 )
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\@#’*‘”(f,x) )

< |4t -ax) - (1 -9

+. AP (9,%) - g(x)

# (e ) | <2l -l
6(1+pB%) 17,
+W [‘Pz(xﬂ'm} g™l

ro(t,

Taking infimum overalh € W?, we get

)

(a.p) _ (1+BZ)[ LD
40— 100 <k (1520 [
|1+ a — BX|
+a>2(f,W). (14
By (8), we get
| 2P (£ = £() | (15)
(1+B? 1
<sz<f,\/ s {"’Z(X”nw])
|1+ a — BX|
+@<f,w>, (16)
which proves the theorem.
5 Weighted approximation
Let B,2[0,00)={f foreveryx €  [0,0),

| f(x) |< M¢(1+x%), whereMs is a constant depending

on f}. By C,2[0,), we denote subspace of all continuous

functions belonging t@,2[0, ). Also, 1etCy,[0,%) be the
subspace of alif € C2[0,e) for which Iimxﬁm% is
finite. The norm orC; [0, ) is || f[|,2 = SURc[.w) %(f}

Proof. Using the theorem ing] and [18] we see that it is
sufficient to verify the following three conditions

Im |2t ~X e =0,r=012  (17)

Since, @,ﬁ“’ﬁ)(l,x) = 1, the first condition of 17) is
satisfied for = 0. Now,

| 2P (%) —x|

128P) (t,x) —x]e = sup

X€[0,00) 14 x2
nx+a+1 ‘ 1
S sup - 2
X[0,00) n+ g 1+x
N+B) |y T+
+a+1 sup

n+p xe[0,00) 1+x2 x€[0,00) 1+x2

— 0asn— co.

Therefore, conditionX7) holds forr = 1.

Similarly, we can write

| 2P 2,%) — |

| 267 (%) =], = sup

xe[0.) 14-x2
n(n+1 2
< (fpe 1) e e
2n(a +2) X 2420+ a?
(B som 11% " (NBY xjom 1+7
- n(1—2p)— B2 2n(a+2)+2+2a+a2
- (n+p)? (n+B)? (n+pB)%

which implies that||@r§a’m(t2,x) —%?||,2 — 0 asn — oo.
Thus the proof is completed.

We give the following theorem to approximate all
functions inC,2[0,). This types of results are given in
[5] for locally integrable functions.

Theorem 3. For each fe C.2[0,0) and & > 0, we have
jim sup 27 (L0100 g

2)1+&
N—00 Xe [va) (1+X )

Now, we discuss the weighted approximation pyoof, For any fixedk > 0,

theorem, when the approximation formula holds true on
the interval[0, ). Several other researchers have studied
in this direction and obtained different approximation
properties of many operators via summability methods

also, we mention some of them a§,[[9]-[15], [17]-
[19] etc.

Theorem 2. For each fe C;,[0,), we have

1im (| 74 (£,%) = £ (x)]|e =0.

(a,B) -
qup | 2P (EXN 10| _
xE[0,00) (14x2)1+¢
ol 2P (1)~ 10|
X<Xo (14x2)1+¢

< 1P (1) — Fllciom)
| 2P (1+12,%) | |

f(x) |
(1+x2)1+¢ +XSZUXE(1+X2)1+E'

| 2P (8,0 — 10|
(1+x2)1+¢

+ sup
X=X

+| 2 sup
X>Xo
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The first term of the above inequality tends to zero from
Theorem 2 of 20]. By Lemma4 for any fixedxo > 0 it lim nZ{%P) (¢ (t,%)(t — x)2,%) = 0.

24P (1442 x noe

is easily seen that syp, EEES: tends to zero as Hence,

n — oo. We can choosg, > 0 so large that the last part of
the above inequality can be made small enough. Thus the jim nj2{%#) (f,x) — (x)]
proof is completed. n—eo

= lim. <f’(x)n@,§“=’3>(t —X,X)+ gf”(x)@,§“=’3>((t —%)2,x)
6 Voronovskaja type theorem B (e (1,3t — X)27X)>

In this section we establish a Voronovskaja type = (1+a—px)f (x)+x(x+2)/2f"(x),

totic formula for th tog&\ P
asymptotic formula for the operatots which completes the proof.

Lemma5. For every xe [0,), we have

lim nZ\ P (t—xx) = (L+a—Bx),  (18) 7 Better estimation

n—oo

. @B) (s N2 It is well know that the operators preserve constant as
rl'—qlo NZn~ ((t=X)%, %) =X(2+X). (19) well as linear functions. To make the convergence faster,

King [8] proposed an approach to modify the classical
Theorem4. If any f € Cg[0,0) such that Bemstein polynomials, so that this sequence preserves

f’, f" € Ce[0,») and x€ [0, ») then, we have two test functiongy ande,. After this several researchers
) have studied that many approximating operatdrs
,!mo”(%am(fvx)_f(x)) =(1+a-ptK possess these properties i.b(e,x) = e(x) where
X(2+X) ., e(x) = X(i = 0,1), for examples Bernstein, Baskakov
+Tf (x), and Baskakov-Durrmeyer-Stancu operators.
In 2012 B] Braica et al. find some properties of a
for every x> 0. King-type operator and gave an approximation theorem

and a Voronovskaja type theorem for this operator.

As the operators@,ga’m introduced in §) preserve

only the constant functions so further modification of said
. 1., ) , operators is proposed to be made so that the modified
ft)=f(x)+f (X)(t—x)‘sz (X)(t=x)+r(xt)(t—x)°,  operators preserve the constant as well as linear fungtions
(20)  for this purpose the modification &#\*?) as follows:
where r(t,x) is Peano form of the remainder,

Proof. Let f, f’, f” € C,2[0,0) andx € [0, ). By Taylor’s
expansion we can write

; e o nt+a
above, we obtain @“(am(f’x) =n z p”*k(r”(x))/o Skt ( niB )dL
k=0
AP (.0 — £00] = 0N (t—x,x) (23)
n — 1
e L B (SNERY wherern(x) = (M2 andx € I = {Tﬁ%m)

+nZ3P) (1 (t,%)(t —x)2,x).

By Cauchy-Schwarz inequality, we have

Lemma6. For each xe I,,, we have

7P (%) =1,

8B (1 (t, %) (t = x)2,x) <
n(r(tx)(t—x)%x) < 77 @) ) —x

\/%a,ﬁ)(rz(t’x)’x)\/%a-ﬁ)((t—x)4,x). (21) @25 ((n+ 1)))(2+ <Z[n— (a+1)])x
We observe that?(x,x) = 0 andr?(-,x) € C,2[0,). Then, n n(n+B)
we have (n+1) (a+1)°
_|_
i (@) (2 2 n (n+p)?
Am nZn (69,9 =rf(xx) =0, (22)  (4+20)(a+1) (2+20+O{2)}
uniformly with respect tax € [0,A], whereA > 0. Now (n+p)? (n+B)?

from (21) and 2) and Lemméb, we obtain

(@© 2015 NSP
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1001

Applying 2*(%F) on (24), we get

S g*r(:iﬁ)(g’)() —g(x) = g/(x)@*r(]a,ﬁ)((t —%),%)
t
/ «(a.B) _ Z
s // +7"n (/X (t—u)g (u)du,x).
g t
40F Obviously, we hav%/ (t _ X)g”(u)du < (t - X)2||g”| '

20r

‘@*%"’”(g,x) —g(x)| < 2P (t—x)2)|g"]| = Fin2lld"]|

2 4 6 8 10

Since| 7+ @P)(f,%)| < ||f],

Fig. 1: Curves for f(x) = X2, Z2>°%(12,x), 75:°%0 12, x),
t2,%), 74

750100 10050042 y) atn = 500.

27 @B (£ %)~ f(x)| < |2* P (f —g,x)— (f—g)(X)

1001

+\@*<n"””<g,x>—g<x>

.

< 2||f —gl[+ fn2llg

60 Taking infimum overally € C2(1,), we obtain

40r

]@*é"*‘”(tx) ™

<Ko(f, fin2).

By (8), we have

20r

; : 5 5 0 ‘g*g"m(f,x)_ f(x) gc:wz(f,\/ﬂT,z),
Fig. 2. Curves forf(x) = X2, 75 ®%%(12,x), 2:1%20 12 x), .
_@#50,100) (2,%), %(100,500) (t2,x) atn = 500. which proves the theorem.
Theorem6. For any f € Ci(la) such that
f’, £ € C(In), we have
Lemma 7. For x € Iy, the following holds,
lim n|2*@P)(f x) — f x] = (x(x+2)/2)f"(x
a0 - 250 )0 lim | 7°{24)(1,3) ~ 10| = (x4 2/2)1" 09
for every xe€ Ip.
final¥) = 00020 = (1 o2 (20 00 o
’ n n(n+p) Proof: The proof of above Theorem is in similar manner
+{ (n+1) (@+1)%  (4+2a)(a +1) as Theorend.
n(n+p)? (n+p)?
(2+2a +(12)}
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